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Abstract:Conventional approach of dealing withmore users per coverage area
in cellular networks implies densifying the amount of (Access Point) AP which
will eventually result in a larger carbon footprint. In this paper, we propose
a base station off-loading and cell range extension (CRE) scheme based on
multi-hop device-to-device (MHD2D) path selection between transmitter and
receiver node. The paper also provides derivations of upper and lower bounds
for energy efficiency, capacity, and transmit power. The proposed path selec-
tion scheme is inspired by the foraging behavior of honey bees. We present
the algorithm as a modified variant of the artificial bee colony algorithm
(MVABC). The proposed optimization problem is modeled as a minimization
problem where we optimize the Energy Efficiency (EE). The proposed path
selection MVABC is compared with the Genetic Algorithm (GA) and also
with classical artificial bee colony (ABC) through simulations and statistical
analysis. The student’s t-test, p-value, and standard error of means (SEM)
clearly show that MVABC based path selection out-performs the GA and
classical ABC schemes. MVABC based approach is 66% more efficient when
compared with classic ABC and about 62% efficient when compared with GA
based scheme.
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1 Introduction

Conventional cellular networks provide coverage to a user by having a direct connection
established between a user and the base station. Although the scheme provides communication
with less delay, the recent trend of increased wireless data users and devices makes it difficult for
the conventional scheme to fulfill the QoS (Quality of Service) requirements [1]. This apparent
increase in the data requirement or increase in the number of users reduces network reliability
and efficiency when it is not able to cater to new users or provide dependable services to the edge
users. Hence, the effect is similar to having a cell with reduced coverage. Increasing the number
of BS in a cell may solve this issue but at the expense of increased BS and equipment installation
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charges along with an overall increase in power consumption. D2D communication promises to
provide an alternative to this problem by allowing mobile devices to communicate directly with
each other using low power in quite possibly the same band being used by some other cellular
device [2]. This concept is based on space division multiple access.

From 3GPP (third generation global partnership project) LTE (long term evolution) release
12 and onwards, it is quite apparent that a MHD2D network is set to become a necessary
part of 5G networks. Standards for D2D communication along with two-hop communication are
already part of the latest release [3]. Moreover, the cell range of base stations can be extended by
utilizing MHD2D relay nodes. To ensure that the cell range extension (CRE) offered by D2D links
meet the required QoS demand, the energy efficiency (EE) metric is commonly used [4] which is
generally defined as:

EE [bit/Joule]= DataRate (bits/s)
EnergyConsumption (Joule/s)

(1)

1.1 Related Work
MHD2D is an emerging technology capable of providing service to user-driven demand.

Catering for the similar user demand, the authors in [5] developed an algorithm for long-range
D2D links which is done through multi-hop communication. However, the study lacks any insight
regarding optimal path selection. In [6] the authors developed an algorithm for power control and
routing in MHD2D where Dijkstra shortest path algorithm is used for routing. A drone-based
D2D aided multi-hop network for emergency services is proposed in [7] where stochastic geometry
is used for link coverage probability to minimize delay, however, the path selected for emergency
message transmission is not considered in this paper.

A standard Dijkstra shortest path-based routing algorithm is developed in [8] for D2D for
multi-hop communication in the Internet of Things (IoT) application. D2D based solution for
offloading traffic in a cellular network is proposed in [9], the proposed framework offers a multi-
hop routing scheme for different types of data transmissions. In [10] a MHD2D energy-efficient
routing protocol is proposed to perform resource allocation while improving throughput and
packet delivery ratio. MHD2D routing for the millimeter-wave network is proposed in [11] where
received signal strength (RSS) is measured for relay nodes and an algorithm is designed to select
a route based on the probability of route selection as generated by their RSS values.

Interference aware D2D routing is discussed in [12] where an adaptive algorithm is proposed
which selects a route based on node location and amount of interference at next hop. Optimum
path selection for 5G vehicular networks based on mmWave D2D links is discussed in [13] where
the optimum path is found based on vehicular information rather than link quality. The authors
in [14] investigate multi-hop data transfer between D2D transmitter and receiver by scheduling
cellular resource blocks for optimizing transmission power which is done by maximizing the
number of relay-based paths. In [15] a greedy algorithm is proposed for MHD2D relay selection.
The algorithm works on a distributed local search.

The above-presented literature review on path selection, routing, or relay selection in MHD2D
network clearly shows a lack of heuristic approach towards problem-solving, this gap is largely
addressed in the proposed research. Literature provides evidence of using an ABC (artificial
bee colony) based algorithm for optimization. ABC based scheduling is proposed in [16] where
modified ABC is implemented for reducing travel distance and waiting time for a manufacturing
workshop. The authors in [17] utilized ABC for the vehicle-to-vehicle emergency information
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dissemination by using the algorithm minimum route selection from source to destination. In [18]
the ABC algorithm is implemented for intrabody nanonetwork where it is used for optimal
selection of biosensors along the transmission path. The low energy reliable routing protocol
problem is presented as an NP-hard problem in [19] which is solved using an ABC algorithm.

The literature survey supports the argument that heuristic approaches can be applied
for optimum path selection, at the same time application for same in CRE for MHD2D
remains unaddressed.

1.2 Contribution
The major contributions of the research are:

• An MHD2D link-based cell range extension scheme is proposed.
• Single antenna transmit power and capacity upper and lower bounds calculations for the
network without interference are derived.

• Upper and lower bounds of single antenna energy efficiency for a system without interfer-
ence are calculated are derived.

• Transmit power and capacity upper and lower bound calculations for single antenna
network with interference are derived.

• Energy efficiency upper and lower bound calculations for a network with interference
derived.

• MVABC proposed for source-destination path selection in a MHD2D based link for CRE.
• Comparison between MVABC and genetic algorithm (GA) based path selection for
MHD2D link between the source and destination node through simulation over a large data
set of 30 runs of 200 iterations each is presented.

• Comparison between MVABC and classic ABC based path selection for MHD2D link
between the source and destination node through simulation over a large data set of 30 runs
of 200 iterations each is presented.

• Statistical analysis of simulation results using student’s t-test, p-value, and SEM (standard
error of means).

1.3 Paper Organization
Section 2 describes the system model and assumptions. In Section 3 we provide detailed

derivations for transmitting power, capacity, and energy efficiency for two cases i.e., case one
provides derivations without interference while case two provides derivations while considering the
effects of interference in a single antenna network. Section 4 gives the mathematical formulation
of the problem. In Section 5 we describe MVABC based path selection for MHD2D, which is
followed by simulation and results with discussion in Section 6, and the paper is concluded in
Section 7.

2 System Model and Assumptions

We consider a single input single output system without interference. The mobile users are
distributed around the Macro Base Station (MBS) as Homogeneous Poisson Point Process (HPPP)
and downlink communication from MBS to a far-off destination node is considered. A ‘far-off’
node is a node that lies just outside the cell range of MBS. Since the destination node D is located
outside the coverage area of MBS, MHD2D links are used for CRE. It is also assumed that
nodes independently decide about their willingness to participate in relaying between source and
destination. The decision is based on the incentives offered to mobile relay nodes from the service



2078 CMC, 2021, vol.68, no.2

providers. Fig. 1 shows that MBS has several options in terms of finding a path to node D via
MHD2D users.

Figure 1: Proposed D2D multi-hop source-to-destination communication

For the sake of simplicity, we assume that MBS is already operating at optimized power.
Hence, we have to find upper and lower bound for transmitting power of relaying devices and
capacity along the path from MBS to node D to optimize an energy-efficient path as described by
Eq. (1). It is also assumed that the dissipation in transceiver hardware and baseband processing is
negligible. We consider a scenario (refer to Fig. 1) where a source node S wants to communicate
with node D. Node S sends a connection request (Con.Req.) to MBS. Since MBS cannot directly
locate node D in its cell range so it forwards a route request to the users at its cell boundary who
then forwards the request to their neighbors and ultimately the request reaches the destination
node. In this centralized model of route discovery, the MBS discovers the multi-hop route between
node S and node D. In a decentralized case node S will directly broadcast a route request to
its neighbors which will then further broadcast it to their neighbor until node D is reached.
Both centralized and decentralized modes have their advantages and disadvantages, however, the
comparison of the two is beyond the scope of the current research.
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3 Energy Efficiency and Transmit Power Limits

We will consider two cases wherein the first case we find the transmit power and EE limits
for the channel without interference while in the second case we derive the limits for the channel
with interference.

3.1 Single Antenna Transmit Power Without Interference
The lower bounds of transmit power Ptlb is required to ensure that a required threshold signal

to noise ratio γth can be ensured during transmission. As:

γth =
Prth
N

(2)

And Pr= Pt

L
(
d
do

)α (3)

where Prth in Eq. (2) is the received power threshold which is the minimum acceptable received
power that can ensure a signal to noise ratio (SNR) at least equal to the threshold γth, so Prth
can be used for deriving Ptlb i.e., the lower bound of transmit power to ensure γth, which is given
by Eq. (4):

Ptlb = γthNL
(
d
do

)α

(4)

where N is the noise power, d is the distance between nodes, do is the reference distance which is
taken equal to 1 meter for indoor communication and 100 m to 1 Km for outdoor communica-
tion, L is a constant which is the path loss computed at do and α is the pathloss exponent.

For upper bound of Pt (transmit power) we will receive maximum power Prmax and the
received SNR will be γmax while staying within Ptlb and Ptub (transmit power lower and upper
bound respectively), so the maximum receiver power is given by Eq. (5):

Prmax =
Ptub

L
(
dmin
do

)α (5)

As it is obvious that received power increases with a decrease in distance between communi-
cating nodes, hence, we denote the minimum distance as dmin. So, the upper bound of transmit
power can be derived as in Eq. (6):

γmax=
Ptub

L
(
dmin
do

)α (6)

So, transmit power upper bound is given as in Eq. (7):

Ptub = γmaxNL
(
dmax
do

)α

(7)
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3.2 Single Antenna Capacity and EE Without Interference
Here we are going to derive the expressions for upper and lower bounds of capacity and EE

in a system without interference. Since the capacity is directly proportional to SNR so for the
lower bound of capacity the transmit power will also be the lower bound and hence the SNR
lower bound of γth will be used for the expression of lower bound of capacity as given by Eq. (8):

Clb=B log2 (1+ γth) (8)

Similarly, the upper bound for capacity can be derived using γmax as in Eq. (9):

Cub=B log2 (1+ γmax) (9)

Now, the upper bound of EE can be written as in Eq. (10):

EEub=
Cub
Ptlb

(10)

Similarly, the lower bound for EE can be written as in Eq. (11):

EElb=
Clb
Ptub

(11)

3.3 Single Antenna Transmit Power with Interference
In this case, we will use the Signal to Noise and Interference (SINR) ratio represented by γ ′

which can be written as Eq. (12):

γ ′ = Pr
N+P′ (12)

where P′ is the interference power received from neighboring nodes. After substituting values of
received power as in the case of single antenna transmit power without interference, we can write
the expression for lower bounds of transmit power for node i (P′

tilb
) and upper bound of transmit

power for node i (P′
tiub

) as given in Eqs. (13) and (14) respectively:

P′
tilb = γ ′

th

⎛
⎝NL

(
d
do

)α

+
∑
j �=i

P′
j

⎞
⎠ (13)

P′
tiub = γ ′

max

⎛
⎝NL

(
dmax
do

)α

+
∑
j �=i

P′
j

⎞
⎠ (14)

3.4 Single Antenna Capacity and EE with Interference
The expressions for lower and upper bounds of capacity for a network with interference can

be derived similarly and is given by Eqs. (15) and (16) respectively:

C′
lb=Blog2

(
1+ γ ′

th

)
(15)

C′
ub=Blog2

(
1+ γ ′

max
)

(16)
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Energy efficiency upper and lower bounds can be expressed in terms of the ratio of capacity
and transmit power for a network with interference and can be expressed in Eqs. (17) and
(18) respectively:

EE′
ub=

C′
ub

P′
tilb

(17)

EE′
lb=

C′
lb

P′
tiub

(18)

4 Problem Formulation

Let V = {v0, v1, . . . , vn} is the set of nodes, E = {e0, e1, . . . , en} is the set of edges where
E ⊆ {< i, j> |i, j= 0, 1, 2, . . . , n}. Path selection problem for maximizing EE can mathematically
be represented as:

maxEEpormin−EEp (19)

Such that :

Clb ≤C ≤Cub (20)

C′
lb ≤C′ ≤C′

ub (21)

Ptlb ≤Pt ≤Ptub (22)

P′
tilb ≤P′

t ≤P′
tiub (23)

γth ≤ γ ≤ γmax (24)

γ ′
th ≤ γ ′ ≤ γ ′

max (25)

Eq. (19) states the energy efficiency for a particular path p written as (EEp) is maximization
problem or it’s negative (−EEp) is minimization problem. Eqs. (20) and (21) enforce the capacity
constraint on the selected path for the case without interference and the case with interference
respectively. Similarly, Eqs. (23)–(25) impose the constraints of transmit power without and with
interference on SNR and SINR lower and upper bounds for path selection.

5 MVABC for MHD2D Path Selection

The ABC algorithm is a nature-inspired algorithm where the natural behavior of honey
bee for rich nectar source exploration is used for real-world problem-solving. The idea was first
proposed by Karaboga in 2005 [20] and ever since then the idea has been refined and also it
has found numerous problem-solving applications [21–27]. Each food source corresponds to the
solution for the optimization problem. The ABC algorithm consists of three types of bees based
on their roles in the exploration process.

Scout: All potential food sources are explored by the scout bee.

Onlooker: Evaluate the nectar quality and quantity as learned from scouts traversing.

Employed Bees: Responsible for nectar collection from sources identified by the onlooker bees.
If a food source is exhausted, the corresponding employed bee becomes a scout and looks for a
new food source.
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In MVABC, we take inspiration from the ABC algorithm and propose an algorithm for
the implementation of MVABC for multi-hop path selection. Fig. 2 shows a flow chart of the
pseudocode for the MVABC algorithm for path selection. The proposed algorithms are presented
in the Algorithms 1–4.

Algorithm 1: Initialization
1. For i=Np
2. For j= 1 to D
3. MBS generates xi solutions
4. Where xi represents the nodes from SN
5. End
6. failurei = 0
7. End

When node S sends a connection request to MBS, MBS broadcasts to users/devices at the
cell edge for node discovery. Through MHD2D relays, node D is discovered and a reply is
generated by each intermediate node (which previously received MBS request for node discovery)
and sent back to MBS. Based on the received replies, MBS generates an initial population with
SN solutions representing the nodes which sent replies. Each of these D2D relay (food source
positions) represent a possible solution Xi = (i= 1, 2, . . . , SN) which is a D dimensional vector
representing the number of optimization parameters that are taken as two to represent capacity
and transmit power. In the algorithm failurei represents the abandonment limit of a solution xi
and is equal to the number of unimproved xi.

The following sequence takes place during the initialization step:

• Fix swarm size SN and number of cycles
• Determine the number of employed bees (EB), onlooker bees (OB), and food sources, i.e.,

Np = SN
2

=EB=OB (26)

For path selection problem this will equal the number of nodes.
• MBS generates random variables that will serve as the initial population within the domain

of decision variables.
• MBS then calculates the fitness of the population.
• Generate initial trial vector for the population.

In this phase, MBS sends a route discovery message on Np where Np represents all the possible
nodes between S and D, each message sent from MBS behaves similarly to an EB. This route
discovery message performs a neighborhood search similar to the EB. Since the node may already
have forwarded node discovery request and received a reply, it will compare previous interaction
with new interaction, similar to comparing the nectar amount of previous food source in EB
memory with the nectar amount of the new food source. The old food location in memory is
replaced by a new location if the new location has better nectar quality. The updated location is
given by Eq. (27):

Xj
new =Xj+∅

(
Xj −Xj

p

)
(27)

where ∅ is randomly chosen between [−1, 1] and j ∈ {1, 2, . . . , D}.
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Figure 2: Flow chart of MVABC algorithm

Algorithm 2: MBS initiates employed bee phase
1. For i=Np
2. Node i receives route request from MBS
3. Node i generates new solution using (27)
4. Node i compares fitness using (29)
5. If fit (xi+ 1) > fit (xi)
6. newsol = currentsol
7. failurei = 0
8. Else
9. newsol = oldsol
10. failurei = failurei+ 1
11. End
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To generate a new solution, first, we randomly choose a variable to change for the first food
source i.e., first neighbor node, then we randomly choose a partner solution Xp and generate a
new solution using Eq. (27). The solution is checked for obeying upper and lower bounds and
after that fitness of the new solution is calculated using the objective function of Eq. (28):

f =min−EEr =min
Pt
C

(28)

If the objective function is within the bound specified in Eqs. (10) and (11) for the case
without interference or satisfies Eqs. (17) and (18) for the case with interference, then, the fitness
of the population is calculated using Eq. (29):

fit=

⎧⎪⎨
⎪⎩

1
1+ f

if f ≥ 0

1+ |f | if f < 0

(29)

A greedy selection is performed between old and new solutions and the fittest of the two
solutions is retained. The process continues until all the nodes who sent route request-reply (food
sources) have been exhausted.

Algorithm 3: MBS Initiates Onlooker Bee Phase
1. For i=Np
2. MBS calculates pi using (31)
3. End
4. trial= 0, i= 1
5. Repeat
6. If pi < λ

7. trial= trial+ 1
8. For j= 1toD
9. MBS produces Xj

new using (27)
10. End
11. If newpi < oldpi
12. failurei = failurei+ 1
13. Else
14. failurei = 0
15. i= i+ 1
16. Until trial =Np

Once the search process is complete and all possible paths have been visited by EB, i.e., MBS
has sent route request messages on all possible paths, the D2D relays share their neighborhood
information with MBS, this is similar to nectar amount being shared with OB through dance. The
probability of a food source is calculated by OB (processing within MBS) using Eq. (30):

pi = fiti∑Np
j=1 fitj

(30)
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where fiti is the fitness of solution i for the EE ratio (nectar amount) it represents, where a
comparison is made between old and new EE ratio values and the new one replaces the old
position (node) if the new position (node) has a better fitness.

If MBS does not receive a route request reply from one of the nodes which previously sent
a node discovery reply, after a wait of t time intervals, that particular node will be abandoned.
In classical ABC algorithm, in the onlooker bee phase, once the probabilities are calculated for
all the possible fitness values, a random number is generated. The randomly generated number is
compared with the probability of ith food source (pi). If the probability is less than the random
number, then a new solution is generated using Eq. (27), otherwise, the old solution is maintained.
In MVABC, we replace this randomly generated number with a number (λ) for making intelligent
decision whether new solution should be generated or not.

Initially the generation of λ depends on food source generated using lower bounds of pt
and C, for these values we find the objective function, fitness and probability using Eqs. (28)–(30)
respectively. We label this particular value of probability for lower bounds of transmit power and
capacity as λ. As shown in algorithm 3, if pi < λ , i.e., probability of ith food source is less than
a predefined threshold for acceptable ranges of pt and C, then a new solution is generated using
Eq. (27), otherwise the old solution is retained and probability of next food source is compared.
In the simulation we have chosen three difference values of λ namely 0.2, 0.8 and 1 for the sake of
demonstration of results for its different values. For simulation λ may be assigned any value within
in acceptable bounds of pt and C. This value can be fixed to generated most optimum results.

Algorithm 4: MBS Initiates Scout Bee Phase
1. If trial>max trial
2. MBS generates new solution using (31)

The SB phase is entered when any solution having a trial limit greater than a maximum
exceeds. When MBS cannot improve an established path any further through route discovers, then,
the previous best solution is stored in the memory and a new solution is generated randomly
between upper and lower bounds using Eq. (31):

Xj
i =Xj

min+ rand [0, 1]
(
Xj
max−Xj

min

)
(31)

where Xmin and Xmax are lower and upper bound of population respectively.

The objective function and fitness of the new solution is calculated using Eqs. (28) and
(29) respectively and it replaces the old solution even if it has poor fitness compared to the
old solution.

6 Simulation and Results

The comparison and performance analysis of the proposed algorithm was carried out in
Matlab R2018b. The simulation parameters are presented in Tab. 1.

6.1 Performance Metrices
A statistical approach similar to one utilized in [28] was used to evaluate the results. We will

briefly describe the performance metrices in this sub-section and their details are given in the
sub-section below along with discussion on results.
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Table 1: Simulation parameters

Parameter Value

Population size 100
Number of iterations 200
λ 1, 0.8, 0.2
Cross over percentage 0.7
Mutation percentage 0.3
γth 5 dbm
Number of runs 30, 60
Number of variables 2
Transmit power bounds (0.02–0.25) J/s
Capacity bounds (1000–10000) bps

Best Cost (Mean abs(-EE)): As described in Section 1, in this research we consider maximiz-
ing the EE or minimizing the (-EE) and is presented for proposed algorithm MVABC along with
classic ABC and GA.

Standard Deviation (SD): Describes the variation in mean data values.

Standard Error of Means (SEM): Measures deviation of sample’s mean from population mean.

6.2 Results
The proposed algorithm was compared with classic ABC and GA based path selection. Both

algorithms were tested using large data set with 30 and 60 runs with 200 iterations per run. The
population size and cycle limit were kept the same for all the simulated cases of MVABC, GA
and classic ABC.

For GA based algorithm we kept the crossover percentage at 0.7, mutation percentage at 0.3,
and mutation rate at 0.1. A population size of 100 was used for all three algorithms. We calculated
the mean best cost, SD and the SEM for each run.

We compared GA, classic ABC and MVABC based path selection through simulation over a
large data set with randomly generated seed values. The mean best, standard deviation, and SEM
are given in Tab. 2 for 30 runs of each algorithm.

To show whether the experimental results obtained from MVABC, classic ABC and GA for
path selection are significantly different, we perform Student’s t-test hypothesis [28]. The t-test
statistically verifies if the difference in the mean values is due to the variation in sampling or does
it present evidence that MVABC provides better convergence to the solution.

The t-value for the hypothesis is calculated using Eq. (32):

t-value= X1−X2

SX1X2

√
2
n

(32)

where grand standard deviation, SX1X2 is given by Eq. (33):

SX1X2 =
√
1
2

(
S2X1

+S2X2

)
(33)
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Table 2: Statistical results from 30 runs of MVABC, classic ABC and GA

Run No. MVABC Classic ABC GA

1 Mean
SD
SEM

0.0024
0.012
0.0008

0.0098
0.1065
0.0075

0.0114
0.1119
0.0079

2 Mean
SD
SEM

0.133
0.1201
0.0085

0.0053
0.0385
0.0027

0.003
0.0265
0.0019

3 Mean
SD
SEM

0.0018
0.0077
0.00054

0.0117
0.0881
0.0062

0.0067
0.058
0.0041

4 Mean
SD
SEM

0.0122
0.1102
0.0078

0.016
0.0994
0.007

0.0088
0.0694
0.0049

5 Mean
SD
SEM

0.007
0.0524
0.0037

0.0094
0.0766
0.0054

0.0025
0.0238
0.0017

6 Mean
SD
SEM

0.0044
0.0263
0.0019

0.014
0.1004
0.0071

0.006
0.0716
0.0051

7 Mean
SD
SEM

0.0073
0.0563
0.004

0.0098
0.0975
0.0069

0.0056
0.0426
0.003

8 Mean
SD
SEM

0.0029
0.0195
0.0014

0.0112
0.0637
0.0045

0.0060
0.0443
0.0031

9 Mean
SD
SEM

0.0097
0.0751
0.0053

0.0238
0.133
0.0094

0.004
0.0224
0.0016

10 Mean
SD
SEM

0.0037
0.0187
0.0013

0.0073
0.0512
0.0036

0.0036
0.034
0.0024

11 Mean
SD
SEM

0.006
0.0373
0.0026

0.0123
0.1108
0.0078

0.0037
0.0404
0.0029

12 Mean
SD
SEM

0.0059
0.0309
0.0022

0.0117
0.0881
0.0062

0.0021
0.0183
0.0013

13 Mean
SD
SEM

0.0112
0.1171
0.0069

0.016
0.0994
0.007

0.0044
0.0454
0.0032

14 Mean
SD
SEM

0.0112
0.0971
0.0069

0.014
0.0114
0.0071

0.0054
0.0528
0.0037

15 Mean
SD
SEM

0.0024
0.012
0.00085

0.0086
[0.0654
0.0046

0.087
0.085
0.06

(Continued.)
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Table 2 (continued).

Run No. MVABC Classic ABC GA

16 Mean
SD
SEM

0.0132
0.083
0.0059

0.0098
0.0975
0.0069

0.0056
0.0509
0.0036

17 Mean
SD
SEM

0.0073
0.0781
0.0055

0.0112
0.0637
0.0045

0.0022
0.0172
0.0012

18 Mean
SD
SEM

0.012
0.103
0.0072

0.0034
0.0186
0.0013

0.0025
0.0215
0.0015

19 Mean
SD
SEM

0.0154
0.1014
0.0072

0.0086
0.1045
0.0074

0.0043
0.0339
0.0024

20 Mean
SD
SEM

0.0078
0.039
0.0028

0.0123
0.1108
0.0078

0.0068
0.044
0.0031

21 Mean
SD
SEM

0.0035
0.0233
0.0016

0.0098
0.1065
0.0075

0.0046
0.0351
0.0025

22 Mean
SD
SEM

0.0052
0.0283
0.002

0.0048
0.0304
0.0021

0.0062
0.044
0.0031

23 Mean
SD
SEM

0.0116
0.1516
0.0107

0.016
0.0994
0.007

0.0104
0.0733
0.0052

24 Mean
SD
SEM

0.0041
0.0205
0.0015

0.009
0.059
0.0042

0.0082
0.0739
0.0052

25 Mean
SD
SEM

0.0073
0.0781
0.0055

0.0094
0.0766
0.0054

0.0023
0.0159
0.0011

26 Mean
SD
SEM

0.0018
0.0107
0.00075

0.014
0.1004
0.0071

0.0074
0.0756
0.0053

27 Mean
SD
SEM

0.0078
0.039
0.0028

0.0086
0.0654
0.0046

0.0321
0.3759
0.0266

28 Mean
SD
SEM

0.0081
0.0513
0.0036

0.0062
0.035
0.0025

0.0067
0.053
0.0037

29 Mean
SD
SEM

0.005
0.0211
0.0015

0.0086
0.1045
0.0074

0.058
0.502
0.035

30 Mean
SD
SEM

0.0082
0.0444
0.0031

0.0036
0.0208
0.0015

0.0154
0.1276
0.009
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where X1 is mean of data for MVABC, X2 is mean of data for classic ABC for obtaining
results as in Tab. 3 and in subsequent calculations it represents mean of GA where results are
presented in Tab. 4. SX1 is the standard deviation of data for MVABC, and SX2 is the standard
deviation of data for classic ABC and represent the same for GA in subsequent calculations as
given in Tab. 4.

Table 3: Summary of statistical T-test results for MVABC and classic ABC

Group 1 (MVABC) Group 2 (Classic ABC)

Mean 0.0073 0.0215
Variance 0.0016 0.0008
STD 0.04 0.0283
N 30 30
T −2.7376
d.o.f 58
Critical value 2

The t-test will test the null hypothesis to check whether the mean of MVABC, classic ABC
and GA are equal vs. an alternate hypothesis that the mean of MVABC, classic ABC and GA are
not equal and the MVABC test results hold more significance. The result of the t-test performed
on the data set labeled as Group1 (MVABC) and Group 2 (classic ABC) is given in Tab. 3.

Table 4: Summary of statistical T-test results for MVABC and GA

Group 1 (MVABC) Group 2 (Classic GA)

Mean 0.0073 0.0191
Variance 0.0016 0.0007
STD 0.04 0.0265
N 30 30
T −2.4405
d.o.f 58
Critical value 2

where N is the total number of runs of each algorithm, T is the t-test value (who’s absolute is
compared to the critical value), d.o.f (degree of freedom) refers to maximum logically independent
values that can vary with freedom in a sample of data and is given by d.o.f = 2n − 2, where
n is the total number of iterations. Its value is important because it helps in determining the
critical value against which a hypothesis is tested. The test shows that the means of MVABC and
classic ABC are significantly different at p< 0.05 significance level. Where p is the probability of
having a value less than the significance level indicates that the null hypothesis is rejected and the
alternate hypothesis is accepted, in other words, we can say that the mean path cost calculated by
MVABC is less than that using classic ABC. This implies that the nodes selected between source
to destination using MVABC represented a more energy efficient path.
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Similar t-tests were performed between MVABC and GA. The statistical results are given in
Tab. 4. As in the case of comparison with classic ABC, MVABC compared to GA is again capable
of providing a more energy efficient path.

This can further be realized by examining the error bar graph in Fig. 3. MVABC was tested
for different values of λ. Since the error bars are not overlapping (Fig. 3) hence it can be seen
that there is a significant difference in the results generated by MVABC and those by classic ABC
and GA, so, the null hypothesis is rejected and the alternative hypothesis is accepted. Moreover,
the difference in means calculated using the MVABC, classic ABC and GA can also be observed
for various values of λ, the results can be seen in Fig. 4. The results represent better convergence
of MVABC and better overall best cost value compared to classical ABC. In Fig. 5a comparison
is drawn between different values of λ applied in MVABC with classic ABC. Various values of λ

for MVABC clearly offer least cost solution compared to the classic ABC.
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Figure 5: Comparison of different values of λ in MVABC with classic ABC

7 Conclusion

This paper proposed an MHD2D link for CRE or offloading of the base station. An MVABC
algorithm was proposed for path selection between source and destination for an MHD2D link.
Upper and lower bounds of transmit power, capacity, and energy efficiency for the network
with and without interference were derived. The proposed MVABC approach for MHD2D path
selection was compared with classical ABC and GA-based MHD2D path selection for a large data
set with the same population size and same upper and lower bounds for population generation.
The simulated results signified the improved performance of MVABC over classic ABC and GA
based approach. The simulated results were further verified using statistical techniques namely
the student’s t-test, p-value, and SEM. The detailed statistical analysis confirmed that MVABC
outperformed GA based MHD2D based path selection.

As future work, we will consider multi-antenna system with both centralized and decentralized
approaches for path finding. We also plan on improving MVABC further in this respect and
develop a generalized algorithm for single and multi-antenna systems.
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