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Abstract: Breast cancer (BCa) and prostate cancer (PCa) are the two most
common types of cancer. Various factors play a role in these cancers, and
discovering the most important ones might help patients live longer, better
lives. This study aims to determine the variables that most affect patient
survivability, and how the use of different machine learning algorithms can
assist in such predictions. The AURIA database was used, which contains
electronic healthcare records (EHRs) of 20,006 individual patients diagnosed
with either breast or prostate cancer in a particular region in Finland. In
total, there were 178 features for BCa and 143 for PCa. Six feature selection
algorithms were used to obtain the 21 most important variables for BCa, and
19 for PCa. These features were then used to predict patient survivability by
employing nine different machine learning algorithms. Seventy-five percent of
the dataset was used to train the models and 25% for testing. Cross-validation
was carried out using the StratifiedKfold technique to test the effectiveness of
the machine learning models. The support vector machine classifier yielded
the best ROC with an area under the curve (AUC) = 0.83, followed by the
KNeighborsClassifier with AUC = 0.82 for the BCa dataset. The two algo-
rithms that yielded the best results for PCa are the random forest classifier
and KNeighborsClassifier, both with AUC= 0.82. This study shows that not
all variables are decisive when predicting breast or prostate cancer patient
survivability. By narrowing down the input variables, healthcare professionals
were able to focus on the issues that most impact patients, and hence devise
better, more individualized care plans.

Keywords: Machine learning; EHRs; feature selection; breast cancer;
prostate cancer; survivability; Finland

1 Introduction

One in three people in Finland will develop cancer at some point during their lifetime [1].
Every year, about 30,000 people are diagnosed with cancer. However, only two-thirds will recover
from the disease [1]. The most common cancer in men in Finland is prostate cancer (PCa) [2].
In 2018, 5,016 new PCa cases were detected in Finland [3]; 28% of all new cancers in men.
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In the same year, 914 men died of PCa, with age-standardized mortality standing at 11.2 per
100,000. PCa patient mortality has remained relatively constant in recent years. By the age of 80,
a Finnish man has an 11.6% risk of developing and 1.6% risk of dying from prostate cancer. The
most substantial identified risk factors are age, ethnic background, hereditary susceptibility and
environmental factors. Approximately 2%–5% of prostate cancers relate to hereditary cancers, and
about 15%–20% are familial [4–6]. A twin Scandinavian study showed that environmental factors
play a more significant role in the development of PCa than hereditary factors [7]. Excessive
consumption of fat, meat and multivitamins may be associated with increased PCa risk [8,9].
Exercise has been found to reduce PCa risk [10]. Smoking, on the other hand, appears to increase
aggressive PCa risk and may also increase its progression [11].

The relative PCa survival rate one year after diagnosis is 98%: and after five years, 93%.
PCa prognosis has remained unchanged over the last ten years [3]. The 10-year survival forecast
for men with local, highly differentiated prostate cancer is the same regardless of treatment
(90%–94%). Treatments include active monitoring and, if necessary, radical treatments (surgery or
radiotherapy), conservative monitoring and, where needed, endocrine therapy [2].

The most common cancer in women in Finland is breast cancer (BCa). In 2018, 4,934 new
BCa cases were detected in Finland; 29.8% of all new cancers in women. In the same year, 873
women died of BCa, with age-standardized mortality standing at 12.2 per 100,000 [3]. BCa patient
mortality has remained relatively constant in recent years. By the age of 70, a Finnish woman
has an 8.52% risk of developing BCa. The relative BCa survival rate one year after diagnosis is
97.6%: and after five years, 91%. BCa prognosis has slightly improved over the last 15 years [3].
Among the identified risk factors are gender, age, family history and hereditary susceptibility,
ethnicity, pregnancy and breastfeeding history, weight, alcohol consumption and inactivity. The
twin Scandinavian study [7] mentioned above showed that environmental factors play a far more
significant role in BCa development than hereditary factors. Only 27% risk can explain hereditary
factors [7]. It is worth noting that male breast cancer accounted for just 0.6% of all Finnish BCa
in 2018 [3], and treatment protocol is mainly based on the principles for female BCa [12].

Different drugs are currently in use to treat BCa and PCa, and new ones are frequently being
clinically trialed. Such treatments include chemotherapy, radiotherapy, endocrine therapy, surgery
and, more recently, targeted therapy and immunotherapy. These treatments are administered in
combination with each other to cure or keep the disease at bay.

Previous studies have been conducted on predicting the risk of developing BCa and PCa.
However, they differ substantially with regard to the different type of information used to make
such predictions. In the case of BCa risk prediction, [13] machine learning (ML) models were
developed using Gail model [14] inputs only, and models using both Gail model inputs and addi-
tional personal health data relevant to BCa risk. Three out of six of the ML models performed
better when the additional personal health inputs were added for analysis, improving five-year
BCa risk prediction [13]. Another study assessed ML ensembles of preprocessing methods by
improving the biomarker performance for early BCa survival prediction [15]. The dataset used in
this study consisted of genetic data. It concluded that a voting classifier is one way of improving
single preprocessing methods. In [16], the authors developed an automated Ki67 scoring method to
identify and score the tumor regions using the highest proliferative rates. The authors stated that
automated Ki67 scores could contribute to models that predict BCa recurrence risk. As in [15],
genetic inputs, pathologic data and age were used to make predictions.
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In the case of PCa risk predictions, Sapre et al. [17] showed that microRNA profiling of urine
and plasma from radical prostatectomy could not predict if PCa is aggressive or slow-growing.
Besides RNA data, clinical and pathological data were used to train and test ML. The authors
of [18] added the PCa gene 3 biomarker to the Prostate Cancer Prevention Trial risk calculator
(PCPTRC) [19], thereby improving PCPTRC accuracy. Reference [20] is an updated version of
the PCPTRC calculator. A recent study in the USA on utilizing neighborhood socioeconomic
variables to predict time to PCa diagnosis using ML [21] showed that such data could be useful
for men with a high risk of developing PCa.

This paper presents the results of a study that included Electronic Healthcare Records (EHRs)
of breast and prostate cancer patients in a region in Southwest Finland. EHRs are the sys-
tematized collection of electronically-stored patient and population health information in digital
format. Information stored in such systems varies from demographic information to all types of
treatments and examinations that patients undergo throughout the course of their care. This infor-
mation usually lacks structure or order, and requires thorough data cleaning prior to conducting
any meaningful analysis. The social impact of analyzing such data is enormous. Understanding
the most important variables for a particular disease helps hospitals allocate resources, and also
helps healthcare professionals individualize care pathways for each patient. Patients thus benefit
from a better quality of life. This study aimed to determine the most critical variables impacting
BCa and PCa patient survivability, and how the use of ML models can aid prediction.

2 Materials and Methods

This paper complies with the GATHER statement [22].

2.1 Study Design
A retrospective cohort study was conducted using the EHRs of BCa and PCa patients treated

at the District of Southwest Finland Hospital, via the Turku Centre for Clinical Informatics
(TCCI). TCCI provided the Data Analytics Platform (DAP), a remote server where data was
accessed and analyzed via a secure shell (SSH) connection.

No ethical approval was required. Nonetheless, it was necessary to apply for authorization
to use the data in compliance with privacy and ethical regulations under Finnish law. This study
included anonymized patient data only.

Success Clinic Oy sponsored the database.

2.2 Materials
The BCa and PCa data was stored in a PostgreSQL database engine in 24 separate tables

according to treatment, or the department where the information was collected in the hospital.
Structured Query Language (SQL) was utilized to retrieve data for each treatment line (e.g.,
chemotherapy, radiotherapy, etc.) for both cancers separately and then each file was stored in CSV
format. This approach was selected because the data was unstructured and thorough data cleaning
and preprocessing conducted prior to analysis. In total, there were 20,006 individual patients aged
19–103, of whom 9,998 were female and 10,008 male. Of 20,006 patients, 9,922 were diagnosed
with prostate cancer and 10,113 with breast cancer; 115 were male, 86 of whom were diagnosed
with breast cancer only. The database contains information dating from January 2004 (when the
regional repository was initially created) until the end of March 2019.
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2.3 Data
The variables collected in this study were primarily based on previous research [23], a mixed-

method study was conducted aimed at understanding breast and prostate cancer patients’ care
journey from their perspective. The data in [23] was collected using qualitative methods and EHRs.
Hospitals, however, do not collect the kind of data retrieved through qualitative methods in their
electronic healthcare systems. An explanation of the type of data available and retrieved from the
TCCI is given below.

2.3.1 Demographic Data
Demographic data included the patient’s current age, age at diagnosis, date of birth, date of

death and years suffering from cancer from the first date of diagnosis. Although patient residence
details were collected as part of the study, they did not form part of the analysis.

2.3.2 Medical Data
Medical data included biopsy results: cancer type, grade, Gleason score, progesterone recep-

tor score, estrogen receptor score, HER2 receptor score, tumor size, lymph node involvement,
Prostate-Specific Antigen (PSA). Treatment lines included chemotherapy drugs, number of cycles,
chemotherapy start and finish date; the number of radiotherapy sessions, doses delivered, fractions
delivered, radiation treatment start and finish date; endocrine therapy drugs; targeted therapy
drugs; bisphosphonate drugs; comorbidities at the time of data collection.

The World Health Organization International Classification of Diseases (ICD) version 10 [24]
codes were employed for each disease. The main categories for BCa ICD10 codes were used such
as c50, c50.1, c50.2, c50.3, c50.4, c50.5, c50.6, c50.7, c50.8 and c50.9. This was done because
there were some inconsistencies when associating male breast cancer with male patients. Some
were stored as being diagnosed with female breast cancer. This variable was dropped for PCa as
there is only one ICD10 code–c61. Grade categories were grade 1, grade 2 and grade 3, and the
Gleason score was 6 to 10. There were 18 separate categories for tumor size and 15 for lymph
node involvement. Anatomical Therapeutic Chemical (ATC) Classification System codes were used
to code chemotherapy, endocrine therapy, targeted therapy and bisphosphonate drugs.

2.3.3 Lifestyle Data
Lifestyle data included smoking and alcohol consumption. Other information such as diet,

exercise, family history or female nulliparity [25] was not initially collected by hospitals, and is
therefore not included in this study. Participant demographic characteristics are shown in Tab. 1,
created using tableone [26], a Python library for creating patient population summary statistics.

2.4 Methods
Machine learning methods were employed for both feature selection and classification. Python

(version 3.5.2) [27] programming was used to preprocess and analyze data utilizing Python
libraries. Besides Python, SQL was used since data was stored in a PostgreSQL server. The main
libraries used during the preprocessing stage were Pandas and NumPy, both of which are open-
source libraries providing high-performance, easy-to-use data structures and data analysis tools
for scientific computing. Matplotlib and Seaborn open-source data visualization libraries were also
used. The study used the scikit-learn (sklearn) library [28] for machine learning analysis, and was
conducted on the server provided by TCCI.
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Table 1: Patient characteristics grouped according to gender

Missing Male Female

n 9881 9941
Age on diagnosis (mean (range)) 0 70.2 (19–101) 63.0 (20–103)
Current age∗ (mean (range)) 0 76.4 (25–107) 69.7 (20–115)
Diagnosis (ICD10) (n (%)) c61 0 9766 (98.8)

c50.4 29 (0.3) 4236 (42.6)
c50.9 17 (0.2) 1486 (14.9)
c50.2 8 (0.1) 1288 (13.0)
c50.5 5 (0.1) 827 (8.3)

Years suffering from cancer (mean (std)) 0 5.7 (4.4) 6.1 (4.7)
No. of comorbidities (mean (std)) 0 13.9 (11.0) 13.3 (10.9)
Residence (n (%)) TURKU 355 2787 (28.7) 3109 (31.8)

KAARINA 550 (5.7) 625 (6.4)
SALO 550 (5.7) 623 (6.4)
RAISIO 455 (4.7) 481 (4.9)
NAANTALI 339 (3.5) 370 (3.8)

∗Age when data was retrieved, March 2019.

Most of the variables were categorical. Hence one-hot encoding was utilized for encoding and
preparing data for ML analysis. This is due to the fact that machine learning models do not work
with categorical variables.

Train_test_split( ), a pre-defined method in the sklearn library, was employed to train and test
the models. 75% of the dataset was used for training the models and 25% for testing. The stratify
parameter was included to split the data in a stratified fashion using the desired variable to predict
survivability as class labels.

The effectiveness of nine machine learning classifiers was assessed when predicting the proba-
bilities that individuals were likely to survive or die within the first 15 years of diagnosis. The nine
classifier types were: logistic regression (LR), support vector machine (SVM), nearest neighbor,
naïve Bayes (NB), decision tree (DT), and random forest (RF). These machine learning models
were selected because each model has significant advantages, which could make it the best model
to predict survivability/mortality risk based on the inputs chosen during the feature selection stage.

Logistic regression classifies data by using maximum likelihood functions to predict the prob-
abilities of outcome classes [29] such as alive/dead, healthy/sick, etc. LRs are widely used because
they are simple and explicable. In order to model nonlinear relationships between variables with
logistic regression, the relationships must be found prior to training, or various transformations
of variables performed [30].

Support vector machines were first introduced by Cortes et al. [31]. Their objective is to
find a hyperplane in the N number feature space that maximizes the distance between points
corresponding to training dataset subjects in the output classes [32]. SVMs are generalizable to
different datasets and work well with high-dimensional data [29] and can accurately perform
linear and nonlinear classification. Nonlinear classification is performed using the kernel, which
maps inputs into high-dimensional feature spaces. However, SVMs require a lot of parameter
tuning [13,29,33].
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Nearest neighbor algorithms work by finding a preset number of training samples that are
closest in distance to the new point, and later predict the labels [34]. In k-nearest neighbor
(KNN) learning, the number of samples is a user-defined constant. By contrast, in radius-based
neighbor learning, the constant varies depending on the local density of points [33]. Despite their
simplicity, nearest neighbors have been successful in many classification and regression problems.
As a non-parametric method, it often manages to classify situations where the decision boundary
is highly irregular.

Naive Bayes models, unlike the previously described classifiers, are probabilistic classifiers [29]
based on the Bayes theorem. NB models generally require less training data and have fewer
parameters compared to other models such as SVMs etc. [35]. NB models are good at disregarding
noise or irrelevant inputs [35]. However, they consider that the input variables are independent,
which is not valid for most classification applications [29]. Despite this assumption, these models
have been successful in many complex problems [29].

Decision trees organize knowledge extracted from data in a recursive hierarchical structure
composed of nodes and branches [36]. DTs are non-parametric, supervised learning methods used
for both classification and regression, whose goal is to create a model that predicts the value
of a target feature by learning simple rules inferred from the input features. Besides nodes and
branches, DTs are made up of leaves, the last nodes being found at the bottom of the tree [32].
Some advantages of DTs are that they are simple to understand and interpret (trees can be
visualized), require scarce data preparation (no data normalization is needed), can handle both
numerical and categorical data, and the model can be validated by using statistical tests [33].
Besides all these positive aspects of DTs, particular care should be taken when working with them
as over-complex trees can be created that are poorly generalized [33]. DTs can also be unstable
when introducing small variations into data, which can be mitigated by using them within an
ensemble [33].

Random forest is a meta model that fits various decision tree classifiers into a number of sub-
samples on the dataset. RF uses averaging to improve predictive accuracy and control overfitting.
The sub-sample size is controlled by the max_sample parameter when the bootstrap is set to True
(default); otherwise, each tree uses the whole dataset. Individual DTs generally tend to have high
variance and overfit. RFs yield DTs and take an average of the predictions, which leads to some
errors being canceled out. RFs achieve reduced variance by combining diverse trees, sometimes
to the detriment of a slight increase in bias. In practice, variance reduction is often significant,
hence yielding a better overall model.

The LR, NB, DT, SVM, and KNN models were implemented using the Python scikit-
learn package (version 0.23.1) [28,33]. The “linear_model.LogisticRegression” function was used
for logistic regression, and “naive_bayes.GaussianNB” and “naive_bayes.BernoulliNB” for naive
Bayes. The “tree.DecisionTreeClassifier” function was used to create a decision tree, and “ensem-
ble.RandomForestClassifier” to create a random forest classifier. “svm.SVC” implementation
was applied with probability predictions enabled, and “svm.LinearSVC” for the support vector
machine. The “neighbors.KNeighborsClassifier” model was used for nearest neighbor, and a grid
search technique to extract the best parameters for each function.

Finally, all the features/variables used to train the machine learning models were scaled to be
centered around 0 and transformed to unit variance since the datasets had features on different
scales, e.g., height in meters and weight in kilograms. Rescaling variables is mandatory because
machine learning models assume that data is normally distributed. Also, doing so helps to train
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the models quickly and generalize more effectively [37]. StandardScaler was chosen to scale the
data since it is one of the most popular rescaling methods [37].

3 Results

This section is structured in two parts. The first explains feature selection, and the second
addresses the classification analysis performed in relation to the features selected from part one.

3.1 Feature Selection
Feature selection is the process of selecting a set of variables that are significant to the

analysis to be conducted. The objective of feature selection is manifold: (i) it provides a bet-
ter understanding of the underlying process generating data, (ii) faster and more cost-effective
predictors, and (iii) improves predictor prediction performance [38].

There are different techniques to select the relevant variables. The first technique employed
was recursive feature elimination (RFE), whose goal is to remove features step-by-step by using
an external estimator that assigns weights to features [33]. The estimator is trained on the initial
dataset, which contains all the features. Each feature’s importance is obtained via two attributes:
(i) coef_; or (ii) feature_importances_ [33]. The least important features are eliminated from the
current set of features recursively until the set number of features to be selected is reached. The
estimators used to perform RFE are logistic regression, stochastic gradient descent, random forest,
linear SVM and perceptron. Tab. 2 shows the estimators used in analysis and accuracy for each
number of features selected when predicting whether a patient will survive.

Table 2: Feature selection algorithms and accuracy score

Estimator Feature
selection

n_features_to_select/
max_features

Accuracy
breast (%)

Accuracy
prostate (%)

LogisticRegression(solver= ‘liblinear’) RFE 15 84.50 78.0
LogisticRegression(solver= ‘liblinear’) RFE 25 84.70 79.3
LogisticRegression(solver= ‘liblinear’) RFE 50 85.60 79.6
SGDClassifier( ) RFE 15 73.30 67.3
SGDClassifier( ) RFE 25 73.30 67.5
SGDClassifier( ) RFE 50 82.50 77.1
RandomForestClassifier( ) RFE 15 86.30 82.7
RandomForestClassifier( ) RFE 25 87.50 83.4
RandomForestClassifier( ) RFE 50 87.50 83.6
LinearSVC(C= 0.001, max_iter= 5000) RFE 15 84.20 79.4∗
LinearSVC(C= 0.001, max_iter= 5000) RFE 25 84.50 79.9∗
LinearSVC(C= 0.001, max_iter= 5000) RFE 50 85.20 80.6∗
Perceptron( ) RFE 15 73.30 61.2
Perceptron( ) RFE 25 73.30 61.2
Perceptron( ) RFE 50 74.90 64.5
∗The parameter C was set to 0.01 in the case of prostate cancer data.

Besides RFE, SelectFromModel with a Lasso estimator was used. SelectFromModel is a meta-
transformer used alongside an estimator. After fitting, the estimator has an attribute stating feature
importance, such as the coef_ or feature_importances_ attributes. In order to control the feature
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selection algorithms, the same parameters were used to set a limit on the number of features to
be selected, the n_features_to_select for RFE and max_features for SelectFromModel.

In order to verify the results obtained from RFE and the SelectFromModel algorithms, the
Random Forest Classifier and XGBoost [39] were used. Both these algorithms have a specific
attribute to select the best features. The feature_importances_ attribute was used for the Random
Forest Classifier and the plot_importance( ) [39,40] method for XGBoost with height set to 0.5 as
the parameter. XGBoost was employed on the basis of being an optimized distributed gradient
boosting library designed to be flexible, efficient, and portable [39]. It uses machine learning
algorithms under the Gradient Boosting framework as well as providing parallel tree boosting,
which has proven to be highly efficient at solving various problems.

The XGBoost results with the most important features and scores are shown in Fig. 1. In
total, 21 features were selected after running the XGBoost estimator for BCa data, and 15 features
for PCa data. The results from Random Forest are shown in Tab. 3. All features selected by the
algorithms are shown for both BCa and PCa.

Figure 1: Feature selection and importance extracted from XGBoost for (a) breast cancer and
(b) prostate cancer. Features for both databases are specific to the diseases, and indexes for each
feature are different, ex. f0 in the breast cancer dataset represents feature c50_diag_age, whereas
in prostate cancer, it represents c61_diag_age, etc.

Apart from the features shown in Tab. 3, there are six more features (total 21) that were
selected but not shown in the table: her2_neg, alcohol_no, alcohol_yes, L02BG04, tumor_size_1,
lymph_node_0. All features mentioned above had an F score of at least 1, also shown in Fig. 2.
All feature indexes refer to the features themselves when shown in Tabs. 3 and 4.

The final features selected for analysis are shown in Tab. 5. All the features are included that
were chosen by at least two estimators, which is shown in the “times” (how many estimators chose
the feature) columns for each cancer separately.
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Table 3: Features selected using different estimators for breast cancer

RandomForest XGBoost RFE-LR RFE-RF RFE-LSVC SFM-LVC

c50_diag_age years_cancer_all c50_diag_age c50_diag_age c50_diag_age years_cancer_all
years_cancer_all c50_diag_age years_cancer_all years_cancer_all years_cancer_all c50_diag_age
nr_comorbidities doses_delivered nr_comorbidities nr_comorbidities nr_comorbidities L02BG04
weight nr_comorbidities side_left height side_left nr_comorbidities
height height side_right weight side_right doses_delivered
er er alcohol_yes pr er L02BA03
pr L02BA03 no_smoking er alcohol_yes no_smoking
side_right no_smoking fractions_delivered alcohol_yes no_smoking alcohol_yes
side_left weight doses_delivered no_smoking doses_delivered c50_diag_c50.9
her2_neg cycles L01CA04 fractions_delivered L01CA04 tumor_size_1b
alcohol_no L01BC06 L02BA03 doses_delivered L02BA03 side_right
her2_pos L01CA04 L02BG04 cycles L02BG04 L01CA04
grade_1 nr_interv_tots nr_interv_tots L02BA03 c50_diag_c50.9 L01BC06
grade_2 side_right c50_diag_c50.9 L02BG04 tumor_size_1b alcohol_no
grade_3 pr tumor_size_1b nr_interv_tots tumor_size_1c side_left

Figure 2: ROC AUC for breast cancer
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Table 4: Features selected using different estimators for prostate cancer

RandomForest XGBoost RFE-LR RFE-RF RFE-LSVC SFM-LVC

c61_diag_age years_cancer_all c61_diag_age c61_diag_age c61_diag_age c61_diag_age
psa psa years_cancer_all years_cancer_all years_cancer_all years_cancer_all
years_cancer_all c61_diag_age nr_comorbidities nr_comorbidities nr_comorbidities gleason_7
nr_comorbidities nr_comorbidities psa height psa nr_comorbidities
weight weight gleason_6 weight gleason_6 no_smoking
height doses_delivered gleason_7 psa gleason_7 cycles
gleason_7 cycles no_smoking gleason_7 gleason_9 gleason_6
gleason_6 L02BX02 doses_delivered alcohol_yes no_smoking L02BX02
alcohol_yes nr_interv_tots cycles no_smoking doses_delivered L02BX03
has_quit height L01XX11 fractions_delivered cycles gleason_9
alcohol_no gleason_7 L02AE02 doses_delivered L02AE02 alcohol_yes
gleason_9 no_smoking L02AE04 cycles L02BX02 doses_delivered
gleason_8 fractions_delivered L02BX02 L02BX02 tumor_size_1c L02AE02
gleason_5 gleason_6 tumor_size_2a nr_interv_tots tumor_size_2a tumor_size_2c
gleason_10 L02AE02 tumor_size_2c metastasis_0 tumor_size_2c tumor_size_3

Table 5: Features selected for breast and prostate cancer data analysis

Breast Prostate

nr Features Times Features Times

1 c50_diag_age 6 c61_diag_age 6
2 years_cancer_all 6 gleason_7 6
3 doses_delivered 5 years_cancer_all 6
4 L02BA03 5 cycles 5
5 L02BG04 5 doses_delivered 5
6 alcohol_yes 5 gleason_6 5
7 side_right 5 nr_comorbidities 5
8 L01CA04 4 PSA 5
9 no_smoking 4 L02AE02 4
10 nr_comorbidities 4 L02BX02 4
11 side_left 4 no_smoking 4
12 er 3 alcohol_yes 3
13 pr 3 tumor_size_2c 3
14 alcohol_no 3 weight 3
15 height 3 fractions_delivered 2
16 tumor_size_1b 3 gleason_9 2
17 weight 3 height 2
18 c50_diag_c50.9 2 nr_interv_tots 2
19 cycles 2 tumor_size_2a 2
20 her2_neg 2
21 L01BC06 2
22 nr_interv_tots 2
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3.2 Classification Using Machine Learning
Nine different classification algorithms/estimators were selected for analysis, which was carried

out after having chosen the features via the feature selection process. All estimators have several
hyperparameters. A GridSearchCV was performed—an exhaustive search over specified parameter
values for an estimator—to obtain the best hyperparameters for each algorithm. All parameters
and values for each estimator are as follows.

1. LogisticRegression parameters:

a. ‘penalty’: [‘11,’ ‘l2,’ ‘elasticnet’],
b. ‘solver’: [‘lbfgs,’ ‘liblinear,’ ‘sag,’ ‘saga’],
c. ‘max_iter’: [1000, 3000, 5000]

2. LinearSVC and SVC parameters:
a. ‘max_iter’: [1000, 3000, 5000],
b. ‘C’: [0.001, 0.01, 0.1]

3. SGDClassifier parameters:

a. ‘loss’: [‘hinge,’ ‘log,’ ‘squared_hinge,’ ‘perceptron’],
b. ‘alpha’: [0.0001, 0.001, 0.01, 0.1],
c. ‘penalty’: [‘l1,’ ‘l2,’ ‘elasticnet’]

4. KNeighborsClassifier parameters:

a. ‘n_neighbors’: [3–6],
b. ‘algorithm’: [‘auto,’ ‘ball_tree,’ ‘kd_tree,’ ‘brute’]

5. BernoulliNB parameters:

a. ‘alpha’: [0.1, 0.2, 0.4, 0.6, 0.8, 1]

6. GaussianNB parameters: defaults
7. RandomForestClassifier and DecisionTreeClassifier parameters:

a. ‘max_depth’: [2–5],
b. ‘min_samples_leaf’: [0.1, 0.12, 0.14, 0.16, 0.18]

The best value for each hyperparameter is displayed below in Tab. 6 for each estimator
and disease:

Table 6: Selected best hyperparameters for each type of cancer

Estimator BCa parameters PCa parameter

LogisticRegression penalty= ‘l2’, solver= ‘lbfgs’,
max_iter= 5000

penalty= ‘l1’, solver= ‘liblinear’,
max_iter= 1000

LinearSVC C= 0.01, max_iter= 7000 C= 0.1, max_iter= 5000
SVC C= 0.1, max_iter= 3000 C= 0.1, max_iter= 3000
KNeighborsClassifier n_neighbors= 6, algorithm= ‘ball_tree’ n_neighbors= 6, algorithm= ‘brute’
SGDClassifier alpha= 0.001, loss= ‘log’ alpha= 0.01, loss= ‘log’, penalty= ‘l2’
BernoulliNB alpha= 0.1 alpha= 0.2
GaussianNB Default values Default values
RandomForestClassifier min_samples_leaf = 0.1, max_depth= 4 min_samples_leaf = 0.1, max_depth= 4
DecisionTreeClassifier min_samples_leaf = 0.1, max_depth= 4 min_samples_leaf = 0.1, max_depth= 5
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The Receiver Operating Characteristic (ROC) and AUC metric were used to assess classifier
quality. The ROC curve features a true positive rate on the Y-axis and a false positive rate on the
X-axis, meaning that the top left corner of the plot is the “ideal” point (a zero false positive rate
and a one true positive rate) [41]. Although the “ideal point” is not realistic, it usually indicates
that larger AUC is preferable. The ROC curve’s “steepness” is also essential since it is ideal for
maximizing the true positive rate while minimizing the false positive rate.

Cross-validation was performed for each estimator using scikit-learn StratifiedKFold with the
default value of the number of splits set to 5 (5-fold cross-validation). The ROC AUC curve
for each estimator with cross-validation for breast cancer is shown in Fig. 2 and in Fig. 3 for
prostate cancer.

Figure 3: ROC AUC for prostate cancer

It can be clearly seen that the support vector machine classifier achieved the best ROC
AUC curve for the breast cancer dataset with an area under the curve = 0.83± 0.01, followed
by KNeighborsClassifier with AUC = 0.82± 0.01. Whereas, for the prostate cancer dataset, the
random forest classifier and KNeighborsClassifier had the best ROC, both yielding AUC =
0.82± 0.01.

Conversely, the worst performances for the breast cancer dataset were identified by the fol-
lowing classifiers: Bernoulli Naïve Bayes with ROC AUC = 0.71 ± 0.02, LinearSVC with ROC
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AUC= 0.72± 0.01, and LogisticRegression with ROC AUC = 0.73± 0.01. These same classifiers
also performed poorly on the prostate cancer dataset, with ROC AUC= 0.64± 0.01 for Bernoulli
Naïve Bayes, 0.66 ± 0.01 for LinearSVC, and 0.67 ± 0.01 for LogisticRegression. In general,
Decision Trees, Random Forest and Nearest Neighbors performed very well on both datasets with
ROC AUC above 0.80.

In addition, ensemble learning was performed using bagging and voting with cross-validation.
BaggingClassifier was used for bagging, and VotingClassifier for voting. In the case of Bag-
gingClassifier, the number of trees was set to 500, and KFold cross-validator was used for
cross-validation. The ROC-AUC curve for the breast cancer dataset is shown in Fig. 4, and for
the prostate cancer dataset in Fig. 5.

As in the previous cross-validation analysis, the best results for BaggingClassifier, in the case
of the breast cancer dataset, were yielded by KNeighborsClassifier with a ROC AUC score= 0.94,
followed by a ROC AUC score = 0.91 for SVC. The worst performers were BernoulliNB and
DecisionTreeClassifier, both with a ROC AUC score= 0.80. Similarly, in the bagging analysis for
the prostate cancer dataset, the best classifiers were KNeighborsClassifier and SVC with ROC
AUC scores = 0.92 and 0.88, respectively. Finally, the worst classifiers were DecisionTree and
GaussianNB, with ROC AUC scores= 0.80 and 0.82, respectively.

Figure 4: BaggingClassifier for breast cancer dataset
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Figure 5: BaggingClassifier for prostate cancer dataset

3.3 Comparing Machine Learning Models
The accuracy score, precision, recall and F1 score were selected in the training and test sets

in order to compare how each model scored when predicting each patient’s survivability. Since the
problem was a binary classification problem, the results for both classes are presented; the first
class, class 0, being patients still alive, and the second, class 1, those who have died. Tab. 7 shows
the results for the breast cancer dataset and Tab. 8 for the prostate cancer dataset. These results
were obtained by using the classification_report imported from the sklearn library metrics module.

In addition, the selected models were trained and tested using the voting technique, with
and without data standardization. It was noted that when data standardization techniques were
employed such as StandardScaler( ), better results were obtained on all counts for the BCa dataset.
However, this was not the case for the PCa dataset. Recall in class 1 and precision in class 2 are
slightly worse, but the others either remain unchanged, such as the accuracy scores and F1 score
in class 1, or are marginally better.

In general, the algorithms performed better on the breast cancer dataset compared to prostate
cancer. One reason could be dataset size; the BCa dataset is slightly larger and more balanced than
the PCa dataset. Another reason could be the features. Despite using feature selection algorithms
to select the most appropriate variables, other features that were omitted may improve the results.
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Table 7: Comparison of machine learning models results for breast cancer dataset

Estimator Accuracy
train

Accuracy
test

Precision
class 0

Recall
class 0

F1-score
class 0

Precision
class 1

Recall
class 1

F1-score
class 1

LogisticRegression 0.84 0.85 0.88 0.92 0.90 0.75 0.65 0.69
LinearSVC 0.84 0.85 0.88 0.92 0.90 0.75 0.64 0.69
SVC 0.89 0.87 0.89 0.93 0.91 0.79 0.69 0.74
KNN 0.89 0.84 0.87 0.91 0.89 0.72 0.62 0.67
SGDClassifier 0.84 0.84 0.87 0.93 0.90 0.75 0.62 0.68
BernoulliNB 0.75 0.74 0.86 0.77 0.82 0.52 0.66 0.58
GaussianNB 0.80 0.79 0.82 0.92 0.87 0.67 0.43 0.52
RandomForestClassifier 0.81 0.81 0.80 0.99 0.88 0.89 0.31 0.46
DecisionTreeClassifier 0.81 0.79 0.80 0.95 0.87 0.73 0.37 0.49
VotingClassifier∗ 0.83 0.83 0.84 0.95 0.89 0.79 0.49 0.60
VotingClassifier∗∗ 0.85 0.85 0.86 0.95 0.90 0.80 0.58 0.67
∗Non-standardized data.
∗∗Standardized data.

Table 8: Comparison of machine learning models results for prostate cancer dataset

Estimator Accuracy
train

Accuracy
Test

Precision
class 0

Recall
class 0

F1-score
class 0

Precision
class 1

Recall
class 1

F1-score
class 1

LogisticRegression 0.79 0.78 0.80 0.86 0.83 0.75 0.66 0.70
LinearSVC 0.79 0.79 0.80 0.87 0.83 0.76 0.67 0.71
SVC 0.80 0.78 0.78 0.89 0.83 0.78 0.61 0.69
KNN 0.83 0.78 0.78 0.88 0.83 0.77 0.61 0.68
SGDClassifier 0.79 0.78 0.79 0.86 0.83 0.75 0.65 0.70
BernoulliNB 0.77 0.77 0.81 0.83 0.82 0.72 0.69 0.70
GaussianNB 0.78 0.78 0.76 0.92 0.83 0.81 0.55 0.66
RandomForestClassifier 0.75 0.75 0.74 0.93 0.82 0.82 0.47 0.60
DecisionTreeClassifier 0.75 0.74 0.80 0.78 0.79 0.67 0.69 0.68
VotingClassifier∗ 0.80 0.80 0.78 0.94 0.85 0.86 0.57 0.69
VotingClassifier∗∗ 0.80 0.80 0.80 0.90 0.85 0.80 0.64 0.71
∗Non-standardized data.
∗∗Standardized data.

4 Discussions

There are multiple variables for each of these two types of cancer. This study sought to
analyze which variables were of most importance when predicting patient survivability, or the
mortality risk, within the first 15 years of cancer diagnosis. In total, 179 features were included
on the breast cancer dataset and 144 on the prostate cancer dataset.

Valid results were obtained by only selecting 15 features after running different feature selec-
tion algorithms with different numbers of selected features. In other words, the difference in
accuracy achieved by including all 179 features or just 15 features was insignificant.

The selected features are some of the main risk factors of these diseases. In both cancers,
it is clear that age at diagnosis and years suffering from cancer are two of the main features
that predict whether a patient will survive. Among the selected features, there are few relating
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to medications and lifestyle (see Tab. 9). Medications for BCa include L02BA03, L02BG04,
L01CA04 and L01BC06; and L02AE02 and L02BX02 for PCa.

Table 9: Generic names and ATC codes for medication selected during the feature selection
process

ATC code Generic name Description

L01BC06 Capecitabine Chemotherapy drug
L01CA04 Vinorelbine Chemotherapy drug
L02BA03 Fulvestrant Endocrine therapy
L02BG04 Letrozole Endocrine therapy
L02AE02 Leuprorelin Endocrine therapy
L02BX02 Degarelix Endocrine therapy

When attempting to predict the progression of these cancers, it is difficult to make com-
parisons between studies. This is due to the lack of large, publicly available datasets, numbers
of records and number of variables the datasets contain. Moreover, there is a sheer number of
hypotheses that these studies test. This can even be seen in the feature selection algorithms used by
various authors. Earlier studies used the F-Score to reduce the number of variables [42,43], with
more recent studies moving toward more sophisticated algorithms such as random forest [44,45]
and genetic algorithms [46].

5 Limitations and Future Work

The database is very comprehensive and covers a wealth of data. This study has endeavored
to include as much data as possible in its analytical approach. Nevertheless, laboratory results
have not been included. The reason being that blood tests are routinely performed, and results
vary depending on the treatment the patient is undergoing. Analyzing the averages of such results
would fail to yield any meaningful results. However, other ways of incorporating this information
into the analysis are being investigated. Another analysis method currently being developed is to
conduct a similar study with different deep learning models and compare these results with the
results obtained from the machine learning analysis.

Also, it should be noted that these results are specific to this Finnish population. Each country
has its own guidelines and approved medications for certain diseases, so training the same models
on a different dataset could deliver different results.
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