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Abstract: Smartphones have ubiquitously integrated into our home and work
environments, however, users normally rely on explicit but inefficient identi-
fication processes in a controlled environment. Therefore, when a device is
stolen, a thief can have access to the owner’s personal information and services
against the stored passwords. As a result of this potential scenario, this work
proposes an automatic legitimate user identification system based on gait bio-
metrics extracted from user walking patterns captured by smartphone sensors.
A set of preprocessing schemes are applied to calibrate noisy and invalid sam-
ples and augment the gait-induced time and frequency domain features, then
further optimized using a non-linear unsupervised feature selection method.
The selected features create an underlying gait biometric representation able
to discriminate among individuals and identify them uniquely. Different clas-
sifiers are adopted to achieve accurate legitimate user identification. Extensive
experiments on a group of 16 individuals in an indoor environment show the
effectiveness of the proposed solution: with 5 to 70 samples per window,KNN
and bagging classifiers achieve 87–99% accuracy, 82–98% for ELM, and 81–
94% for SVM. The proposed pipeline achieves a 100% true positive and 0%
false-negative rate for almost all classifiers.

Keywords: Sensors; smartphone; legitimate user identification

1 Introduction

Smartphone users exponentially increased to 3 billion and are expected to further grow by
several hundred million in coming years. Boosted by information and communication technologies,
mobile, and personal devices are becoming a more and more powerful and thus trustworthy
inseparable companion of our lives. Our cyber alter egos often store sensitive personal information
such as photos, videos, bank account, credit, and debit card details, as well as cookies, passwords,
and personal data managed by Internet applications. Such information should be kept confidential
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and not disclosed, preserving the smartphone from unauthorized access [1]. Robust and reliable
user identification methods can be an effective solution for achieving smartphone security [2].

Considering that each individual has their walking pattern, a gait (user walking) based iden-
tification mechanism has been proposed in [3,4] using built-in sensors such as an accelerometer
and linear accelerometer. Gait-based legitimate user identification has more advantages than lim-
its, including but not limited to unobtrusiveness, passive, implicit, concurrent, and continuous
observability. However, the main advantage is the cost-effectiveness, exploiting built-in sensors
without any additional hardware required for the identification, just walking with the smartphone.
Furthermore, gait-based legitimate user identification avoids identification processing and delays
during login by continuously operating in the background while the user is walking. It is also hard
to violate since an attacker needs to exactly reproduce the smartphone owner’s gait, which depends
on their silhouette and activity, captured by several-different sensors. Gait-based legitimate user
identification can also be used as one of the security levels in multilevel security systems [5]
combining gait patterns with other security info in crime analysis.

In recent years, several identification approaches have been proposed leveraging smartphone’s
sensors such as [6–9]. For instance, [10,11] presented a method for continuous user identification
implicitly. Explicit identification is performed only when there is important evidence of change in
the user activity, which is not a real-life scenario in many cases. A method to directly compute
the distance between pattern traces using the dynamic time warping algorithm is presented in [12].
Sae et al. [13] presents 22 special touch patterns for user identification, most of which involve
all five fingers simultaneously. The work [14] studied the correlation between 22 analytic features
from touch traces and classified them using k-nearest neighbors and support vector machines.
Moreover, the idea behind the behavior-based model is that the person’s habits are a set of
attributes; therefore, each activity (event) correlates with two fundamental attributes: time and
space. For instance, the works [15,16], utilizes the user calls, schedules, GNSS, device battery
level, user applications, and sensors for identification. The works [17–20] proposed a multi-model-
based continuous user identification. Whereas, the work [21] put forward another unique implicit
user identification framework by using recorded phone call history and location for continuous
user identification.

The above-discussed works present several propositions, but to some extent, all these required
additional information and source for user identification. Several works have been proposed to
overcome these propositions, such as [22] presented a gait-based user identification over biometric
unobtrusive pattern. A geometric concept of a convex hull was utilized in 4-layered architecture.
One of the major limitations is non-user-friendliness, e.g., only works in specific and controlled
environments. The works [18,23–27] utilized portable devices based on gait signals acquired with a
3-dimensional accelerometer, where the accelerometer was put on the user’s belt only at the back.
Whereby, [18] proposed a 3-fold method based on data distribution statistics, correlation, and
frequency domain features for user identification while the individuals are intentionally asked to
walk at different speeds such as slow, normal, and fast. Mantyjarvi’s work is novel but the major
drawback is its limitations to not only walked by the same user but with very limited variations.

Despite the success of the gait-based systems demonstrated by a relevant number of existing
solutions, summarized above as well as in Tab. 1, there is still room for improving this approach,
strongly depending on factors like physical changes i.e., aging, weight loss, or gain, injury, shoes,
clothes, carrying objects, orientation, and placement, walking surface, psychological states of an
individual, stimulants, etc. All these factors significantly reduce the effectiveness of the gait-based
system in real scenarios.
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Table 1: Summary of related work

Reference Features Methods

[1] Time domain SVM and KNN
[4] Time and frequency Decision tree, KNN, SVM
[28] Time and frequency Extreme learning machine
[29] Genetic programming
[30] The magnitude of the acceleration

weighted moving average filter, cycle
detection, Manhattan distance

SVM

[31] Gait, time and frequency KNN and random forest
[32] Cross-correlations of Fourier transform Nearest means in Fisher discriminant

space and majority voting
[33] Time and frequency Gait templates, DTW, SVM
[34] Variance in acceleration and

orientation across x,y, z
Gaussian distribution model

[35] Accelerometer and gyroscope data SVM and a time-frequency spectrogram
and a cyclo-stationary model

[36] Acceleration SVM
[37] Extrema in acceleration Difference-of-Gaussian and KNN
[38] Time-domain J48 and ANN
[39] Spectral energy diagrams of the pitch,

roll, acceleration x,y, z
αβ filtering, empirical mode
decomposition, fourier transform,
linear discriminant analysis

[40] Time and frequency Gaussian mixture model and universal
background model

[41] Time and frequency MLP, Nivie Bayer, Random Forest
[42] Acceleration FFSM and linguistic model
[43] Domain-specific DTW distance
[44] Acceleration DTW
[45] Averaged x and z signal Correlation, template matching
[46] FFT coefficients FFT and ANOVA
[47] The magnitude of the acceleration

forces
Gait template matching

[48] Mel and Bark frequency cepstral
coefficient

SVM

Considering the aforementioned scenarios, this work proposes a novel, non-intrusive, and
automatic legitimate user identification system exploiting built-in smartphone motion dynamics
captured by four different sensors namely, Accelerometer (AC), Linear Accelerometer (LAC),
Gyroscope (GY), and Magnetometer (MM) sensors, able to overcome the limitations of existing
solutions. To test the system, we first collect raw data from 16 individuals walking with the
smartphone freely placed in one of their pants pockets then extracting relevant features from
the raw data. To reduce the redundancy among such features a non-linear Extended Sammon
Mapping Projection (ESMP) feature selection method is adopted, thus resulting in an underlying
representation for the gait characteristics able to uniquely identify individuals. Finally, SVM,
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KNN, Bagging, and ELM are implemented and compared to show the effectiveness-accuracy of
the proposed gait-based legitimate user identification. In a nutshell, the following points are added
in this research as compared to the previous works.

(1) Previous works only considered an activity/sub-activity-based user identification, however,
our current research aims to propose a semi-controlled environment system in which
we overcome the limitations of users’ jeans style (loose or tight) and walking style (we
intentionally asked users to walk differently in various times to investigate the ambulatory
activity performed by each user). In this regard, our current work aims to investigate
several research questions relevant to building a walking-based legitimate user identification
system in real-life:
(a): How to achieve real-time user identification in practice? Since our goal is to develop
an algorithm that identifies the user in real-time, thus computation complexity is extremely
important. System performance measurements ought to be considered to balance the trade-
off between accuracy and computational cost. (b): Does the data variation affect the
performance of the LUI process? (c): Does the ESMP, a non-linear unsupervised feature
selection method improve the identification accuracy more than the other existing and
well-studied unsupervised feature selection methods such as Principal Component Analysis
(PCA)? It is a known fact that the output of the smartphone sensor depends on the
position of the smartphone while walking. This could result in a high within-class variance.
Therefore, it is desirable to improve both the discriminatory power and achieve dimension-
ality reduction, by employing an optimum method. The advantages of the feature selection
process are to avoid the curse of dimensionality, as well as to reduce the abundant,
irrelevant, misleading, and noisy features, but above all, to be able to reduce the system’s
running cost of real-time applications. In addition to the above, effective feature selection
can increase the accuracy of the resulting model. (d): Does kernel-based Extreme Learning
Machine (KELM) an effective classifier for the non-linear signal-based user identification
method than the state-of-the-art classification methods such as SVM, KNN, and Bagging?
The reason to choose these classifiers, because these have been extensively utilized in the
literature and rigorously analyzed for comparative analysis. Moreover, this work aims to
show that the proposed pipeline can work well with a diverse set of classifiers.

(2) In our current work, we have invited 16 users with 4 activities i.e., user walked with the
phone freely placed in one of their pants pockets i.e., front left, front right, back left, back
right.

(3) Previous works only considered a limited number of features extracted from two types of
sensors, however, this work further involved the gait based features together with frequency
and time domain features obtained through four different sensors which provide more
confidence towards the ultimate results.

2 Methodology

Smartphone sensors generate highly fluctuating time-series signals making legitimate user
identification more challenging. Therefore, it is required to transform raw signals into relevant
and meaningful features through a complex process including preprocessing, feature extraction,
and selection.
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2.1 Hardware and Preprocessing
Smartphones are equipped with a variety of sensors that are useful for monitoring device

movements. Some of them are AC, LAC, GY, and MM in which AC and LAC record the accel-
eration along three axes (x,y, z) and can measure both the effects of Earth’s gravity on the
device and device movement, whereas, GY and MM eradicate the effects of Earth’s gravity. The
smartphone (LG Nexus 4 smartphone with Android Wear v4.2 OS in the experiments) runs a
custom application gathering data from sensors temporarily stored into a text file in a micro SD
card and then transferred to a computer. The sensor sampling frequency is set to 50 Hz and
in total, 10 min of raw samples were gathered from each individual without any fixed protocol
while carrying a smartphone in one of their pants pockets. It is worth mentioning that different
smartphones have different sampling rates, therefore, to control the sensor reading process and
for better generalization and validation, the sample rate is set to 50 Hz instead to use the
highest sampling rate within different smartphones. For these reasons, we split the raw signals into
windows (5 to 105 samples per window, respectively) to control the flow rate hence passing fewer
data to the system. The selected sample size provides enough data to be able to extract quality
features while ensuring a fast response. Before extracting relevant features, a third ordered moving
average filter is applied in the preprocessing stage to reduce the sensor noise.

2.2 Feature Extraction
The feature extraction process first analyzes sensor reading by applying time series modeling

(i.e., Auto-regressive [49], Moving average [50], and both auto-regressive and moving average
models) to understand the behavior of users’ physical patterns which reveals unusual observations
and data patterns. Partial Auto-Correlation (PAC) and Auto-Correlation (AC) coefficients are
used to identify the best model which revealed the pattern of each datum. Later each model is
determined individually based on the characteristics of the theoretical PAC and AC. The best fit
time-series model is calculated by estimating the parametric values based on the former model.
Auto-regressive and moving average parameters are estimated through the box Jenkins model due
to its flexibility for the inclusion of both models. The model and parameters need to be verified
to ensure that the estimated results are statistically significant. Our experiments revealed that the
frequency and time domain features, including the coefficients from the time-series model, provide
the best accuracies. Therefore, as listed in Tab. 2, gait, frequency, and time-domain features are
extracted from raw signals for each sensor individually. In total, 180 features are extracted from
each window.

2.3 Feature Selection
The sensor’s output mainly depends upon the position of the smartphone, which may result

in a high within-class variance. Therefore, it is required to enhance the discriminatory power of
features that can achieve by deploying an optimum feature selection method. The feature selection
process eliminates the irrelevant, abundant, noisy, and misleading features that reduce the system
cost on run-time applications and improve the accuracy of the resulting model. A number of
feature selection methods have been used for legitimate user identification. Filtering methods are
interdependent to the classifier and depend on discriminating criteria i.e., maximum relevance
and minimum redundancy. These methods are scalable, fast, and less computationally complex;
however, ignore the interaction with the classifier. Wrapper methods utilize the classifier as a black
box to obtain a subset based on their predictive power. The main drawback of the wrapper
method is its dependency on the classifier which makes the classifier choice a key component.
LDA and KLDA seek a linear combination of features. However, the number of dimensions
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depends on the number of classes which limits the use of such methods, especially for legitimate
user identification.

Table 2: Extracted features for gait-based legitimate user identification

Feature characteristics Mathematical reasoning

Moving variance Var= 1
N(N − 1)

⎛
⎝N N∑

i=1

x2i −
(

N∑
i=1

xi

)2⎞⎠, where xi = az is

accelerometer data along with the z-axis. Similarly computed along
with x and y-axis and for all sensors.

Moving variance
intensity

Var= 1
N(N − 1)

⎛
⎝N N∑

i=1

x2i −
(

N∑
i=1

xi

)2⎞⎠ , where x=
√
a2x+ a2y+ a2z

accelerometer data. Similarly computed for all sensors.
First eigenvalue of
moving covariance

E1 =Eig
(
Cov

(
ax− gx,ay− gy,az− gz

))
, where, ax;ay;az;gx;gy;gz are

accelerometer and gyroscope readings. Similarly computed for other
sensors.

Moving covariance Ea =Eig1
(
Cov

(
ax (1 :N) ,ay (1 :N) ,az (1 :N)

))
, where ax;ay;az are

accelerometer readings. Similarly computed for other sensors.

Moving energy ME =
N∑
i=1

x2i , where xi = az is accelerometer reading along the z-axis.

Similarly computed for other sensors.

Moving energy ME = 1
N

N∑
i=1

(xi− yi)2 , where x= az and y= gz are accelerometer

and gyroscope data along the z-axis. Similarly computed for other
sensors.

Moving energy of
orientation

MEA= 1
N

N∑
i=1

ϕ2
i , where ϕ = arccos

(
a∗xay

)
|ax|

∣∣ay∣∣ , is accelerometer readings.

Similarly computed for other sensors.

Movement intensity MIa =
√
a2x+ a2y+ a2z , where ax;ay;az are accelerometer readings.

Similarly computed for other sensors.

To overcome the aforementioned issues, ESMP was first introduced in [28] for smartphone-
based physical activity recognition and legitimate user identification. ESMP is a nonlinear metric
multi-dimensional scaling method that projects the high dimensional input space into lower dimen-
sions while preserving the structure of inter-point distances. Let dij and d∗ij be the Euclidean

distance between two neighboring points xi and xj in input and mapped space, respectively.
The Sammon stress error E between the input and mapped space can be measured as E =

1∑n−1
i=1

∑n
j=i+1(dij)

∗∑n−1
i=1

∑n
j=i+1

d∗ij−dij
d∗ij

which is further optimized by the gradient descent method

as x∗ik (t+ 1) = x∗ik (t) − α
∂E(t)
∂x∗ik(t)

, where x∗ik (t) be the kth coordinate of xi in mapped space. The



CMC, 2021, vol.68, no.2 1679

gradient descent methods have issues at inflation points in which the second-order derivatives
appear to be quite small therefore the trade-off parameter α needs to be set as a minimum (in
our case α = [0.3–0.4] using grid search). However, there is no guarantee that the given interval is
to be optimal for all problems.

2.4 Classifier
The selected features are processed through KELM, Bagging, SVM, and KNN. Several sta-

tistical measures are performed on the resulting false and true positive rates, ROC, and accuracies
for legitimate user identification are calculated for a different number of samples per window.

2.4.1 Kernel Extreme Learning Machine (KELM)
ELM has a fast learning speed and better generalization abilities than other neural net-

work frameworks. ELM randomly generates the input weights and bias with the help of a
simple activation function. The tune-able activation functions were proposed to overcome the
random assignments [51]. However, finding suitable combinations for activation functions is still
in infancy. The KELM is used when the feature mapping functions of hidden neurons are
unknown. However, the kernel parameters need to be tuned very carefully when it comes to
real-time applications. Therefore, our current study explores the use of a swarm optimizer to
tune the kernel parameters. In this hierarchy, at the first hidden layer, all nonlinear piece-wise
continuous functions can be used as hidden neurons as these parameters need not be tuned. Thus,
for N samples i.e., (xi,yi) |xi ∈ Rn and yi ∈ Rm where i = 1, 2, 3, . . . ,N and the output function

can be represented as fL (x) =∑L
i=1 βihi (x) = h (x) β, where L is the number of hidden neurons,

βi = [β1,β2,β3, . . . ,βL] be the output weights among the output neurons and hidden layer. Finally,
hi (x) = [h1 (x) ,h2 (x) ,h3 (x) , . . . ,hL (x)] be the output vector that maps the input to the feature
space. The least-square solution that minimizes the error between training and output weights to
boost the generalization capabilities can be represented as

β =HT
(
1
C
HHT

)−1

T (1)

where T ,H, and C are expected output, hidden layer output, and regularization coefficients
respectively. Thus, the training model output is expressed as;

f (x)= h (x)HT
(
1
C
HHT

)−1

T (2)

The output and kernel function f (x) for unknown hidden mapping h (x) can be written as
M =HHT where mij = h (xi)h

(
xj
)= k(xi,xj). Thus, the final representation can be expressed as

f (x) [k (x,x1) ,k (x,x2) ,k (x,x3) , . . . ,k (x,xN)]
(
1
C
HHT

)−1

T (3)

k
(
xi,xj

)= cos

(
|x− y|2

a

)
exp

(
|x− y|2

b

)
(4)

where k
(
xi,xj

)
be the kernel function, a,b are the tune-able parameters that play an impor-

tant role.
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2.4.2 Support Vector Machine (SVM)
Among the most popular methods for regression and classification problems, SVM is the

most common classifier. SVM has been deployed for several real-world applications for instance
bioinformatics, biometrics, cheminformatics, and remote sensing [52]. The SVM hierarchy works
in two phases as the training examples are used to build the model for classification later the
trained model is used to classify an unknown example. The tuning parameters of SVM are
considered as key to success for any classification problems. These parameters include kernel and
penalty parameters [53]. The penalty is important to maintain a trade-off between maximizing the
decision margin while minimizing the training error [54]. Whereas, the kernel parameters are used
to map the low dimensional input feature space to a higher dimensional feature space. These two
parameters are labeled as a backbone to control the performance of SVM for any classification
problem. SVM works while separating several known classes using the concept of hyperplanes and
achieved remarkable results in linearly separable data examples [55–60].

3 Results

The classifier’s output indicates the ability to predict which user is walking while carrying
the smartphone without considering its orientation, age, and gender. The 5-fold cross-validation
process is adopted to get meaningful and statistically significant results. The cross-validation
process split the dataset into 5 equal subsets in which 4 subsets are selected to train the model and
the remaining subset is selected to validate the model. This process is repeated 5-times by picking
a new subset (every time) as a validation set and the remaining subsets are used as training data
lead to a total of 5 experiments that are weighted for the result. The proposed pipeline has been
evaluated against 3 different types of classifiers such as KNN, SVM, and Bagging. The reason to
choose these classifiers, because these have been extensively utilized in the literature and rigorously
analyzed for comparative analysis. Moreover, this work aims to show that the proposed pipeline
can work well with a diverse set of classifiers. For KELM, [1–500] hidden neurons are selected,
and SVM is evaluated with the polynomial kernel, similarly, for KNN, k is set to [2–20]. For
bagging, a tree-based method is used to train the classifier from a range of [1–100] trees. All
the parameters are adjusted carefully while setting up the experiments. The reason to provide the
range is that because the number of samples in each round (samples per window) changes so
the parameters need to be tuned in each round. For the main proposal, KELM classifier training
and testing accuracy concerning the number of hidden neurons is presented in Fig. 1. For fare
experimental evaluation of our proposed pipeline, several benchmark metrics are bring considered
such as overall and average accuracies. For experimental validation and statistical analysis, true
positive (TP), false positive (FP), true negative (TN), and false-negative (FN) is usually computed
from the confusion matrix shown in Figs. 2a–2h.

Moreover, to validate the statistical significance, several statistical measures are considered
such as Recall, Precision, and F1-score. Furthermore, this work carried out several statistical tests
including but not limited to true positive rate (TPR), true negative rate (TNR), false-positive rate
(FPR), and false-negative rate (FNR). Meanwhile, this study also used several other statistical
measures to validate the performance of our proposed model as shown in Tabs. 3–6. The FPR
and TPR show two crucial aspects as TPR and FPR show how usable and secure this would be
as a legitimate user identification model. A low TPR shows that several legitimate attempts to
identify would fail, thus making this too much of a burden to use, whereas a high FPR means
illegitimate users could bypass the security and identification when they were not supposed to.
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Therefore, the ultimate goal of this work is to attain high TPR and low FNR as much as possible.
The average statistical measures are computed as follows, where m be the number of users.

Figure 1: ELM: accuracy vs. hidden neurons

Average Accuracy= 1
M

M∑
i=1

TPi+TNi

TPi+TNi +FPi+TNi
(5)

Overall Accuracy= 1
M

M∑
i=1

TPi (6)

Precision= 1
M

M∑
i=1

TPi
TPi+FPi

(7)

Sensitivity= 1
M

M∑
i=1

TPi
TPi+FNi

(8)

Specificity= 1
M

M∑
i=1

TPi+TNi

TPi+FPi
(9)

NPV = 1
M

M∑
i=1

TNi

TPi+FNi
(10)
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Figure 2: Confusion matrices for KELM, Bagging, KNN, and SVM for two different window sizes
(i.e., 5 and 105). (a) 5 Samples per window for KELM (b) 105 Samples per window for KELM
(c) 5 Samples per window for Bagging (d) 105 Samples per window for Bagging (e) 5 Samples
per window for KNN (f) 105 Samples per window for KN (g) 5 Samples per window for SVM
(h) 105 Samples per window for SVM
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FDR= 1
M

M∑
i=1

FPi
FPi+TPi

(11)

FOR= 1
M

M∑
i=1

FNi

FNi+TNi
(12)

where NPV stands for Negative Predictive Values, FDR is False Discovery Rate, and FOR is
False Omission Rate. NPV is the score of the negative statistical results based on TN and FN
values across the users used in this study. FDR and FOR are usually used in multiple hypothesis
testing to make sure the multiple comparisons. FOR can be computed by taking the complement
of NPV values or another way around, it can be measured using TN and FN values. FOR is
used to measure the rate of false negatives, which are incorrectly rejected whereas, FDR measures
the actual positives which were incorrectly identified.

Table 3: Statistical tests for KELM classifier for all users

User Precision Sensitivity Specificity NPV FDR FOR

1 1.0000 0.8689 1.0000 0.9903 0.0000 0.0097
2 0.7581 0.8393 0.9818 0.9890 0.2419 0.0110
3 0.7937 0.8929 0.9842 0.9926 0.2063 0.0074
4 0.9245 0.8596 0.9951 0.9903 0.0755 0.0097
5 0.9434 0.9259 0.9964 0.9952 0.0566 0.0048
6 0.9355 0.7945 0.9950 0.9816 0.0645 0.0184
7 0.8254 0.9123 0.9866 0.9939 0.1746 0.0061
8 0.8679 0.6866 0.9914 0.9745 0.1321 0.0255
9 0.7609 0.7143 0.9867 0.9832 0.2391 0.0168
10 0.8333 0.8730 0.9865 0.9901 0.1667 0.0099
11 0.7692 0.8889 0.9856 0.9939 0.2308 0.0061
12 0.6818 0.8333 0.9834 0.9928 0.3182 0.0072
13 0.6957 0.9143 0.9834 0.9964 0.3043 0.0036
14 0.8939 0.8310 0.9913 0.9852 0.1061 0.0148
15 0.7692 0.7843 0.9855 0.9867 0.2308 0.0133
16 0.7273 0.6809 0.9856 0.9820 0.2727 0.0180

In-terms of machine learning, extensive model performance measurement is required. More-
over, when it comes to the classification, the overall accuracy is shown in Fig. 3 and the area
under the curve, such as the receiver Operating Characteristics Curve (ROC) is an essential eval-
uation metric at various threshold settings. ROC is a probability curve that measures the degree
of separability among classes. ROC curve is plotted with TPR against the FPR values obtained
through the classification method. To validate the statistical significance of the proposed pipeline,
the ROC has been drawn for two different sample sizes i.e., 5 and 105 samples per window.

The results are presented in Fig. 3 uphold the effectiveness of the proposed pipeline for
real-time applicability with a 99% confidence interval of legitimate user identification by using
a pairwise T-test between groups of individuals. Looking at Fig. 3, significant statistical results
are seen; showing that all the classifiers outperform. Finally, we present the computational cost
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in terms of the time of enlisted experiments. Fig. 4 shows the computational time taken by
the feature extraction and feature selection process for average users with a different number of
samples per window.

Table 4: Statistical tests for bagging classifier for all users

User Precision Sensitivity Specificity NPV FDR FOR

1 0.9434 0.9259 0.9964 0.9952 0.0566 0.0048
2 0.9677 0.8108 0.9975 0.9828 0.0323 0.0172
3 0.9365 0.8551 0.8551 0.9951 0.0635 0.0123
4 0.9434 0.8621 0.9963 0.9903 0.0566 0.0097
5 1.0000 0.8833 1.0000 0.9915 0.0000 0.0085
6 0.9032 0.8889 0.8889 0.8889 0.0968 0.0086
7 0.9683 0.7922 0.9975 0.9804 0.0317 0.0196
8 0.7925 0.8750 0.9867 0.9927 0.2075 0.0073
9 0.8261 0.9268 0.9268 0.9964 0.1739 0.0036
10 1.0000 0.8800 1.0000 0.9889 0.0000 0.0111
11 0.8269 0.9556 0.9892 0.9976 0.1731 0.0024
12 0.8636 0.9500 0.9928 0.9976 0.1364 0.0024
13 0.6957 0.9143 0.9834 0.9964 0.3043 0.0036
14 0.8788 0.8923 0.9902 0.9914 0.1212 0.0086
15 0.6923 0.9730 0.9810 0.9988 0.3077 0.0012
16 0.7273 0.8649 0.9857 0.9940 0.2727 0.0060

Table 5: Statistical tests for KNN classifier for all users

User Precision Sensitivity Specificity NPV FDR FOR

1 0.9811 0.9630 0.9988 0.9976 0.0189 0.0024
2 0.9839 0.8841 0.9988 0.9902 0.0161 0.0098
3 0.9841 0.9538 0.9988 0.9963 0.0159 0.0037
4 0.9623 0.9107 0.9976 0.9939 0.0377 0.0061
5 0.9811 1.0000 0.9988 1.0000 0.0189 0.0000
6 1.0000 0.7949 1.0000 0.9804 0.0000 0.0196
7 0.9206 0.8286 0.9938 0.9853 0.0794 0.0147
8 0.7925 1.0000 0.9868 1.0000 0.2075 0.0000
9 0.9348 1.0000 0.9964 1.0000 0.0652 0.0000
10 1.0000 0.9565 1.0000 0.9963 0.0000 0.0037
11 0.9423 0.9608 0.9964 0.9976 0.0577 0.0024
12 0.7955 0.9722 0.9893 0.9988 0.2045 0.0012
13 0.9130 0.9767 0.9952 0.9988 0.0870 0.0012
14 0.9242 0.8841 0.9938 0.9901 0.0758 0.0099
15 0.7500 0.8864 0.9844 0.9939 0.2500 0.0061
16 0.8409 1.0000 0.9917 1.0000 0.1591 0.0000
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Table 6: Statistical tests for SVM classifier for all users

User Precision Sensitivity Specificity NPV FDR FOR

1 0.8679 0.9388 0.9916 0.9964 0.1321 0.0036
2 0.9032 0.9032 0.9926 0.9926 0.0968 0.0074
3 0.8571 0.7397 0.9888 0.9767 0.1429 0.0233
4 0.9057 0.8889 0.9939 0.9927 0.0943 0.0073
5 0.9245 0.9800 0.9952 0.9988 0.0755 0.0012
6 0.9032 0.7568 0.9925 0.9779 0.0968 0.0221
7 0.8413 0.8689 0.9878 0.9902 0.1587 0.0098
8 0.8113 0.8113 0.9879 0.9879 0.1887 0.0121
9 0.8043 0.8222 0.9892 0.9904 0.1957 0.0096
10 0.9394 0.9118 0.9951 0.9926 0.0606 0.0074
11 0.8269 0.9149 0.9892 0.9952 0.1731 0.0048
12 0.6591 0.9667 0.9823 0.9988 0.3409 0.0012
13 0.6087 0.7568 0.9786 0.9892 0.3913 0.0108
14 0.9091 0.7229 0.9925 0.9717 0.0909 0.0283
15 0.7115 0.6852 0.9818 0.9794 0.2885 0.0206
16 0.5909 0.6842 0.9786 0.9856 0.4091 0.0144

Figure 3: Cumulative overall accuracy across all the users for all classifiers

As shown in Fig. 5, the processing time is increased gradually at the start and then increased
exponentially as the sample size increases. Therefore, to cope with the high computational time
may become an important issue for the legitimate user identification system for larger sample
sizes. There are many ways to overcome such high computational time, however, this one needs
to work on fewer features, i.e., either gait-based features or time and frequency domain feature
processed through one of the feature selection methods but this may bring incompetency for
statistical significance.

From experimental results, one can conclude that the ESMP helps to boost legitimate user
identification performance. Based on the results listed in Fig. 3 and Tabs. 3–6, we observe that
the ESMP together with almost all classifiers works better and accurately than the several
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state-of-the-art legitimate user identification methods. The experiments show the process of ana-
lyzing the behavior of a different number of samples per window taken by the user for legitimate
user identification (i.e., 05:05:105). Fig. 2 presents the accuracy of our proposed pipeline for an
individual user being identified correctly with the different number of samples per window after
the fusion of four different built-in sensors data. From the results, we found that the proposed
pipeline produces acceptable results with 30–50 samples per window. Fig. 3 enlists the results of
overall accuracy across all users with a 99% confidence interval.

Figure 4: ROC for two different sample sizes, i.e., 5 and 105 samples per window. Here are
the values of Auc’s for each classifier: KELM = 0.8175 (5 samples) and 0.9853 (105 samples).
Bagging = 0.8734 (5 samples) and 0.9988 (105 samples). SVM = 0.8161 (5 samples) and 0.9408
(105 samples). KNN= 0.9197 (5 samples) and 0.9993 (105 samples)

Figure 5: Processing Time with a different number of samples per window selected ([5:5:105]) in
each round for Legitimate User Identification. All the experiments are carried out on a notebook
using MATLAB (2017a) on Intel Core (TM) i5 CPU 2.40∼GHz, with 8 GB RAM
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4 Comparison Against State-of-the-Art Solutions

Hereby we present and compare some of the critical works from the literatu-
re [1,4,28–34,36–38] that can be categorized into two groups such as implicit and multi-modality
biometrics. All these methods have some limitations i.e., required some additional information and
source or may require user interaction. Therefore, to some extent, all these methods are innovative
but require some external legitimate user identification process. The works compared in Tab. 7
require user interaction in-terms to perform a predefined activity or user data has been gathered in
controlled environments that are not a real representation of frequent user interactions. Therefore,
the proposed method could be considered as an exciting alternative for continuous and explicit
legitimate user identification or impostor identification in a semi-controlled environment. Hence
the proposed method overcomes the limitations of the smartphone in power consumption and user
interaction. We have worked on combining different feature extraction and selection techniques
and concatenating the selected features to deliver a reliable legitimate user identification model
using built-in sensors data in a semi-controlled environment.

Table 7: Cross subjects performance comparison with state-of-the-art works

Reference # of users Features Methods Accuracy (%)

[1] 2 Time domain SVM and KNN 90
[4] 6 Time and frequency Decision tree, KNN, SVM 98
[28] 20 Time and frequency Extreme learning machine 97
[30] 10 The magnitude of the

acceleration weighted moving
average filter, cycle detection

SVM 88

[31] 10 Gait, time and frequency KNN and random forest 90
[32] 58 Cross-correlations of Fourier

transform
Nearest means in fisher
discriminant

50

[33] 11 Time and frequency Gait templates, DTW, SVM 93
[34] 36 Variance in acceleration and

orientation across x,y, z
Gaussian distribution model 83

[36] 6 Acceleration SVM 93
[37] 30 Extrema in acceleration Difference-of-Gaussian and

KNN
96

[38] 36 Time-domain J48 and ANN 93
Proposed 16 Time, frequency, and gait KELM 98
Proposed 16 Time, frequency, and gait Bagging 99
Proposed 16 Time, frequency, and gait KNN 99
Proposed 16 Time, frequency, and gait SVM 94

As we earlier discussed, this study focuses on the idea of identifying a smartphone user by
applying different walking patterns. Furthermore, it is assumed that the phone is freely placed
without any particular orientation inside any of the user’s pants pockets (front left, front right,
back left, back right). Thus to answer the questions “Does the ESMP, a non-linear unsupervised
feature selection method improve the identification accuracy more than the other existing and well-
studied unsupervised feature selection methods such as Principal Component Analysis (PCA)?”
and “Does the data variation affect the performance of the LUI process?” Tab. 8 enlists the
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comparative analysis of these two different feature selection methods with a different number of
features and different locations of a smartphone.

Table 8: Average accuracy, confidence intervals, and time is taken for legitimate user identification
for 50 samples per window with different feature selection methods and different number of
features for two different sensors data

Features Metric Back left pocket Back right pocket Front left pocket Back right pocket

ACC LACC ACC LACC ACC LACC ACC LACC

PCA ESMP PCA ESMP PCA ESMP PCA ESMP PCA ESMP PCA ESMP PCA ESMP PCA ESMP

10 Accuracy
time

74±
6.3
0.140

85±
3.3
0.142

67±
4.8
0.209

85±
3.8
0.214

63±
4.5
0.255

77±
2.3
0.252

63±
3.4
0.535

84±
3.9
0.523

66±
2.9
0.177

90±
4.6
0.178

72±
4.1
0.270

81±
3.9
0.271

69±
3.8
0.131

74±
5.9
0.131

64±
4.7
0.194

77±
4.8
0.188

15 Accuracy
time

72±
6.2
0.142

98±
1.1
0.142

75±
4.6
0.211

89±
4.1
0.238

76±
5.5
0.255

99±
0.9
0.254

78±
3.9
0.536

96±
2.0
0.517

70±
5.8
0.177

95±
3.4
0.178

77±
4.1
0.269

95±
2.1
0.273

74±
4.1
0.135

98±
1.3
0.132

71±
5.7
0.197

98±
1.0
0.203

20 Accuracy
time

73±
6.1
0.142

97±
1.4
0.142

73±
4.9
0.216

97±
2.0
0.219

76±
4.6
0.259

99±
0.4
0.256

82±
2.5
0.538

98±
1.6
0.529

76±
3.6
0.178

99±
0.7
0.189

76±
6.7
0.269

98±
2.6
0.281

71±
7.1
0.132

95±
2.4
0.132

73±
5.8
0.194

94±
4.2
0.212

25 Accuracy
time

78±
3.8
0.148

99±
0.5
0.140

74±
4.9
0.221

98±
2.7
0.219

72±
4.4
0.258

96±
3.4
0.257

80±
4.6
0.532

98±
1.6
0.528

75±
6.7
0.180

98±
1.2
0.179

76 ±4
.9
0.254

94±
2.3
0.270

73±
6.7
0.134

96±
3.9
0.133

73±
8.3
0.200

90±
4.9
0.203

30 Accuracy
time

78±
3.8
0.148

97±
0.4
0.143

76±
4.3
0.216

98±
1.8
0.217

73±
6.9
0.260

98±
1.5
0.258

76±
3.6
0.539

98±
1.4
0.532

76±
6.7
0.179

94±
3.2
0.179

76±
6.4
0.268

99±
0.3
0.284

74±
3.7
0.132

99±
0.5
0.149

68±
7.8
0.197

91±
4.1
0.181

5 Conclusion

Smartphones are becoming increasingly popular that has forced the community to study
the security implications of these devices. This work suggested that gait-based legitimate user
identification is possible in an uncontrolled environment with some limitations. The proposed
pipeline has some attractive features to its applicability such as smaller confidence intervals that
imply more reliability in training. Furthermore, holding a permanent structure is a useful feature
for hardware constraints such as transforming the trained model into a chip which can further
increase device security by not allowing software-based attacks but only hardware manipulations.
These hardware operations would require access to the smartphone hence making such attacks
subject to the device defense.

The proposed pipeline achieves a 100% true positive and 0% false-negative rate for almost all
classifiers. However, to further validate the claims, it may be useful to check the sensor quality
while changing the smartphone as well as with different operating systems.

The key advantage of our study is that the samples for each user are collected on different
days with different jeans, locations, and orientations which significantly helps to understand the
characteristic behavior of users which is an essential component for any legitimate user identifi-
cation system. However, one of the main limitations of gait-based legitimate user identification
is that the signals inconsistency e.g., signal reliability, degrades significantly between days due to
many factors such as a change in habits, mood, workload, etc. which we will address in our
future studies.
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