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Abstract: Fuzzy C-means (FCM) is a clustering method that falls under unsu-
pervised machine learning. The main issues plaguing this clustering algorithm
are the number of the unknown clusters within a particular dataset and ini-
tialization sensitivity of cluster centres. Artificial Bee Colony (ABC) is a type
of swarm algorithm that strives to improve the members’ solution quality
as an iterative process with the utilization of particular kinds of random-
ness. However, ABC has some weaknesses, such as balancing exploration and
exploitation. To improve the exploration process within the ABC algorithm,
themean artificial bee colony (MeanABC) by itsmodified search equation that
depends on solutions of mean previous and global best is used. Furthermore,
to solve the main issues of FCM, Automatic clustering algorithm was pro-
posed based on the mean artificial bee colony called (AC-MeanABC). It uses
the MeanABC capability of balancing between exploration and exploitation
and its capacity to explore the positive and negative directions in search space
to find the best value of clusters number and centroids value. A few benchmark
datasets and a set of natural images were used to evaluate the effectiveness
of AC-MeanABC. The experimental findings are encouraging and indicate
considerable improvements compared to other state-of-the-art approaches in
the same domain.
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1 Introduction

Clustering of data is a statistical approach used for managing large data volume. It is a
multivariate analytical approach, which identifies patterns and relationships that exist amongst
data. By data clustering, a user could divide data into relatively homogeneous groups. By reorga-
nizing these groups, the user may be able to utilize the original data volume efficiently. Clustering
accuracy is crucial because, according to [1–3], clustered data that does not accurately denote the
original data will have adverse consequences. In other words, data clustering is a set of patterns
or points represented as vectors of attributes, measurement methods, or objects that exist in
multidimensional feature space [4,5].

Clustering algorithms consist of two types, namely, the partitional clustering, which generates
several partitions, and hierarchical clustering, which generates only one partition [4,5]. As high-
lighted by [5,6], there are two types of partitional clustering, namely, hard (crisp) and fuzzy (soft).
Every data point in crisp clustering belongs to one cluster only. In the latter clustering of fuzzy,
at the same time, data points might relate to much more than single cluster based on a certain
degree of fuzzy membership. Between these two types (crisp and fuzzy), fuzzy clustering appears
to be more acceptable for datasets that exhibit undefined bounds between regions or clusters.

Over the last few years, clustering methods have been demonstrated to be effective, particularly
in tasks of categorization, requiring semi or full automation [7,8]. Clustering is employed to clas-
sify identical data points according to similarity and distance, based on the standard approach. In
inter-cluster, the similarity increases as the distances decrease while in intra-cluster, simultaneously
increasing distances will reduce similarity.

Clustering has many useful features, making it one of the most well-known in many fields
of image segmentation, pattern recognition, machine learning, data mining, etc. [3,9]. One of its
features is the partitional method of clustering [2]. It is free from issues such as static-behaviour,
where the elements of data of a cluster are unmovable to another cluster. Additionally, this
type of clustering also does not have the problem of overlapping clusters’ separation inability,
which is common in hierarchical clustering. Amongst these fuzzy clustering techniques, FCM
algorithm [10] is a useful approach that has been applied in many domains because it has robust
ambiguity characteristics and can maintain rather more information than hard segmentation
techniques [11,12].

However, the Fuzzy clustering-based approach still has significant weaknesses; for instance, its
ability to obtain an automatic approach without prior knowledge of the number of clusters and
centroid locations. Furthermore, determining the number of clusters within a particular dataset is
a significant challenge and the unavailability of experts, operators, and any prior knowledge has
contributed to this challenge as well. Accordingly, many researchers have worked on the successful
implementation of clustering methods in the last few years to find the number of the appropriate
clusters within a particular dataset without experts and operators.

Metaheuristic optimization search algorithms such as artificial bee colony (ABC) [13], bees
algorithm (BA) [14,15], harmony search (HS) [16,17], firefly algorithm (FA) [18,19], and cuckoo
search (CS) [20,21], have shown success in many fields such as clustering [11,22], image pro-
cessing [23], scheduling [24] and others real-world applications [25]. Moreover, a fuzzy clustering
approach based on metaheuristic optimization search algorithms is considered a suitable choice
for solving the problems related to fuzzy clustering [3,26]. The following is a discussion of some
of the methods.
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A fuzzy clustering FCM was proposed in Ouadfel et al. [27] based on a modified ABC called
MoABC-FCM. Additionally, Hancer et al. [28] presented an image segmentation approach using
ABC algorithm to detect tumours from MRI images. In Alrosan et al. [29], ABC algorithms
and fuzzy c-means were combined and called ABC-FCM. The combination used two types of
MRI brain images namely simulated brain data, and actual MRI images, for its performance.
Automatic Clustering-based Improved Binary ABC (IDisABC) which was proposed by [30]. In
Kuo et al. [3] an automatic customer segmentation method based on an improved artificial bee
colony and fuzzy clustering was proposed. Further, Kuo et al. [3], Alrosan et al. [23] proposed
a new image clustering method based on improved ABC called (MeanABC-FCM). This method
used MRI images, and the outcomes show promising results in this field.

A method, fuzzy automatic clustering named AFDE for image segmentation problem was
proposed by [31]. Relevantly, Alia et al. [32] proposed a novel automatic algorithm of fuzzy
clustering (DC) by the hybrid harmony search HS with FCM to produce an automatic segment
method called DCHS. Further, an automatic hard clustering algorithm called DCPSO was pro-
posed by [33–35]. While an algorithm called Fuzzy based genetic algorithm with variable string
length FVGA to automatically find a fitting clusters number with the matching fuzzy clustering
outcomes was proposed by [36]. A fuzzy clustering algorithm was proposed in Alomoush et al. [37]
using a combination of a firefly optimizer with an FCM algorithm named FFCM [38]. In Agbaje
et al. [26] an automatic data clustering method was proposed based on improved FA algorithm
combined with the Particle Swarm Optimization (PSO) algorithm.

This paper proposes an automatic fuzzy clustering approach based on mean artificial bee
colony called (AC-MeanABC). The proposed method uses the (MeanABC) algorithm to determine
the appreciate cluster number and initial location of centroids. The method modifies the search
equation depending on mean previous and global best solutions to reach the best balance between
exploration and exploitation. The remaining portions of the paper are as follows. The type 2
fuzzy set is described in Section 2, related background on the employed techniques are presented
in Sections 4 and 5. The proposed method is presented in Section 5, and Section 6 presents the
experiments and results, wherein Section 7 concludes the paper.

2 Type 2 Fuzzy Set

FCM is an unsupervised method that can identically partite objectives based on the similarity
attribute, which tends to increase the similarities of entities within the same set and decrease
the similarities of entities within different sets [2,39]. The objective function defined by FCM is
reformulated using type 2 fuzzy set as in Eq. (1) below.

J(c1, c2, . . ., cn)=
c∑

k=1

n∑
j=1

h2kj
∥∥xkj − vkj

∥∥ (1)

{
vj

}c
j=1. The location of centroids c refers to the standard in the sign of product ‖ .‖ for the

element xi to the jth centre’s location; furthermore, the new value of membership hkj , and type 2
fuzzy set includes five steps whereby the first step involves the selection of fuzzy clusters number
c, followed by the second step which involves the selection of location centres vi, v2, . . . , vc. The
third step is the computation of elements of fuzzy membership value as in Eq. (2) where μkj is
the membership degree of pixel k to the jth cluster, while the fourth step involves calculating the
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cluster centres as in Eq. (3). As the final step, the aforementioned four steps are repeated until
the limit of iterations (t) is reached or until a stopping condition is met as in Eq. (4).

hkj = μkj −
1−μkj

2
(2)

Vkj =
∑n

j=1 h
m
kj.xkj∑n

j=1 h
m
kj

(3)

‖vnew− vold‖< ε where ε < 0.001 (4)

3 The Artificial Bee Colony (ABC)

A standard ABC algorithm was proposed in Karaboga et al. [13] and this algorithm was
inspired by the life of bee swarm. The bees in ABC are divided into three kinds: the employed
bees focus on seeking sources of food and transmitting their search information to the onlookers.
Meanwhile, the onlooker bees retain more searches to achieve better solutions depending on the
quality of the discovered food sources. A source of food in the flock is a possible solution, and
the amount of nectar determines their fitness values. The ABC algorithm randomly initializes the
source of food as in Eq. (5).

xi,j = xmin,j+ rand(0, 1)(xmax,j−xmin,j) (5)

where (i = 1, . . . , SN) and SN are the solutions (j = 1, 2, . . . ,D), D is the parameters value, while
xj min and xj max are the highest and lowest bound of the dimension j, respectively. The
computation of the updated source of food is as in Eq. (6).

νij = xij+φij(xij −xkj) (6)

where: Kε(1, 2, . . .SN) and jε(1, 2, . . .D) indexes which are randomly chosen and K �= i · φij is
a value from [−1, 1]. The balancing of the candidate food exploration and exploitation fitness
of food source (solutions) fit(xi) will be found from the value of fitness function f(xi) that is
computed by Eq. (7).

fit(xi)=
⎧⎨
⎩

1
(1+ f (xi))

iF f (xi)≥ 0

1+ abs(f (xi)) iF f (xi) < 0
(7)

That onlooker selects solutions with certainty. This certainty means that correlation exists
between the fitness value of a source of food and the bees employed. The probability of fitness
is as in Eq. (8).

pi = fiti∑sn
n=1 fiti

(8)

In this regard, when several trials of the solution are not changing, the “limit,” is reached, and
employee bees are converted to scout bees to abandon their solutions. Accordingly, Eq. (5) shows
how the scout bees start new searches and solutions randomly until they reached the criterion
of termination.
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4 The Mean Artificial Bee Colony (MeanABC)

The ABC has some disadvantages in terms of unbalanced search behaviour, and this has
become a common limitation with other optimization algorithms. The authors used an improved
ABC based mean global best (MeanABC) [23] to solve these disadvantages. In Alrosan et al. [23]
an improved ABC algorithm called MeanABC was proposed, and this algorithm presents a unique
modified search formula for the bee phase employed based on the knowledge about the best
candidates to produce a new neighbourhood source of food as in Eq. (9)

vij = xij+φij
(
xij −xkj

)+�ij

[(
pbesti+ gbest

2
−xij

)
+

(
pbesti− gbest

2
−xij

)]
(9)

where xi,j would be the first expression for the present position, φij
(
xij −xkj

)
is the variation

among the current position and the new position, and φij is a random value from [−1,1]. Both
expressions are identical to traditional ABC algorithms. The third expression is the modified
search equation in MeanABC. Here, the first side of the third expression is essential for switching
the bee’s present position towards the mean value of the positive way of the best global position
and the positive way that is its own best position,(
pbesti+ gbest

2
−xij

)
.

The second concerns with switching the present mean position value of (pbest), which is the
positive way of own best position and the (–gbest) negative way of the best global position.(
pbesti− gbest

2
−xij

)
.

Based on the above: ψ is a random value between [0, C], and C is a positive number.
The constant value of C plays a critical role in balancing the candidate food exploration and
exploitation [38]. Fig. 1 shows the MeanABC pseudo-code.

Figure 1: The pseudo-code of MeanABC algorithm
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5 The Proposed Method (AC-MeanABC)

AC-MeanABC is an unsupervised data clustering method that employs the ability of Mean-
ABC to seek the best solution that comprises a set number of clusters and centroids’ location.
The pseudo-code for AC-MeanABC algorithm is available in Fig. 2. The steps of AC-MeanABC
are described as follows.

Figure 2: The pseudo-code of AC-MeanABC algorithm

5.1 Initialization
The AC-MeanABC algorithm begins by initializing the Np food sources. Each food source Np

represents a vector that encodes the cluster number and centroid. Each Np food sources’ vector
length can change based on the randomly generated number of clusters for each vector. Also,
the Np size range (number of clusters) depends on the dataset. Each Np vector encodes several
clusters, denoted by ‘ClustNo,’ which is the number of Np vector encode between the maximum
number of clusters (ClusMaxNum) and the minimum number of clusters (ClustMinNum). The
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food source initialization initializes the number of clusters and centroids value in MeanABC as
in Eq. (10).

ClustNo=ClustMinNum+ClusMaxNum+ rand () . (ClusMaxNum–ClustMinNum) (10)

The values of ClusMaxNum and ClustMinNum are chosen based on the images used for
segmentation. In this regard, the length of the vector is allowed to change if ClustNo is changed.
Additionally, each length of a vector in Np must reach to highest clusters number (ClusMaxNum).
Thus, for a matrix representation, it consists of d-dimensional space and the Np vector length
(ClusMaxNum,d), where d represents the centroid locations. In case the vector number of clusters
is less than ClusMaxNum, the vector is taken by centroids in random locations, while the rest of
unused vector elements are represented as don’t care ‘#’ sign [32,40]. To clarify the ‘don’t care’
elements, let d = 2 and ClusMaxNum = 6, which means that the feature space is 2-dimensional
(d = 2) and the maximum number of clusters is ClusMaxNum= 6. So, suppose that one of the
Np vectors has only 3-candidate cluster centres such as Np= {(113, 9), (80, 4), (42, 5)}, then, these
three centres will be set in the Np vector while the rest of the elements are labelled as don’t care
’#’ sign Np = {113 9 # # # # 80 4 # # 425}. Also, to determine the best solutions, the fitness
function J(c1, c2, . . . , cn) in Eq. (1) is used. The maximum value of J(c1, c2, . . . , cn) is considered
as the best solution.

5.2 Employed Bees Phase
This phase of AC-MeanABC clustering algorithm includes finding the best Np vector with

the optimal number of clusters and centroid locations. To update the Np vector value, the new
food source position is calculated using previously mentioned Eq. (9) in section (4).

vij = xij+φij
(
xij −xkj

)+�ij

[(
pbesti+ gbest

2
−xij

)
+

(
pbesti− gbest

2
−xij

)]
(9)

Here, i = [1, 2, . . . ,Np], j = [1, 2, . . . ,Cn], xj,i is a randomly chosen jth parameter of the kth
individual, and i is one of the Np food sources with i �= k. If any parameter of vi. exceeds its
predetermined boundaries, it should be adjusted to fit the appropriate range. A scale factor φij is
a random number between [−1,1]. Meanwhile, ψ is a uniform random number from [0,C], where
C is a nonnegative constant number. Here, the pbest represents the previous best value of each
vector encodes namely NP = (C1,C2,C3,C4, . . . ,Cn), and the gbest represents the previous best
value of all vector encodes i = [1, 2, . . . ,Np]. After generating the new candidate vector encodes,
the new candidate solution’s fitness value is calculated as in Eq. (7), say, fitj . If fiti < fitj; then,
update the food source vector encodes, else, keep it as it is.

5.3 Onlooker Bees Phase
In the onlooker bee stage, each onlooker selects a source of food with a probability deter-

mined by the amount of nectar (fit) from a source of food exchanged by employed bees. As in
Eq. (8), the probability is determined. When the probability for fiti of the vector encodes is high,
the food source is selected. Else, the vector will be considered as don’t care ‘#’ solution. After the
employed bee phase and a food source have been chosen, a neighbour source vi is calculated by
Eq. (9), and its f (x) is calculated. Then, the process of greedy is used between vi and xi.
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5.4 Scout Bees Phase
When trials of solutions are not changing, and it reached to “limit,” employee bees become

scout bees and abandon their solutions. Here, is where, the scout bees begin new searches and
solutions, randomly via Eq. (10). These aspects are iterated until the criterion of termination has
been reached.

5.5 Solutions Evaluation and Clustering
The degree of appropriateness or goodness is measured by its fitness value of each Mean-

ABC solution. Each data is allocated to one or more clusters by using the fuzzy membership
categories. These fuzzy membership values are determined using the fuzzy membership equation.
Consequently, a cluster validity index is used as an indicator for the appropriateness of the
clustering. This index is typically exercised to establish the quality of different solutions obtained
using different settings in a particular clustering algorithm (or for solutions given by different
algorithms).

In this paper, the cluster validity index of VI is used for the appropriateness of the
clustering [35]. The VI index is presented as follows:

VI = (s×N (μ,σ)+ 1)× intra
inter

(11)

where s is a constant number, and N(μ,σ) is a Gaussian distribution as in Eq. (12) with mean
and standard deviation, where cn is the number of clusters

N (μ,σ)= 1√
2Πσ 2

e

[
− (cn−μ)2

2σ2

]
(12)

Eqs. (13) and (14) represent these intra clusters and the inter-cluster.

intra= 1
Np

cn∑
cn=1

∑
z∈cn

∥∥zp−mk
∥∥2 (13)

inter=min
{
‖mk−mkk‖2

}
wherek �= kk (14)

where Np is the number of patterns in a dataset, Zp is a pattern in the cluster, while mk, and cn
is the kth centroids of the cluster and the number of clusters.

6 Experiments and Results

The AC-MeanABC fuzzy clustering algorithm is conducted as a fully automatic data clus-
tering to find the number of clusters in datasets. The experiments and results are represented in
three parts. Firstly, the AC-MeanABC parameters setting and the most appropriate values are
chosen. Secondly, AC-MeanABC is conducted on 11 benchmark clustering datasets selected from
the UCI databases such as Iris, Ecoli, Wisconsin, Wine, Dermatology, Glass, Aggregation, R15,
D31, Libras movement and Wholesaler customers. Some details about these datasets are given
in Tab. 1.

The third part includes AC-MeanABC being conducted with five natural images obtained
from the Berkeley1 dataset [30,41] such as Lena, Jet, MorroBay, Mandril, and Pepper. All-natural
images have the size is 512× 512 except the Pepper image, which is of 256× 256.
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Table 1: Clustering datasets details

Datasets Number of
instances

Number of
attributes

Number of
clusters

Datasets Number of
instances

Number of
attributes

Number of
clusters

Iris 150 4 3 Aggregation 788 2 7
Ecoli 327 8 5 R15 600 2 15
Wisconsin 683 9 2 D31 3100 2 31
Wine 178 13 3 Libras movement 360 28 15
Dermatology 358 34 6 Wholesaler customers 440 8 3/4/5
Glass 214 9 6

6.1 AC-MeanABC Parameters Setting
To obtain the best outcomes from any clustering optimization algorithm, the suitable selection

of parameters is critical because these parameters are essential in the algorithm’s performance and
accuracy. To determine the values of parameters of AC-MeanABC (i.e., Population size SN, limit,
maximum cycle number (MCN), nonnegative constant parameter (C), and Termination criterion
TC) have to be determined. The values of these parameters were set in Tab. 2 based on related
works [3,30]. In Tab. 3, other relevant parameters to the dataset, such as the maximum number
of clusters Np, μ and σ [3,30].

Table 2: AC-MeanABC parameters settings

Approach Population
size SN (Np)

Limit Maximum cycle
number (MCN)

Nonnegative
constant
parameter C

Termination
criterion TC

Benchmark
data clustering
(part1)

20 50 500 1.43 2

Benchmark
data clustering
(part2)

30 100 9000 1.43 2

Image
clustering

50 100 10000 1.43 2

6.2 Benchmark Clustering Datasets
In this experiment, AC-MeanABC was performed with 11 benchmark clustering datasets,

which were chosen from the UCI database. The benchmark datasets were divided into two
parts, whereby part1 of the benchmark datasets included Glass, Aggregation, R15, D31, Libras
movement and wholesaler customers, while part2 of the benchmark datasets included Iris, Ecoli,
Wisconsin, Wine and Dermatology.

6.2.1 Part1
In this part, the AC-MeanABC outcomes were compared with the standard ABC algo-

rithm and other related works such as iABC, AKCBCO, AKC-MEPSO, DCPG, DCPSO and
DCGA [3,42,43]. The parameter settings for AC-MeanABC algorithm were selected as in Tabs. 2
and 3 based on the same parameter setting in [3]. Accordingly, Tabs. 4 and 5 illustrate these
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benchmark data clustering, the results of VI index, and their optimal cluster numbers (# OC).
Tab. 4 shows that AC-MeanABC outperforms other related works in minimizing the VI index in
most of the outcomes, where iABC outperforms AC-MeanABC in R15 and D31. Additionally,
Tab. 5 indicates that AC-MeanABC exceeds other state-of-the-art methods in finding the optimal
number of clusters for Glass, Aggregation, R15, Libras movement and wholesaler customers, while
iABC outperforms AC-MeanABC in D31.

Table 3: Other parameters settings

Datasets Np μ σ Datasets Np μ σ

Iris 5 0 1 D31 56 1 2
Ecoli 20 2 1 Libras movement 19 1 2.5
Wisconsin 13 0 1 Wholesaler customers 1 0 0.8
Wine 15 0 1 Lena 20 2 1
Dermatology 20 2 1 Jet 20 2 1
Glass 15 1 1.5 MorroBay 15 1 1
Aggregation 28 1 2 Mandril 20 2 1
R15 24 1 2.5 Peppe 20 3 1

Table 4: Benchmark data clustering part1 outcomes of VI index

Datasets Measure ACMeanABC iABC ABC AKC-BCO AKC-MEPSO DCPG DCPSO DCGA

Glass Average 0.3118 0.3644 0.3752 2.6411 2.1352 0.4700 0.5400 0.60
SD 0.0020 0.0017 0.0053 1.1412 1.0154 0.0500 0.0800 0.13

Aggregation Average 0.2952 0.3628 0.3706 2.3986 0.7543 0.6431 0.6311 0.52
SD 0.0121 0.0117 0.0159 0.7359 0.2752 0.0368 0.0445 0.00

R15 Average 0.2753 0.2162 0.2164 0.9885 0.3271 0.2800 0.2700 0.40
SD 0.0011 0.0013 0.0013 1.5429 0.0549 0.0500 0.0400 0.06

D31 Average 0.3188 0.3056 0.3056 3.8074 0.5769 0.4700 0.8670 0.42
SD 0.0030 0.0004 0.0004 2.6032 0.2293 0.1300 0.1900 0.01

Libras movement Average 0.5810 0.6270 0.6610 2.0972 1.8171 0.6262 0.6380 0.79
SD 0.0024 0.0079 0.0136 0.3840 0.1956 0.0311 0.0357 0.03

Wholesaler customers Average 0.2019 0.2040 0.2041 0.5104 0.4622 0.3010 0.2419 0.29
SD 0.0005 0.0008 0.0002 00535 0.0894 0.0665 0.0324 0.05

In Tab. 6, the Friedman test was carried out and the results were used in comparing the
performance of AC-MeanABC and other related works. As shown, the proposed algorithm
outperforms all comparable methods in Tab. 6. The box whisker for the results of clustering
algorithms in Tab. 4 is displayed in Fig. 3.

6.2.2 Part2
In this part, the AC-MeanABC outcomes were compared with other related works such as

discrete binary artificial bee colony DisABC, GA based clustering algorithms, improved discrete
binary artificial bee colony IDisABC [28] and dynamic clustering based particle swarm optimiza-
tion DCPSO [33]. The parameter settings for DC-MeanABC algorithm were selected as in Tabs. 2
and 3 based on the same parameter setting in [28].
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Table 5: Benchmark data clustering part1 outcomes of clusters number

Datasets #OC Measure AC-MeanABC iABC ABC AKC-BCO AKC-MEPSO DCPG DCPSO DCGA

Glass 6 Average 6.22 7.03 6.53 3 3.98 5.93 5.43 4.97
SD 0.14 0.18 0.51 0 1.24 0.77 0.61 0.57

Aggregation 7 Average 7.21 7.23 7.9 11.73 8.37 6.43 6.07 6.00
SD 0.00 1.28 2.44 2.6 4.63 0.90 0.74 0.00

R15 15 Average 15 15 15 9.57 11.13 8.03 7.13 8.00
SD 0 0 0 1.31 1.25 1.37 1.11 1.46

D31 31 Average 31.20 31.17 31.4 28.13 22.63 28.06 21.00 10.41
SD 0.44 0.38 0.5 4.15 2.72 6.24 3.16 0.91

Libras movement 15 Average 15 15.73 15.37 4.2 4.13 6.87 6.33 8.55
SD 0.12 0.87 1.1 0.61 0.35 0.97 1.24 0.78

Wholesaler customers 3 Average 3.28 6.87 6 3.37 3.43 7.73 6.30 3.66
SD 0.001 0.57 0 0.49 0.57 2.21 2.02 0.72

Table 6: Mean ranks obtained by Friedman test for the clustering algorithms outcomes in Tab. 4

Variable Mean rank

AC-MeanABC 1
iABC 2
ABC 2.8
DCPG 3.62
DCGA 3.8
DCPSO 4
AKC-MEPSO 5.92
AKC-BSO 6.97

Figure 3: Box-whisker to present the outcomes of five clustering algorithms in Tab. 4

Tabs. 7 and 8 illustrate these benchmark data clustering, the results of VI index, and their
optimal cluster numbers (# OC). Tab. 7 shows that AC-MeanABC outperforms other related
works in minimizing the VI index in all outcomes. Additionally, Tab. 8 indicates that AC-
MeanABC exceeds other state-of-the-art methods in finding the optimal number of clusters for
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Ecoli and Wine datasets. In the rest of the three cases, all approaches reached an optimal number
of clusters in the Iris dataset. Further, AC-MeanABC, IDisABC, and DisABC obtained the same
outcomes in Wisconsin dataset with a preference for AC-MeanABC in standard deviation value.
In the Dermatology dataset, DCPSO and AC-MeanABC are very close in terms of result to find
the best number of clusters. Still, the DCPSO standard deviation value is much higher than that
of AC-MeanABC.

Table 7: Benchmark data clustering part2 outcomes of VI index

Datasets AC-MeanABC IDisABC DisABC GA DCPSO

Average (SD) Average (SD) Average (SD) Average (SD) Average (SD)

Iris 0.070 (0.035) 0.0974 (0.010) 0.0982 (0.010) 0.1182 (0.020) 0.1042 (0.013)
Ecoli 0.229 (0.041) 0.3073 (0.057) 0.3841 (0.069) 0.5351 (0.176) 0.3691 (0.086)
Wisconsin 0.091 (0.017) 0.135 (0.022) 0.135 (0.022) 0.1424 (0.039) 0.1368 (0.018)
Wine 0.192 (0.068) 0.3251 (0.035) 0.3365 (0.029) 0.4426 (0.145) 0.3518 (0.055)
Dermatology 0.257 (0.051) 0.3968 (0.043) 0.4328 (0.048) 0.5717 (0.138) 0.4600 (0.045)

Table 8: Benchmark data clustering part2 outcomes of clusters number

Datasets #OC AC-MeanABC IDisABC DisABC GA DCPSO

Average (SD) Average (SD) Average (SD) Average (SD) Average (SD)

Iris 3 3 (0) 3 (0) 3 (0) 3 (0) 3 (0)
Ecoli 5 5.024 (0.388) 5.166 (0.379) 5.333 (0.606) 7.7 (1.600) 5.866 (0.776)
Wisconsin 2 2.033 (0.011) 2.033 (0.018) 2.033 (0.018) 2.133 (0.681) 2.066 (0.253)
Wine 3 3.10 (0.251) 3.3 (0.534) 3.4 (0.498) 4.3 (1.557) 3.9 (0.712)
Dermatology 6 6.043 (0.390) 5.56 (0.504) 5.533 (0.571) 6.966 (1.790) 6.033 (0.999)

To show the significance of improvement of the AC-MeanABC, Friedman test was performed
and the results are shown in Tab. 9. As shown clearly, the mean ranking value of AC-MeanABC
is higher than that of IDisABC, DisABC, DCPSO and GA. where the best value is the minimum
value and it’s represented in bold. Also, Fig. 4 represents the box whisker for the results of five
clustering algorithms as in Tab. 7.

Table 9: Mean ranks obtained by Friedman test for the five clustering algorithms outcomes
in Tab. 7

Variable Mean rank

(1) AC-MeanABC 1
(2) IDisABC 2
(3) DisABC 3
(4) DCPSO 4
(5) GA 5
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Figure 4: Box-whisker to present the outcomes of five clustering algorithms in Tab. 7

6.2.3 Natural Images
In this experiment, five natural images were obtained from the Berkeley1 segmentation

dataset [30,41] such as Lena, Jet plane, MorroBay, Mandril, and Pepper images. In this exper-
iment, the AC-MeanABC outcomes were compared with other related works such as discrete
binary artificial bee colony DisABC, GA based clustering algorithms, and improved discrete
binary of ABC called IDisABC [30] and dynamic clustering based PSO that is called DCPSO [35].
The parameter settings for AC-MeanABC algorithm were selected based on the same parameters
settings in [30], as in Tabs. 2 and 3.

Tabs. 10 and 11 illustrate these natural images, the VI index results, and the corresponding
cluster numbers from ground truth image (# AC). Tab. 10 shows that AC-MeanABC outperforms
other related works in minimizing the VI index in all cases. Tab. 11 shows the number of
clusters that are determined automatically using algorithm AC-MeanABC and other state-of-the-
art methods. Tab. 8 shows that AC-MeanABC-FCM outperforms other related works in finding
the optimal number of clusters for Lena, Jet plane, MorroBay, and Pepper images. In contrast,
the IDisABC approach outperforms AC-MeanABC and other approaches in finding the optimal
number of clusters for the Mandrill image, but AC-MeanABC-FCM and IDisABC are very close
in terms of the result of Mandrill image. Figs. 5a, 6a, 7a, 8a and 9a show the original image
of MorroBay, Lena, Mandrill, Jet plane and Pepper, where Figs. 5b, 6b, 7b, 8b and 9b show the
clustering images by AC-MeanABC of MorroBay, Lena, Mandrill, Jet plane and Pepper images.

Table 10: Natural image clustering outcomes of VI index

Images AC-MeanABC IDisABC DisABC GA DCPSO

Average (SD) Average (SD) Average (SD) Average (SD) Average (SD)

Lena 0.0662 (0.0107) 0.0982 (0.0118) 0.1032 (0.0141) 0.1395 (0.0259) 0.1126 (0.0130)
Jet 0.0810 (0.0098) 0.0922 (0.0209) 0.0959 (0.0305) 0.1517 (0.0595) 0.1366 (0.1183)
MorroBay 0.0577 (0.0090) 0.0789 (0.0093) 0.0875 (0.0125) 0.1268 (0.0395) 0.1053 (0.0339)
Mandrill 0.0920 (0.0095) 0.1043 (0,0109) 0.1045 (0,0111) 0.1419 (0.0324) 0.1077 (0,0115)
Pepper 0.0764 (0.0151) 0.1081 (0.0142) 0.1201 (0.0150) 0.1662 (0.0595) 0.1323 (0.0460)
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Table 11: Obtained number of clusters for natural image by clustering approaches

Images #AC AC-MeanABC IDisABC DisABC GA DCPSO

Average (SD) Average (SD) Average (SD) Average (SD) Average (SD)

Lena 6 5.989 (0.018) 5.9 (0.922) 5.666 (0.546) 7.1 (1.516) 6.695 (1.063)
Jet 6 6.000 (0.002) 5.733 (0.868) 5.5 (0.861) 6.733 (1.680) 6.033 (0.964)
MorroBay 4 4.158 (0.232) 4.333 (0.479) 4.333 (0.479) 4.621 (1.146) 4.333 (0.546)
Mandrill 6 5.950 (0.520) 5.966 (0.905) 6.166 (1.0199) 7.4 (1.652) 6.9 (1.471)
Pepper 7 6.979 (0.026) 6.733 (0.691) 6.566 (0.568) 7.466 (1.105) 7.333 (1.212)

Figure 5: (a) Original MorroBay and (b) segmented MorroBay by DC-MeanAB

Figure 6: (a) Original Lena and (b) segmented Lena by (AC-MeanABC)

In Tab. 12, the Friedman test was carried out to compare the performance between the
proposed algorithm and other related works. As shown, AC-MeanABC outperforms IDisABC,
DisABC, DCPSO and GA and the best value is presented in bold; the best value is considered
the minimum value of all clustering algorithms in Tab. 9. The box whisker for the results of five
clustering algorithms in Tab. 10 is displayed in Fig. 10.
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Figure 7: (a) Original mandrill and (b) segmented mandrill by (AC-MeanABC)

Figure 8: (a) Original jet and (b) segmented jet by (AC-MeanABC)

Figure 9: (a) Original pepper and (b) segmented pepper by (AC-MeanABC)



1590 CMC, 2021, vol.68, no.2

Table 12: Mean ranks obtained by Friedman test for the five clustering algorithms outcomes
in Tab. 10

Variable Mean rank

(1) AC-MeanABC 1
(2) IDisABC 2
(3) DisABC 3
(4) DCPSO 4
(5) GA 5

Figure 10: Box-whisker to present the outcomes of five clustering algorithms in Tab. 10

7 Conclusion

In this paper, the automatic fuzzy clustering based on the MeanABC search method called
AC-MeanABC was proposed to solve the challenges of determining the number of clusters
(region) and cluster centroids. AC-MeanABC clustering method used the capability of the Mean-
ABC algorithm to explore the search space in positive and negative directions to search for
the near-optimal number of clusters and centroids values. The experiments and results were
obtained using 11 benchmark datasets and 5 natural images. These experiments compared the AC-
MeanABC with other clustering methods such as iABC, ABC, AKCBCO, AKC-MEPSO, DCPG,
DCGA IDisABC, DisABC, DCPSO, and GA. In conclusion, the clustering results of the AC-
MeanABC are better than those of the state-of-the-art techniques in determining the optimal
number of clusters and the value of validity index VI.
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