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Abstract: The enhancement of medical images is a challenging research task
due to the unforeseeable variation in the quality of the captured images. The
captured images may present with low contrast and low visibility, which might
in�uence the accuracy of the diagnosis process. To overcome this problem,
this paper presents a new fractional integral entropy (FITE) that estimates the
unforeseeable probabilities of image pixels, posing as the main contribution of
the paper. The proposed model dynamically enhances the image based on the
image contents. The main advantage of FITE lies in its capability to enhance
the low contrast intensities through pixels’ probability. Initially, the pixel prob-
ability of the fractional power is utilized to extract the illumination value from
the pixels of the image. Next, the contrast of the image is then adjusted to
enhance the regions with low visibility. Finally, the fractional integral entropy
approach is implemented to enhance the low visibility contents from the input
image. Tests were conducted on brain MRI, lungs CT, and kidney MRI scans
datasets of different image qualities to show that the proposed model is robust
and can withstand dramatic variations in quality. The obtained comparative
results show that the proposed image enhancement model achieves the best
BRISQUE and NIQE scores. Overall, this model improves the details of brain
MRI, lungs CT, and kidney MRI scans, and could therefore potentially help
the medical staff during the diagnosis process.
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1 Introduction

Medical imaging plays a detrimental role in the early-stage identi�cation and treatment moni-
toring of several diseases due to its ability to represent the anatomical features as clinically useful
information [1]. The imaging techniques employed in the medical setting might sometimes produce
images with poor contrast and artifacts, which degrade the quality of the captured information [2].
Therefore, efforts have been made to improve the quality of medical images to improve the
performance of the whole imaging system, and provide valuable information for diagnosis and
treatment. Generally, the image enhancement methods aim to improve the image quality by
increasing the contrast and reducing the loss of information so that the enhanced image presents
better details for observers [3]. It is thus evident that the contrast enhancement step is crucial in
image processing since it controls the amount of details that an image could have, subsequently
in�uencing the interpretation of the image [4]. In this study, we present a new fractional integral
entropy (FITE) based model for enhancing the different medical images. The performance of
FITE has been assessed using two relevant image quality metrics, and compared with state-of-the-
art of image enhancement techniques. The key contribution of the proposed study is the fractional
integral entropy approach for enhancing the image low visibility contents which is the novelty of
the proposed study. It can be concluded that the proposed FITE model can enhance the contrast
of images with different quality accurately and ef�ciently. Due to its performance, the model has
the potential to help radiologists obtain satisfactory results faster. Moreover, the FITE can be
applied as an ef�cient pre-processing step for any image processing approach.

2 Related Work

Most image enhancement algorithms are based on spatial processes implemented on image
pixels to produce more appropriate images compared to the input image. Wong et al. [5] proposed
a new histogram equalization (HE) algorithm to maximize the information content inside the
input colored images. To provide images with richer details for radiologists, Subramani et al. [6]
developed HE algorithm for medical image enhancement based on a fuzzy gray level difference
that is used with MRI brain scans. The proposed algorithm improved the �ne details in MRI
brain scans. The HE is a common image enhancement method developed to uniformly redistribute
the image gray level based on density function. However, the HE is not able to maintain the
image’s mean brightness. Recently, a few image enhancement algorithms based on the concept
of fractional calculus have been proposed. The fractional operators have the ability to keep the
high frequency contour features, besides improving the low-frequency texture details. Roy et al. [3]
proposed a new fractional calculus enhancement algorithm obtained by Laplacian operations. The
method was proposed to remove the generated Laplacian noise from text inside video frames.
Similarly, Raghunandan et al. [7] proposed a low contrast license plate image enhancement model
based on Riesz fractional operator. The model achieved good results for the text images only.
Another fractional based model for kidney images enhancement was developed by Al-Shamasneh
et al. [4]. The proposed model developed based on the pixel probability of the neighboring
pixels. This method was tested on their own MRI kidney dataset and attempted to enhance the
contrast of the whole MRI image. In a similar approach, Chandra et al. [8] proposed a novel
linear fractional mesh-free partial differential equation based method for images enhancement.
The proposed enhancement model is able to preserve �ne details in smooth areas, as well as
non-linearly increase high frequency information. However, this method was applied on clear,
cropped brain MRI images, which made them an easy target for enhancement. Additionally,
the authors did not study the issue of overlapping contour of the brain region in the MRI
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scans. Another approach of image enhancement is the one based on the optimization of image
quality. Anoop et al. [9] proposed a bilateral image �lter to remove speckle noise from MRI
images using an enhanced grass hopper optimization algorithm to optimize the image quality
measure as a �tness value. However, this method focused on removing the speckle noise rather
than improving the contrast quality of images. Alternatively, [10] proposed a tuned single-scale
Retinex algorithm for improving the dynamic range of MRI scans. The proposed enhancement
model is able to improve the brightness and contrast of the input MRI scans, but the preservation
of �ne details was not achieved. For poorly illuminated images, [11] proposed the fusion-based
image enhancement method by applying different techniques to adjust the image illumination.
This approach effectively improved the images illumination. However, the aim of the method is
restricted to weakly illuminated images but not for images that suffer from degradations, and
poor quality. In the same way, Zhang et al. [12] proposed an automatic image exposure correction
method by using dual illumination estimation. In this method, the multi-exposure image fusion
technique is employed to improve the input image with both under and over exposed regions
into a globally well-exposed image. Despite the good results of this method, it was not shown
to be able to preserve the �ne details of medical images, which is required for the diagnosis
process. Likewise, more image enhancements methods have been proposed based on nonlinear
optimization with several constraints. Zhou et al. [13] proposed a new optimization algorithm
based on the world cup optimization for controlling the Gamma value to enhance the image
contrast. The enhancement process is performed using a traditional gamma correction. As a result,
the computational complexity of this technique becomes large by applying several optimization
constraints. Rundo et al. [1] proposed, a novel MRI enhancement using genetic algorithms and a
bimodal intensity histogram. This method depends on image intensity histogram, which possibly
suffered from over-enhancement. Alternatively, deep learning-based approaches have achieved a
remarkable role in image enhancement, but they are still unable to enhance images well when
there is a lack of training data, in addition to hardware limitations. Jiang et al. [14] proposed
a deep learning approach to enhance dark images. This approach operated well without any
paired training data for low-light enhancement jobs. The experimental results on various low light
datasets show the effectiveness of this method. Moreover, Shi et al. [15] proposed a deep neural
network for enhancing rainy images with low illumination. The goal of this study was to improve
the image captured by low illumination. Kuang et al. [16] developed a deep learning optimization
framework to remove background noise in infrared images. This method produced interesting
visual results with good contrast enhancement compared to other network designs. Li et al. [17]
proposed a trainable convolutional neural network for enhancing images with low illumination
based on Retinex model without over or under enhancing the image’s regions. The enhanced
results of this method signi�cantly relied on the Retinex model, which is applied in many image
enhancement approaches to improve the image brightness. The above mentioned methods explored
different approaches for enhancing images. These methods work well in improving the whole
image, but not for the sub-regions enhancement. Moreover, a limited number of enhancement
methods were developed based on fractional calculus operators. Therefore, in this study, we
propose a new fractional integral entropy (FITE) based model for enhancing different medical
images by enhancing the dark area and maintaining the bright area of the input image.

3 Proposed Enhancement Method

Inspired by the fact that fractional integral has the ability to �nd solutions to complex
problems like non-linear complexities [18], we explore new fractional integral entropy to enhance
and preserve the �ne details of the medical image boundaries. The fractional integral (local
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fractional integral) is one of the signi�cant approaches of fractional analysis, which is utilized to
measure the fractional structures of data, such as images. It includes a formal approach to give a
fractional dimension (α) and other fractional features (entropy of pixel, probability of pixel, etc.)
to a dataset, which can be a nonconcrete dataset, pointers, or images. This category of analysis
is currently widely utilized for resolving complex problems in signal and image processing. The
integral formula of Tsallis entropy is as follows [19]:

Tαϕ(x)=
1

α− 1

{
1−

∫
∞

0
[ϕ (x)]α dx

}
. (1)

De�nition 1.1

For a function ψ which is de�ned on a fractional set (i.e., fractional dimension strictly
increases the topological dimension) including the fractional value β ∈ (0, 1], the fractional integral
operator (local fractional integral) is de�ned as follows [20]:

Iβψ (x)=
(

1
0 (1+β)

)∫ b

a
ψ (x) (dx)β .

Note that

Iβψ (x)=ψ (u)

(
(b− a)β

0 (1+β)

)
, u ∈ (a, b) .

By simulating Tsallis entropy under the fractional integral, and letting ψ(x) = [ϕ (x)]α, we
obtain the fractional integral of Tsallis entropy (FITE) as follows:

Tα,β
[a,b]ϕ (x)=

1
α− 1

{
1−

1
0 (1+β)

∫ b

a
[ϕ (x)]α (dx)β

}
(2)

where β ∈ (0, 1] and α is a real number. For a special case, when α = β ∈ (0, 1), Eq. (2) becomes

T α,α
[a,b]ϕ (x)=

(
1

α− 1

){
1−

1
0 (1+α)

∫ b

a
[ϕ (x)]α (dx)α

}
. (3)

By applying the properties of the fractional integral, we have the following proposition:

Proposition 1.2

For a function φ in a fractional set, and α ∈ [0, 1) then, the FITE satis�es the
following facts:

(i) T α,β
[a,b]ϕ (x)= 0 provided a= b

(ii) T α,β
[a,b]ϕ (x)=−T

α,β
[b,a]ϕ (x) provided a< b

(iii) T[a,b]
α,βϕ (x)=

(
1
α−1

)
(1− [ϕ(x)]α) provided β = 0

(iv) T α,β
[a,b]ϕ (x)=

(
1
α−1

)
(1− [ϕ]α (b−a)β

0(1+β)).

(v) T[a,b]
α,β [ϕ (x)+ ρ (x)]=T[a,b]

α,βϕ (x)+T[a,b]
α,βρ (x), provided α→ 1.
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(vi) T[a,b]
α,βϕ (x) ∈ [min(ϕ (x))

(
(b−a)β

0(1+β)

)
, max(ϕ (x))

(
(b−a)β

0(1+β)

)
].

Remark 1.3

In image processing context, we translate Eq. (2) into a discrete formula as follows:

Tα,βϕ (x)=
(

1
α− 1

){
(ϕmax−ϕmin)

β

0 (1+β)

n∑
i=1

[ϕ (xi)]α
}

, (4)

where ϕ(xi) indicates the probability of the pixel (xi), β is the fractional parameter, and ϕmax and
ϕmin are the maximum and minimum probabilities of input image. By letting α = β we have

Tα,αϕ (x)=
(

1
α− 1

){
(ϕmax−ϕmin)

α

0 (1+α)

n∑
i=1

[ϕ (xi)]α
}

(5)

Moreover, the inverse of (5) can be acted again on ϕ (xi) to get the normalized formula

(Tα,αϕ (x))−1ϕ (xi)=
(
(α− 1)0 (1+α)
(ϕmax−ϕmin)

α

)(
[ϕ (xi)]α∑n
i=1 [ϕ (xi)]α

)
. (6)

By using 2-D image information, the formula is Eq. (6) can be expressed as follows

Eα(i, j)=
(
(α− 1)0 (1+α)
(ϕmax−ϕmin)

α

)( [
ϕ
(
xi, j
)]α∑m

j=1
∑n

i=1
[
ϕ
(
xi, j
)]α

)
. (7)

where m and n are the image dimension. The fractional parameter α > 1.

The steps of the proposed model are as follow:

1. Calculate the image intensity occurrences number.
2. Calculate the probability of each intensity occurrences number.
3. Calculate the upper (ϕmax) and lower (ϕmin) pixels’ probability values.
4. Calculate the sum of all pixels’ probability.
5. Calculate cumulative sum of the elements of Eq. (7).
6. Display the enhanced image Eα(i, j).

The output of the proposed FITE for a sample low contrast image is shown in Fig. 1. By
looking at the input images in Fig. 1a, one cannot directly notice the lack of details in these
images. However, when comparing them to the results of the proposed FITE as shown in Fig. 1c,
the lack of details becomes more evident as weakly illuminated objects become brighter with well-
de�ned details following the enhancement. The enhancement of the low visibility regions in the
input images is attributed to the ability of FITE to extract illumination value from input image
pixels. The histogram analyses of the input and the enhanced images are shown in Figs. 1b, 1d
respectively. As seen from Fig. 1b, the gray level distribution for the input image looks dense,
while after enhancement by proposed FITE, the gray level distribution looks more uniformed, as
re�ected by the enhanced contrast boundaries of the input images. The histogram analysis illus-
trates the variations in the features of the input and the enhanced images. The logic behind using
fractional calculus in image enhancement is the capability of FITE to capture high frequency
details ef�ciently, regardless of image system noise. The proposed enhancement model is able to
preserve �ne details in smooth areas, as well as non-linearly increase high frequency information.
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(a)

(b)

(c)

(d)

Figure 1: Sample output of the proposed algorithm along with histogram analysis. (a) Input
image, (b) histogram detail of input image, (c) enhanced image, (d) histogram detail of
enhanced image
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4 Experimental Results

The proposed method is evaluated using the following images datasets:

1. The lung CT scan dataset created by Italian Society of Medical and Interventional
Radiology, which is named as COVID-19 DATABASE dataset [21].

2. Brain MRI dataset, comprising 154 MRI brain images [22].
3. Kidney MRI dataset of 230 images [23].

To evaluate the performance of the proposed image enhancement model, we employ the
following standard metrics:

A. Two no-reference image quality assessment, which are: “the blind reference less image spatial
quality evaluator (BRISQUE),” which calculates the perceptual quality of images, and “the
naturalness image quality evaluator(NIQE),” which calculates the image quality affected by
arbitrary distortion. It is noted that the low scores of BRISQUE and NIQE indicate better
quality of the enhanced images.

B. Two histogram based metrics which quantify the �atness (HF), and the spread (HS) of the
image histogram. These two metrics help differentiate between the low and high contrast
images. Moreover. The HF, and the HS are de�ned as:

HF=
The Geometric mean of image histogram counts
The Arithmetic mean of image histogram counts

(8)

HS=
The Quartile distance of image histogram
The Possible range of image pixel values

(9)

The histogram quartiles represent the amount of data spread. The value of the quartile
distance is the difference between the 3rd quartile and the 1st quartile of the extracted image
histogram. Both the HF, and HS depend on the intensity values of the histogram and on the
histogram bin positions.

The code of proposed image enhancement algorithm was developed using MATLAB 2019b,
while Matlab and Python have been used to conduct the comparative analysis with other methods.
To show that the proposed model is effective as a medical image enhancement tool, we imple-
mented the following existing methods for the comparative study: The histogram equalization
(HE) method. The fractional entropy based enhancement method of kidney images by Al-
Shamasneh et al. [4]. The image enhancement method for license plate by Raghunandan et al. [7]
that is based on the Riesz fractional operator. The MRI brain images enhancement method by
Al-Ameen et al. [10]. The fusion-based enhancement method of poorly illuminated images by Fu
et al. [11]. The CNN-based image enhancement method by Li et al. [17] for weakly illuminated
images. And �nally, the automatic exposure correction method by Zhang et al. [12]. All of the
aforementioned methods were executed on the same machine (Windows 10 64-bit, Intel Core i7,
SSD storage, and 8 GB of RAM) for consistency.

In the proposed enhancement model, the fractional parameter (α) is the key parameter for
the �ne detail enhancement. To �x the experimental value for the parameter (α), the average value
of NIQE for the different values of α is calculated as shown in Fig. 2. It is observed that when
the value of α is equal to 3.05, the best score for NIQE is obtained (lower is better). Therefore,
we consider 3.05 as the experimental value of α in this study.
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Figure 2: The average NIQE measure for different values of the fractional parameter (α)

The qualitative results are illustrated in Fig. 3 for brain MRI; in Fig. 4 for lung CT, and in
Fig. 5 for kidney MRI. As shown in the �gures, all of the images have different trends with the
dark and bright areas. It could be seen that the Histogram Equalization (b), Fu et al. [11] (f), and
Zhang et al. [12] (h) methods produce over-enhanced images, while the proposed method produces
natural appearance by enhancing the dark areas and maintaining the bright areas of input images.
Overall, when we look at the input images and its enhanced images, the brightness of the �ne
details increases compared to the input images, irrespective of the content and application of the
image. The brightening caused by the proposed FITE model makes the structures of the medical
images well-de�ned and clear. The proposed FITE method introduces fair visual results for the
weakly illuminated images. This is the contribution of fractional integral entropy in this study.

The achieved quantitative results of FITE and the existing image enhancement models are
stated in Tabs. 1 and 2. Most of the image enhancement methods reported in the literature use
the no-reference image quality metrics, therefore, the BRISQUE and NIQE scores have been used
for the quantitative comparisons as presented in Tab. 1. The proposed method achieves the best
BRISQUE and NIQE for almost all of the images from the three datasets. However, for the brain
MRI images, the performance of the proposed FITE method degrades slightly compared to the
Zhang et al [12] method. This might be caused by the increased complexity of the said images
compared to the ones found in the other two datasets, and might constitute a primary limitation
of the present work. Overall, the proposed FITE method achieves the best of BRISQUE and
NIQE scores (lower is better), regardless of dataset and content. When considering the general
goal of image enhancement, it can be said that the proposed method is the best compared to the
rest of the mentioned methods due to its consistent results across the different datasets. However,
some existing methods may produce better results when used under particular conditions since
they were designed with a speci�c application in mind.
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(a)

(b)

(c)

(d)

(e)
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(f)

(g)

(h)

(i)

Figure 3: The brain MRI enhancement results of the proposed and existing enhancement mod-
els. (a) Input image, (b) histogram equalization, (c) Al-Shamasneh et al. [4], (d) Raghunandan
et al. [7], (e) Al-Ameen et al. [10], (f) Fu et al. [11], (g) Li et al. [17], (h) Zhang et al. [12],
(i) proposed FITE
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(a)

(b)

(c)

(d)
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(f)

(g)

(h)

(i)

Figure 4: The lung CT enhancement results of the proposed and existing enhancement models. (a)
Input Image, (b) histogram equalization, (c) Al-Shamasneh et al. [4], (d) Raghunandan et al. [7],
(e) Al-Ameen et al. [10], (f) Fu et al. [11], (g) Li et al. [17], (h) Zhang et al. [12], (i) proposed FITE
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(a)

(b)

(c)

(d)

(e)
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(f)

(g)

(h)

(i)

Figure 5: The kidney MRI enhancement results of the proposed and existing enhancement mod-
els. (a) Input image, (b) histogram equalization, (c) Al-Shamasneh et al. [4], (d) Raghunandan
et al. [7], (e) Al-Ameen et al. [10], (f) Fu et al. [11], (g) Li et al. [17], (h) Zhang et al. [12],
(i) proposed FITE

In Tab. 2, the histogram �atness (HF), and the histogram spread (HS) measures have been
used as another quantitative comparison. The results in Tab. 2 show that the proposed FITE
method achieves the best scores (high score) for different kinds of weakly illuminated images.
It could be concluded that the scalability of the proposed FITE model is the best compared
to the other image enhancement methods. This further consolidates the point mentioned above
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regarding the ability of the proposed model to perform well under general settings, compared to
specialized methods.

Table 1: Assessment of various image enhacnement methods and the proposed model against the
three images datasets

Methods Brain MRI images Lung CT images Kidney MRI images

Brisque Niqe Brisque Niqe Brisque Niqe

Histogram equalization 49.0236 4.8209 40.2591 3.6313 28.9012 18.8823
Al-Shamasneh et al. [4] 51.3724 5.5162 43.4479 3.7374 31.4509 18.8824
Raghunandan et al. [7] 49.5019 5.7499 40.8360 4.5837 31.4119 18.8842
Al-Ameen et al. [10] 49.5916 5.2988 41.2916 3.4671 29.4054 18.8819
Fu et al. [11] 49.1735 5.1791 44.2322 3.6954 31.2226 18.8843
Li et al. [17] 49.7682 5.1954 40.50 17 3.6294 29.6806 18.8819
Zhang et al. [12] 43.0178 5.5596 40.2283 3.3502 47.6063 18.8842
Proposed FITE 48.5495 4.8101 38.9895 2.5339 28.6598 18.8716

Table 2: The histogram �atness (HF), and the histogram spread (HS) measures

Methods Brain MRI Lung CT Kidney MRI

HF HS HF HS HF HS

Input image 0.3778 0.0014 0.2530 0.0011 0.3191 0.1256
Histogram equalization 0.7089 0.0037 0.5928 0.0085 0.7681 0.1176
Al-Shamasneh et al. [4] 0.3779 0.0016 0.2450 0.0005 0.4909 0.1910
Raghunandan et al. [7] 0.4710 0.0015 0.1480 0.0003 0.3540 0.1473
Al-Ameen et al. [10] 0.3910 0.0022 0.2345 0.0011 0.3360 0.0468
Fu et al. [11] 0.3648 0.0038 0.3053 0.0086 0.4394 0.2133
Li et al. [17] 0.4101 0.0018 0.2617 0.0102 0.6055 0.0293
Zhang et al. [12] 0.3536 0.0030 0.2799 0.0021 0.3601 0.1693
Proposed FITE 0.5677 0.0039 0.6190 0.0127 0.8635 0.2485

5 Conclusion

In order to preserve the �ne structures of images, irrespectively of the pixel’s contrast, we have
introduced in this study a novel image enhancement model involving fractional integral entropy
(FITE). This model integrates the properties of fractional integral and entropy, which can solve
the problem of non-linear complexity of image enhancement. The proposed FITE dynamically
enhances �ne details of different medical images based on the image contents. Experimental
results on three medical image datasets indicated that the proposed FITE approach outperforms
the existing methods under the general application of image enhancement. It is noteworthy that
some of the methods used for comparison may yield better results under certain conditions since
they were speci�cally designed to handle the images produced under such conditions. This gives
the proposed model the advantage of being more scalable for the general purpose of image
enhancement than the existing methods. Thus, the proposed model could be utilized under a wider
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range of settings, such as under the clinical setting to aid the medical staff during the diagnosis
process, or as a preprocessing setup for further imaging applications. Future works may adapt the
present model for speci�c applications to attain maximum enhancement bene�t.
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