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Abstract:Lip reading is typically regarded as visually interpreting the speaker’s
lip movements during the speaking. This is a task of decoding the text from
the speaker’s mouth movement. This paper proposes a lip-reading model that
helps deaf people and persons with hearing problems to understand a speaker
by capturing a video of the speaker and inputting it into the proposed model
to obtain the corresponding subtitles. Using deep learning technologies makes
it easier for users to extract a large number of different features, which can
then be converted to probabilities of letters to obtain accurate results. Recently
proposed methods for lip reading are based on sequence-to-sequence archi-
tectures that are designed for natural machine translation and audio speech
recognition. However, in this paper, a deep convolutional neural network
model called the hybrid lip-reading (HLR-Net) model is developed for lip
reading from a video. The proposed model includes three stages, namely, pre-
processing, encoder, and decoder stages, which produce the output subtitle.
The inception, gradient, and bidirectional GRU layers are used to build the
encoder, and the attention, fully-connected, activation function layers are used
to build the decoder, which performs the connectionist temporal classification
(CTC). In comparisonwith the three recentmodels, namely, the LipNetmodel,
the lip-reading model with cascaded attention (LCANet), and attention-CTC
(A-ACA) model, on the GRID corpus dataset, the proposed HLR-Net model
can achieve significant improvements, achieving the CER of 4.9%, WER of
9.7%, and Bleu score of 92% in the case of unseen speakers, and the CER of
1.4%,WERof 3.3%, and Bleu score of 99% in the case of overlapped speakers.

Keywords: lip-reading; visual speech recognition; deep neural network;
connectionist temporal classification

1 Introduction

Lip reading can be defined as the ability to understand what people are saying from their
visual lip movement. Lip reading is a difficult task for humans because lip movements corre-
sponding to different letters are visually very similar (e.g., b and p, or d and t) [1,2]. Automatic
lip reading is currently used in many applications, either as a standalone application or as a
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supplementary one. It has been considered as a human-computer interaction approach that has
been recently trending in the literature. One of the famous applications of lip reading is as an
assisting tool for deaf persons by transforming the speech in the form of a video into subtitles. It
can also be used as a supplementary means in noisy or virtual reality (VR) environments by com-
pleting the unheard sentences affected by the noise existence. In addition, it can greatly enhance
the real experience of immersive VR [3]. Besides, automatic lip reading has been used in many
applications, including security, speech recognition, and assisted driving systems. Automatic lip
reading involves several tasks from different fields, including image processing, pattern recognition,
computer vision, and natural language understanding.

Machine learning (ML) is a type of models that allows software applications to become more
accurate in predicting outcomes without being explicitly programmed [4,5]. The basic premise of
machine learning is to build algorithms that can predict output data based on the input data using
statistical analysis and update output data when new input data become available. Deep learning
is a machine learning method that uses an input X to predict an output Y . For instance, for
given stock prices of the past week, a deep learning algorithm can predict the stock price of the
next day [6]. Given a large number of input-output data pairs, a deep learning algorithm aims to
minimize the difference between the predicted and expected outputs by learning the relationship
between the input and output data, which enables the deep learning model to generalize accurate
outputs for previously unseen inputs.

Lip reading is considered to be a difficult task for both humans and machines because of the
high similarity of lip movements corresponding to uttering letters (e.g., letters b and p, or d and t).
In addition, lip size, orientation, wrinkles around the mouth, and brightness also affect the quality
of the detected words. These problems can be addressed by extracting the spatio-temporal features
from a video and then mapping them to the corresponding language symbols, which represents a
nontrivial learning task [7]. Due to its hardness, machine learning approaches have been proposed.

Recently, deep learning approaches have been applied to lip reading [7–9], which resulted in
the fast development of the speech recognition field. In general, these approaches first extract the
mouth area from a video of interest and then feed the extraction result to the input of a deep
learning-based model. This model is commonly trained such that both feature extraction and word
identification are automatically performed.

Currently, most of the existing lip-reading methods are based on the sequence-to-sequence
architectures that are designed for applications such as natural language translation and audio
speech recognition. The most common lip-reading methods are the LipNet model [7], lip-reading
model with cascaded attention-CTC (LCANet) [10], which is also known as the attention high
network-CTC (AH-CTC), and attention-CTC (A-CTC) models [6]. However, the lip-reading
performance requires further improvement, which can be achieved by using more robust deep
learning models and utilizing available datasets. The ambiguity of the translation from videos
to words makes lip reading a challenging problem, which has not been solved yet. To address
these problems, in this paper, a video-based sentence-to-sentence lip-reading model is developed
using a deep convolutional neural network model, and it is denoted as the hybrid lip-reading
network (HLR-Net). The proposed model consists of three stages: pre-processing, encoder, and
decoder stages. The pre-processing stage is responsible for extracting the mouth movements from
the video frames, frame normalization, and sentence preparation. The encoder is built of the
inception, gradient, and bidirectional GRU layers, while the decoder consists of the attention,
fully-connected, activation function layers, and connectionist temporal classification (CTC). The
proposed model output is a subtitle of the input video provided in the form of a sentence.
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The rest of this paper is organized as follows. Section 2 summarizes the recent lip-reading
related work categorized from different perspectives. Section 3 describes the proposed model.
Section 4 presents and discusses the experimental results. Finally, Section 5 draws the conclusion
and introduces the ongoing future work.

2 Related Work

Introducing artificial intelligence to lip reading can greatly help deaf people by providing an
automated method to understand video data presented to them. Millions of people around the
world suffer from a certain extent of hearing deficiency, and developing a suitable lip-reading
model can help them to understand other people’ speech and thus allow them to participate in
conversations, thus making them be connected to the real world. However, developing such a
model is challenging for both designers and researchers. These models should be well designed,
perfected, and integrated into smart devices to be widely available to all people in need of speech-
understanding assistance.

Generally speaking, speech recognition can be conducted on the letter, word, sentence, digit,
or phrase level. Also, it can be based on a video with or without a voice. Some of the recent
studies on word-level lip reading have been focused on speaker-independent lip reading by adapt-
ing a system using Speaker Adaptive Training (SAT) technique, which was originally used in the
speech recognition field [3]. The feature dimension was reduced to 40 using the linear discriminant
analysis (LDA), and then the features were decorrelated using the maximum likelihood linear
transform (MLLT). Namely, the 40-dimensional speaker-adapted features were spliced across a
window of nine frames first, and then the LDA was applied to decorrelate the concatenated
features and reduce the dimensionality to 25 Next, the obtained features were fed to the input of
a context-dependent deep neural network (CD-DNN). In this way, the error rate of the speaker-
independent lip reading was significantly reduced. Furthermore, it has been shown that the error
can be even further reduced by using additional deep neural networks (DNNs). It has also been
proven that there is no need to transform phonemes to visemes to apply the context-dependent
visual speech transcription.

In [4], a method for automatically collecting and processing very large-scale visual speech
recognition data using British television broadcasting was proposed. The proposed method could
process thousands of hours of spoken text covering it into the data having an extensive vocabulary
of thousands of different words. To validate the method, the VGG-M, 3D convolution with
early fusion, 3D convolution with multiple towers, multiple towers, and early fusion models were
used. The input image size was chosen to be 112 × 112 pixels. Multiple towers and early fusion
models achieved the best accuracy among those models when testing in 500 and 333 classes.
A learning architecture for word-level visual speech recognition was presented in [8]. This model
combined spatiotemporal convolutional, residual (ResNet), and bidirectional LSTM networks.
The ResNet building blocks were composed of two convolutional layers with BN and ReLU
activation functions, while the skip connections facilitated information propagation in the max-
pooling layers. This model ignored irrelevant parts of utterance and could detect target words
without the knowledge about word boundaries. The database entries were fully automatic, and
the words in subtitles were identified by using the optical character recognition (OCR) technique
and synchronized the audio data. This model incorporated data augmentation processes, such as
applying random cropping and horizontal flips, during training. The proposed model achieved a
word recognition accuracy of 83%.
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In [10], three types of visual features were studied from the image-based and model-based
aspects for a professional lip-reading task. These features included the lips ROI, lip-shape geomet-
rical representation, and deep bottle-neck features. A six-layer deep auto-encoder neural network
(DANN) was used to extract the three mentioned features. These features were then used in two
lip reading systems: the conventional GMM-HMM system and the DNN-HMM hybrid system.
Based on the reported results, the DBNFs system achieved an average relative improvement of
15.4% compared to the shape features system, while the shape features system achieved an average
relative improvement of 20.4% compared to the ROI features system when applied to test data.

In [11], the authors targeted the lip-reading problem using only video data and considered
variable-length sequence frames words or phrases. They designed a twelve-layer convolutional
neural network (CNN) using two batch-normalization layers to train the model and to extract the
visual features in the end-to-end. The aim of using the batch normalization was to decrease the
internal and external variances in the features that could affect speech-recognition performance,
such as speaker’s accent, lighting and quality of image frames, the pace of the speaker, and
posture of speaking. To avoid the problem of a variable speaking speed of different speakers,
a concatenated lip image was created by extending the sequence to a fixed length. The MIRACLE-
VC1 dataset was used to evaluate the system, and a 96% training accuracy and a 52.9% validation
accuracy were achieved.

The performances of speaker-dependent and speaker-independent lip-reading models based on
CNNs, such as AlexNet, VGG, HANN, and Inception V3, have been studied in [12–15]. The main
ideas and findings of the previous research on lip reading supported by AI methods, the type of
used dataset, and achieved accuracy values are given in Tab. 1. As shown in Tab. 1, the speech-
recognition performance was evaluated by using only one metric, which was the accuracy.

Table 1: Comparison between earlier work based on the accuracy as a performance metric

Ref. AI method Accuracy Dataset Task

Name Size

[3] MLLT + SAT, DNN 48% mean (visemes)
52% mean phonemes.

200 sentences
selected from the
RM corpus.

only the front view
vocabulary size of
around 1000 words

Word

[4] VGG-M, 3D Conv. with Early
Fusion and Multiple Towers

92.5% at sentence
level
88.6% in unseen
speakers

Their own
dataset

29 speakers
118,166
Utterances Duration
33 h.

Sentences

[8] Spatiotemporal conv., residual
and bidirectional LSTM
networks.

83.0% at word level Videos extracted
from BBC TV
broadcasts

500-size target-words
with 1.28 sec video
excerpts

Words

[10] 6-layer Deep Auto-encoder NN
(DANN)
GMM-HMM
and DNN-HMM hybrid

15.4% Compared to
shape features
20.4% Compared to
ROI features

CUAVE digits (0 to 9)
36 speakers (19 males
and 17 females)
80 isolated digits

Isolated and
connected
digits

[11] 12-layer CNN with 2 layers of
batch normalization

96.5% on training set
52.9% on validation
set.

MIRACL-VC1 3000 instances Word or
phrase

[12] CNN models:
AlexNet and Inception V3

Speaker dependent
AlexNet 86.6%,
Inception V3 64.6%
speaker independent
AlexNet 37.1%
inception-V3.17.6%

Miracl-VC1 15 speakers, 1500
instances

Word

(Continued.)
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Table 1: Continued

Ref. AI method Accuracy Dataset Task

Name Size

[13] Pre-trained deep learning
architecture VGG Net

94.86% in training,
93.82% in validation
and 60% in testing

MIRACL-VC1
dataset with
some
modifications

15 speakers, 1500
instances

Word

[16] Deep 3D CNNs, two-stream 84.07% LRW number of target
words = 500

Word

[15] CNN + Hahn moments 59.23%, 93.72%, and
90.86% on
AV-Letters, OuluVS2
and BBC LRW,
respectively.

AV-Letters,
OuluVS2 and
BBC LRW

Letters,
digits or
words

Various datasets have been used in the development of the lip-reading methods, including
LSR, LSR2, MV-LSR, BCC, and CMLR, as summarized in Tab. 2. In [9], an aligned training
corpus containing profile faces was constructed by applying a multi-stage strategy on (the LRS
dataset) called the MV-LRS. In [17], lip reading was considered as an open-world problem con-
taining unrestrained NL sentences. Their model was trained on the LRS dataset, and it achieved
better performance than other compared methods on several datasets. In [18], another public
dataset called the LRS2-BBC was introduced, and it contained thousands of natural sentences
acquired from British television. Some of the transformer models [12] obtained the best result
of 50% when they were decoded with a language method, achieving an improvement of over
20% compared to the previous result of 70.4% obtained by the state-of-the-art models. A lip
by speech (LIBS) model was proposed in [19], and it supported the lip reading with speech
recognition. The extracted features could provide complementary and discriminant features that
could be assigned to the lip movements. In [20,21], the authors simplified the training procedure,
which allowed training the model in a single stage. A variable-length augmentation approach was
used to generalize the models to the variations found on the sequence length.

One of the most commonly used datasets in the word-level lip-reading models is the GRID
corpus dataset [16]. In [6], the authors presented the LipNet model that mapped a variable-length
sequence of video frames to the text at the sentence level and used the spatiotemporal convolution,
recurrent network, and connectionist temporal classification loss. The input, which was a sequence
of frames, was passed to three layers of the spatiotemporal CNN (STCNN) first and then to a
spatial max-pooling layer. The extracted features were up-sampled and managed by a bidirectional
ong short-term memory (Bi-LSTM). The LSTM output was passed to a two-layer feedforward
network and a SoftMax network. The model training was performed using the CTC on the GRID
corpus dataset from which the videos for speaker 21 were omitted because they were missing;
also, all empty and corrupted videos were removed. The LipNet achieved the CER, WER, and
accuracy of 2.4%, 6.6%, and 93.4%, respectively, when it was trained and tested on the GRID
corpus dataset, which was the sentence-level dataset. This model has the advantage that it does
not require alignment.

Furthermore, in [8], a DNN model was built using the feedforward and LSTM networks.
The training of the model was performed using the error gradient backpropagation algorithm.
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The GRID corpus dataset was used for training and testing the model, and 19 speakers with
51 different words were chosen to classify. The frame-level alignments obtained word-level
segmentation of a video, producing a training dataset that consisted of 6 × 1000 = 6000 single
words per speaker. A 40× 40-pixel window containing the mouth area was detected from each
video frame using the Gaussian function, a threshold value for the center determination and
scaling parameter. The experiments were, however, speaker-dependent, and the experimental data
were randomly divided into training, validation, and test data, while classifiers were always taken
from the same speaker. The results were averaged over 19 speakers, and the word-recognition
accuracy of 79.6% was achieved.

Table 2: Performance comparison between different AI methods with different Lip-reading
datasets

Ref. AI method Performance measures Dataset

Accuracy CER WER

[9] CNN Single Shot
Detector (SSD)

OuluVS2
91.1%

MV-LRS
54.4%

MV-LRS
62.8%

MV-LRS 74,574
sentences
OuluVS2 52 subjects
uttering 10 phrases

[17] LSTM encoder CNN
based on the VGG-M
model.

lip only = 54.9%
A/V clean = 87.4%
A/V noisy = 75.3%

lip only = 39.5%,
A/V clean = 7.9%
A/V noisy = 17.6%

lip only = 50.2%
A/V clean = 13.9%
A/V noisy = 27.6%

LRS about 100,000
natural sentences from
British television.

[18] spatiotemporal ResNet
+ STFT + transformer
CTC

– – Video only = 48.3%
A/V = 8.2%

LRS2-BBC Compared
with
LRS3-TED

[19] RNN-LSTMs
Fully conv. model

– – 50% LRW 489K samples
(500 words)
LRS2 sentences up to
100 characters from
BBC videos

[20] Multi-scale Temporal
Convolutional
Networks (TCN).

– LRW = 85.30%
LRW 1000 = 41.4%

– LRW
LRW1000

[21] Attention-based
sequence-to-sequence
architecture.

CMLR 69.99%
LRS2 = 41.91%

CMLR = 31.27%
LRS2 45.53%

LRS2 = 65.29% CMLR (100,000
sentences)
LRS2 (45,000 spoken
sentences from
BBC TV)

In [16], the authors presented a lip-reading deep neural network that utilized the asynchronous
spiking outputs of the dynamic vision sensor (DVS) and dynamic audio sensor (DAS). The event-
based features produced from the spikes of the DVS and DAS were used for the classification
process. The GRID visual-audio lip reading dataset was used for model testing. Networks were
trained both separately and jointly on the two modalities. It was concluded that the single-
modality networks that were trained separately on DAS and DVS spike frames achieved lower
accuracy than the single-modality networks that were trained on both the audio MFCC features
and the video frames. The recurrent neural network (RNN) using the MFCC features achieved an
accuracy of approximately 98.41%. In addition, the audio inputs yielded better performance than
the corresponding video inputs, achieving an accuracy of 84.27%, which was expected because
the audio was more informative than the lip movement for this task. When the jointly trained
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network was tested on only the DVS spike frames, an accuracy of 61.64% was achieved, which
represented a significant increase in the accuracy compared to the single video modality network,
whose accuracy was 38.26%.

In [22], the authors conducted a comprehensive study analyzing the performances of some of
the recent visual speech recognition (VSR) models for different regions of the speaker’s face. The
considered regions included the mouth, the whole face, the upper face, and the cheeks. Their study
targeted the word-level and sentence-level benchmarks with different characteristics. Two models
were used, the 3D-ResNet18 model, which was the word-level model, and the LipNet model,
which was the sentence-level model. The experiments were conducted using two fixed-size mouth
cropping methods: the fixed bounding box coordinates and the mouth-centered crops. Different
methods of determining ROI regions were also considered. In addition, the LRW, LRW-1000, and
GRID datasets were used. They concluded that using the information from the extraoral facial
regions could enhance the VSR performance compared to the case when the use lip region was
used as the model input. Accuracy on the word level was 85.02% on the LRW dataset, 45.24%
on the LRW-1000 dataset, while on the sentence level, WER was 2.9%, and CER was 1.2%. The
state-of-the-art research that used the GRID corpus dataset is given in Tab. 3. Based on the recent
studies, the GRID corpus dataset is chosen to be used in this study.

Table 3: State-of-the-art researches based on the GRID corpus dataset

Ref. AI method Accuracy CER WER Dataset name Dataset size Task type

[6] 3 layers of STCNN,
spatial max-pooling,
Bi-LSTM

93.4% 2.4% 6.6% GRID corpus
(sentence level
dataset)

34 speakers, 1000
sentences (28 h across
34000 sentences

Sentences

[7] Feedforward
2 RNN-LSTM 128
units

79.6% – – GRID corpus 19 speakers, 51 different
words

Word

[14] 3D CNN, Bi-GRU 97.2% 1.3% 2.9% GRID corpus 34 speakers, 1000
sentences (28 h across
34000 sentences

Word

[10] LSTM 96.9% 1.9% 4.8% GRID corpus
And LRW

34 speakers, 1000
sentences (28 h across
34000 sentences

Word

[16] 150-GRU RNN for
audio features
3-layered CNN and a
single 80-unit GRU
layer for video features

RNN for DAS
= 83.8%
CNN + RNN
DVS = 38.26%
DAS + DVS =
86.66%

– – GRID
visual-audio lip
reading dataset

1000 sentences spoken
by each of 34 talkers (18
males, 16 female), total
51 different words

Word

[22] 3D-ResNet18 (word
level)
LipNet (sentence level).
Used Cutout technique
to detect regions in the
face.

LRW = 85.02%
LRW-1000 =
45.24%

1.2% 2.9% LRW, LRW-1000
(word level)
and
GRID (sentence
level)

34 speakers video
recording, yielding 33000
utterance

Word and
sentence

3 Proposed Model

In this paper, a deep convolutional neural network model for lip reading from a video is
developed and denoted as the HLR-Net model. The proposed model is built using CNN model
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followed by an attention layer and a CTC layer. The CTC is a type of neural network layer
having an associated scoring function as an activation function. The structure of the proposed
HLR-Net model is presented in Fig. 1. The proposed model consists of three stages. The first
stage is the pre-processing stage, which processes the input video by executing certain operations
on it, including mouth movement extraction from the frames of movements, frame normalization,
and finally, sentence preparation to obtain the input for the deep learning model. The second and
third stages are the encoder and decoder stages that produce the output subtitle.

Figure 1: Abstraction view of our proposed HLR-Net model architecture

The second stage is composed of inception layers, gradient preservation layer, and bidirec-
tional GRU layer, while the third stage consists of the attention layer, fully connected layer,
activation function, and CTC layer. The proposed model is designed based on the attention deep
learning model. It takes a video of lip movement as an input, then converts the video to frames
using the OpenCV library, and extracts the mouth part using the dlip library. The resulting frames
are normalized to obtain the final frame. The final frame is passed to the deep learning model to
produce the final encoded sentence. In the next subsections, each stage is explained in more detail.

3.1 Stage 1: Data Pre-Processing
3.1.1 Mouth Movement Extraction

To perform mouth extraction, the dlib and OpenCV libraries are used to detect facial land-
marks. Detection of facial landmarks can be considered as a shape prediction problem. An input
image is fed to a shape predictor that attempts to localize points of interest regarding the shape,
which are, in this case, the face parts as eyes, nose, and mouth. The facial landmark detection
includes two steps, of which the first step is responsible for localizing the face in the image and
detecting the key facial points, and the second step is responsible for detecting the mouth from
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the face part, as shown in Fig. 2. As illustrated in Fig. 2, the mouth facial landmarks are located
in between (49, 68) and represented by blue rectangles. Therefore, these points are extracted as a
mouth in a frame with a size of 50 × 100, which is the final step of the mouth extraction.

Figure 2: Face parts localization to the extracted images

3.1.2 Frame Normalization
The frame normalization process is to distribute the mouth pixels’ values over the frame size.

The video is divided into a number of frames for each mouth movement, and for each frame, the
mouth localization and frame normalization are performed, as shown in Fig. 3.

Figure 3: Mouth movement extraction and frame normalization from the input video
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3.1.3 Sentence Preparation
For saving video sentences, the “.align” format is used. It is represented by a tuple for each

word, represented by a frame, in the sentence. Each tuple contains the frame duration (start-time
and end-time) in addition to the word. In order to separate adjacent sentences, the word “sil”
is used. An example of a saved file is presented in Tab. 4. When a file is loaded, a sentence is
constructed by appending the last column and ignoring “sil” and “sp” words. The sentence is
then passed to a function that converts each sentence to a list of labels, where numbers refer to
characters’ orders in the sentence. In training, the sentence is passed together with the processed
video to the video augmenter function, in which a label is assigned to each frame for training.

Table 4: Example of frame tuples for preparing a sentence

Frame start-time Frame end-time Word

0 23750 sil
23750 29500 bin
29500 34000 blue
34000 35500 at
35500 41000 f
41000 47250 two
47250 53000 now
53000 74500 sil

As previously mentioned, the input of the proposed model is a video, and its output is a
mathematical representation of frames of the input video or in an array in the NumPy library.
Thus, this stage can be summarized as follows: the input video is processed using the OpenCV
library, and each frame of the video is captured. The number of frames per second (fps) is 25 fps,
and the formed frames are normalized and converted to the form of a NumPy array. The NumPy
array is fed directly to the proposed model.

3.2 Stage 2: Encoder Part
3.2.1 Three Inception Layers

Three layers of inception modules are used as CNNs to realize more efficient computation
and deeper networks through dimensionality reduction with stacked 1 × 1 × 1 convolutions. The
modules are designed to solve the problem of computational cost, as well as overfitting, among
other issues. The STCNNs are characterized by their processing time of video frames in the
spatial domain.

The modules use multiple kernel filter sizes in the STCNN, but instead of stacking them
sequentially, they are ordered to operate on the same level. By structuring the STCNN such that
to perform the convolutions on the same level, the network becomes progressively wider but not
deeper. To reduce the computationally cost even more, the neural network is designed such that
an extra 1 × 1 × 1 convolution is added before 3 × 3 × 3 and 3 × 5 × 5 layers. In this way, the
number of input channels is limited, and 1 × 1 × 1 convolutions are much cheaper than 3 × 5 ×
5 convolutions. The 1 × 1 × 1 convolution layer is placed after the max-pooling layer. The most
simplified version of an inception module works by performing a convolution on the input using
three different sizes of filters (1 × 1 × 1, 3 × 3 × 3, 3 × 5 × 5) not only one. Likewise, max
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pooling is performed. Then, the resulting outputs are concatenated and sent to the next layer. The
details of the three stages of the proposed HLR-Net model are illustrated in Fig. 4.

Figure 4: The proposed HLR-Net model architecture

3.2.2 Gradient Preservation Layer
The recurrent neural networks have a problem of gradient vanishing during the backpropaga-

tion. Namely, gradients are values used to update the neural network weights. The problem is that
the gradient decreases what it back propagates through time, and if the gradient value becomes
extremely small, it will slightly contribute to the learning process. For this reason, the gradient
preservation layer is introduced. In this layer, two identity residual network blocks are used for
solving the gradient vanishing problem. This layer is followed by a max-pooling layer to reduce
the high-dimensionality problem.

3.2.3 Bidirectional GRU Layers
The output of the max-pooling layer is first flattened while preserving the time dimension

and then passed to two bidirectional GRU (Bi-GRU) neural networks. The sequence model is
used to add new information to spatial features. The bidirectional GRU can also be used with
the attention model or a combination of the attention model and CTC. The Bi-GRUs denote
improved versions of a standard RNN. To solve the gradient vanishing problem of a standard
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RNN, GRU adopts the so-called update gate and reset gate. The reset gate performs the mixing
of the current input and the previous memory state, and the updated gate specifies the portion
taken from the previous memory state to the current hidden state. The Bi-GRU is used to capture
both forward and backward information flows to attain the past and future states.

Basically, these are two vectors that decide what information should be passed to the output.
It should be noted that they can be trained to keep information from a long time ago without
vanishing it through time or removing information irrelevant to the prediction.

3.3 Stage 3: Decoder Part
3.3.1 Attention Layers

The output of the Bi-GRU in the attention layer is passed to the dense layer with 28 outputs
representing the output characters. Attention layer is an example of a sequence-to-sequence sen-
tence translation using a bidirectional RNN with attention. It represents the attention weights of
the output vectors at each time step. There are several methods to compute the attention weights,
for instance, by using the dot product or a neural network model with a single hidden layer. These
weights are multiplied by each of the words in the source, and this product is fed to the language
model along with the output from the previous layer to obtain the output for the current time
step. These weights determine how much importance should be given to each word in the source
to determine the output sentence. The final output is calculated using the SoftMax function in
the dense layer.

3.3.2 CTC Layer
The CTC is an alignment-free, scalable, non-autoregressive method used in the sequence

transduction in applications such as hand-written text recognition and speech recognition. The
CTC is an independent component that is used to specify the output and scoring. It takes a group
of samples sequence as an input and produces a label for each of them; it also generates blank
outputs. When the number of observations is larger than the number of labels, the training is dif-
ficult; for instance, when there are multiple time slices that could correspond to a single phoneme.
A probability distribution is used at each time step to predict the label as the alignment of the
observed sequence is unknown [7,10]. The output of the CTC layer is continuous (for instance,
obtained from a SoftMax layer), and it is adjusted and determined during the model training
phase. The CTC deduce any recurrent characters that resolve to one character in spelling to
form the right word. The CTC scores are processed by the backpropagation algorithm to update
network weights. This approach makes the training process faster compared to that of RNN.

4 Experimental Results

4.1 Experimental Parameters and Datasets
The Google Colab with Pro version was used to test the proposed model. It had 2 TB

storage with a server, which had 26 GB Ram and P100 GPU. There are many available lip-
reading datasets, including AVICar, AVLetters, AVLetters2, BBC TV, CUAVE, OuluVS1, and
OuluVS2 [15,23], but they are either plentiful, but include only single words, or are too small.
In this study, the sentence-level lip reading was considered, so the Grid dataset [14] was used.
This dataset included many audio and video recordings of 34 speakers, having 1000 sentences per
speaker. In total, it consisted of 28-h data, including 34000 sentences.

For the HLR-Net model, the GRID corpus sentence-level dataset was used. The following
simple structure of sentences was assumed: color (4) + command (4) + preposition (4) +
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digit (10) + letter (25) + adverb (4). The number next to each part indicated the number of
possible word choices for each of the six word groups. These groups consisted of the follow-
ing data: {bin, lay, place, set}, {blue, green, red, white}, {at, by, in, with}, {A, . . . , Z}\{W},
{zero, . . . , nine}, and {again, now, please, soon}, and included a total of 64000 possible sentences.
The code of the proposed HLR-Net has been uploaded to the GitHub website [24], and the
parameters of the proposed HLR-Net are given in Tab. 5, where T refers to time, C refers to
channels, F refers to feature dimension; H and W refer to height and width, respectively, and V
refers to the number of words in the vocabulary, including the CTC blank symbol.

Table 5: The proposed HLR-Net architecture hyper parameters

Layer Size/padding/stride/units Input size Dimension order

Incp STCNN (1, 3, 5, maxp)/(1, 2, 2)/(1, 2, 2)/(32, 64, 16, 16) 75 × 50 × 100 × 3 T × H × W × C
Pool (1, 2, 2)/(1, 2, 2) 75 × 52 × 27 × 12 T × H × W × C
Incp STCNN (1, 3, 5, maxp)/(1, 1, 1)/(1, 1, 1)/(64, 128, 32, 32) 75 × 26 × 13 × 12 T × H × W × C
Pool (1, 2, 2)/(1, 2, 2) 75 × 30 × 17 × 25 T × H × W × C
Incp STCNN (1, 3, 5, maxp)/(1, 2, 2)/(1, 2, 2)/(96, 192, 48, 48) 75 × 15 × 8 × 256 T × H × W × C
Pool (1, 2, 2)/(1, 2, 2) 75 × 12 × 6 × 384 T × H × W × C
Preserve (1, 3, 1)/(1, 1, 1)/(1, 1, 1)/(96, 96, 384) 75 × 6 × 3 × 384 T × H × W × C
Pool (1, 3, 3)/(1, 3, 3) 75 × 6 × 3 × 384 T × H × W × C
BI_GRU 256 75 × (2 × 1 × 384) T × (H × W × C)
BI_GRU 256 75 × 512 T × F
Attention 28 75 × 512 T × F
Linear 28 75 × 28 T × F
SoftMax – 75 × 28 T × W

Table 6: Mapping of 32 Phoneme to 12 viseme

Viseme Phoneme

V1 /aa/ /ah/ /ay/ /eh/ /r/ /iy/
V2 /ae/ /ih/ /y/ /v/
V3 /aw/ /u/ /au/ /uw/
V4 /k/ /ch/
V5 /b/ /p/
V6 /d/ /t/
V7 /f/ /l/
V8 /ay/ /ih/
V9 /g/ /jh/
V10 /s/ /x/
V11 /m/ /n/
V12 /th/ /z/

To train the HLR-Net model, phoneme and viseme units were used. Visemes repre-
sented visually distinguishable speech units that had a one-to-many mapping to phonemes.
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Phoneme-to-Viseme mapping [14] was used, and the mapping is shown in Tab. 6, where it can be
seen that 32 phonemes were grouped into 12 visemes denoted by V1, V2, . . . , and V12.

The confusion matrix was used to test the visemes of the proposed model. The matrix showed
that the proposed HLR-Net model could recognize elements with a little confusion. Namely, V1,
V2, and V3, which mapped the phoneme groups {/aa/ /ah/ /ay/ /eh/ /r/ /iy/}, {/ae/ /ih/ /y/ /v/}, and
{/aw/ /u/ /au/ /uw/}, respectively, were frequently misclassified during the text decoding process
because they were similarly pronounced. However, misclassification of visemes was not signifivant,
as shown in the confusion matrix in Fig. 5, which verified the effectiveness of the proposed HLR-
Net model.

Figure 5: Confusion Matrix for the proposed HLR-Net model

4.2 Performance Metrics
To evaluate the performance of the proposed HLR-Net model and compare it with the

baselines, the word error rate (WER), the character error rate (CER), and the bleu score [25,26]
were used, and they were calculated by Eqs. (1)–(3), respectively.

WER= S+D+ I
N

= S+D+ I
S+D+C

(1)

CER= i+ s+ d
N

(2)

Bleuscore= m
wt

(3)
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In Eq. (1), S denotes the number of substitutions, D is the number of deletions, I is the
number of insertions, C represents the number of correct words, and N is the number of words
in the reference, and it is expressed as N = S + D + C. In Eq. (2), n is the total number of
characters, and i denotes the minimal number of character insertions; s and d denote the numbers
of substitutions and deletions required to transform the reference text into the output.

The Bleu score adopts a modified form of precision to compare a candidate translation
against multiple reference translations. In Eq. (3), m denotes the number of words from the
candidate, which are found in the reference, and wt is the total number of words of the candidate.

Table 7: Performance between our proposed HLR-Net proposed models and other recently work

Model Unseen speakers Overlapped speakers

CER (%) WER (%) Bleu score (%) CER (%) WER (%) Bleu score (%)

Lipnet 6.4 11.4 88.2 1.9 4.8 96.9
LCANet (AH-CTC) 5.3 10.0 90.4 1.3% 2.9% 97.4
A-CTC 5.6 10.8 90.7 1.7% 4.1% 96.4
HLR-Net (Proposed) 4.9 9.7 92 1.4 3.3 99

Figure 6: CER values for our proposed HLR-Net model compared with the other three model in
case of unseen and overlapped speakers

4.3 Experimental Comparisons and Discussions
The CER/WER was defined as the least number of character (or word) substitutions, inser-

tions, and deletions required to convert the prediction into the base truth, divided by the number
of characters (or words) in the base. The Bleu score value indicated how similar the candi-
date text was to the reference texts, where values closer to 100% represented higher similarity.
Smaller WER/CER values meant higher prediction accuracy, while a larger Bleu score was pre-
ferred. The results are given in Tab. 7. The proposed HLR-Net was compared with three recent
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models: LipNet, LCANet (AH-CTC), and A-CTC models. All models were trained on the GRID
dataset. The performances of the models were tested for two different types of speakers: unseen
speakers and overlapped speakers. The comparisons of the models regarding the CER, WER, and
Bleu score values are presented in Figs. 6–8, respectively.

In the case of unseen speakers, the proposed HLR-Net model achieved CER of 4.9%, WER
of 9.7%, and Bleu score of 92%; the LipNet model achieved CER of 6.4%, WER of 11.4%,
and Bleu score of 88.2%; the LCANet model achieved CER of 5.3%, WER of 10.0%, and Bleu
score of 90.4%; lastly, the A-CTC model achieved CER of 5.6%, WER of 10.8%, and Bleu score
of 90.7%.

Figure 7: WER values for our proposed HLR-Net model compared with the other three model in
case of unseen and overlapped speakers

Figure 8: Bleu score values for our proposed HLR-Net model compared with the other three
model in case of unseen and overlapped speakers
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In the case of overlapped speakers, the proposed model also achieved better performance than
the other models, having the CER of 1.4%, WER of 3.3%, and Bleu score of 99%. However, it
should be noted that the CER value of the LCANet, which was 1.3%, was slightly better than that
of the proposed model. Based on the overall result, the proposed HLR-Net model outperformed
the other models.

5 Conclusions and Future Work

In this paper, a hybrid video-based lip-reading model is developed using deep convolutional
neural networks and denoted as the HLR-Net model. The proposed model consists of three
stages: pre-processing stage, encoder stage, and decoder stage. The encoder stage is composed
of inception layers, gradient preservation layer, and bidirectional GRU layer, while the decoder
consists of the attention layer, fully-connected layer, activation function, and CTC layer. The
proposed model is designed based on the attention deep learning model. It uses a video of lip
movement as an input, then converts this video to frames using the OpenCV library, and finally
extracts the mouth part using the dlip library. The resulting frames are normalized to obtain the
final frame. The final frame is passed to the deep learning model to produce the encoded sentence.

The performance of the proposed HLR-Net model is verified by the experiments and com-
pared with those of the three state-of-the-art models, LipNet model, LCANet (AH-CTC) model,
and A-CTC model. The experimental results show that the proposed HLR-Net model outperforms
the other three models, achieving CER of 4.9%, WER of 9.7%, and Bleu score of 92% in case of
unseen speakers, and CER of 1.4%, WER of 3.3%, and Bleu score of 99% in case of overlapped
speakers. However, the CER value of the LCANet is 1.3%, and it is slightly better than that of
the proposed model.

As future work, the proposed HLR-Net model will be applied and tested using the Arabic
language for the purpose of further verification.
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