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Abstract:LightweightCryptography (LWC) iswidely used to provide integrity,
secrecy and authentication for the sensitive applications. However, the LWC is
vulnerable to various constraints such as high-power consumption, time con-
sumption, and hardware utilization and susceptible to the malicious attackers.
In order to overcome this, a lightweight block cipher namely PRESENT
architecture is proposed to provide the security against malicious attacks.
The True Random Number Generator-Pseudo Random Number Generator
(TRNG-PRNG) based key generation is proposed to generate the unpre-
dictable keys, being highly difficult to predict by the hackers. Moreover,
the hardware utilization of PRESENT architecture is optimized using the
Dual port Read Only Memory (DROM). The proposed PRESENT-TRNG-
PRNG architecture supports the 64-bit input with 80-bit of key value.
The performance of the PRESENT-TRNG-PRNG architecture is evaluated
by means of number of slice registers, flip flops, number of slices Look
Up Table (LUT), number of logical elements, slices, bonded input/output
block (IOB), frequency, power and delay. The input retrieval performances
analyzed in this PRESENT-TRNG-PRNG architecture are Peak Signal to
Noise Ratio (PSNR), Structural Similarity Index (SSIM) and Mean-Square
Error (MSE). The PRESENT-TRNG-PRNG architecture is compared with
three different existing PRESENT architectures such as PRESENT On-The-
Fly (PERSENT-OTF), PRESENT Self-Test Structure (PRESENT-STS) and
PRESENT-Round Keys (PRESENT-RK). The operating frequency of the
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PRESENT-TRNG-PRNG is 612.208 MHz for Virtex 5, which is high as
compared to the PRESENT-RK.

Keywords: Dual port read only memory; hardware utilization; lightweight
cryptography; malicious attackers; present block cipher; pseudo random
number generator; true random number generator

1 Introduction

Lightweight Cryptography (LWC) plays a vital role to obtain the higher security with low
energy and low area in different sensitive applications such as implantable and wearable medical
devices, radio-frequency identification tags, Wireless Nano sensors, and smart cards and secure
embedded systems [1–3]. The symmetric cryptography is divided into two types such as block
and stream ciphers. The block cipher processes the one input block at a time and produces
the output block for each input block, but the stream cipher frequently processes the input
elements and generates the one output element at a time [4,5]. FPGA is considered as a growing
design platform to implement the cryptographic algorithms because of its in-house security and
reconfigurability [6].

Generally, the Advanced Encryption Standard (AES) is widespread block cipher and funda-
mental for many security systems [7]. But AES used in the high-performance processors is not
suitable in resource-constrained platforms because of its inadequate area and energy/power [8].
Therefore, the better tradeoff between the security, power, area and speed is obtained by design-
ing the lightweight block cipher [9]. Some of the examples of the lightweight ciphers are the
STES [10], SEED [11], ANU [12], KLEIN [13], PRESENT [14], and KASUMI [15] and so on.
From the different lightweight cipher, PRESENT block cipher is selected as an efficient algo-
rithm due to its hardware efficiency and it also standardized by ISO/IEC 29192-2. However, the
hardware failures are considered as the natural fault in the implementation of Very-Large-Scale
Integration (VLSI). This natural fault increases the sensitivity and creates the malicious attacks
over the cryptographic hardware and embedded systems [16]. The conventional LWC method uses
the same type of generators and identical keys to accomplish both the encryption and decryption
process that leads susceptible to the attacks [17].

The major contributions of this research paper are given as follows:

• The PRESENT architecture improves the robustness against the malicious attackers by
random key generation using TRNG-PRNG module and two stage security is used during
the encryption process.

• In PRESENT architecture, the key value from the TRNG-PRNG module is generated for
each clock and plaintext. Therefore, the identification of key value by the unauthenticated
users (i.e., malicious attackers) is difficult during the encryption/decryption process.

• A DROM is utilized to minimize the number of logical elements used in the PRESENT
architecture. The DROM used in the PRESENT architecture accomplishes the operation of
Substitution box (S-box).

The overall organization of the paper is: The literature survey related to existing PRESENT
architecture is described in Section 2. The problem statement found from the literature survey
along with solution is described in Section 3. Section 4 describes the PRESENT architecture by
using key scheduling approach and TRNG-PRNG module. The results and discussion of the
PRESENT-TRNG-PRNG architecture is presented in Section 5. Finally, the conclusion is made
in Section 6.
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2 Literature Survey

The literature survey regarding the recent PRESENT block cipher is described along its
advantages and limitations in this section.

Pandey et al. [18] implemented the PRESENT lightweight block cipher algorithm to accom-
plish the encryption and decryption processes. The developed PRESENT architecture processed
64-bit input value along with the 80/128 bit of key length. Additionally, the dynamic keys were
provided with the OTF architecture to compute the intermediate key. Next, the generated inter-
mediate keys were used to accomplish the encryption/decryption operation. The iterative method
considered in the decryption is used to achieve the better tradeoff among time and area. The total
power consumption of the PRESENT architecture was high at low frequency, when processed
with high number of key bits (128 bit).

De Cnudde et al. [19] developed the evaluation of PRESENT block cipher under two different
physical attacks such as Side-Channel Analysis (SCA) and fault attacks (FAs). The first order
implementation was used to provide the security against the side-channel. Next, the Private
Circuits II is used to provide the security against the FA. The leakage detection test was used
to analyze the side channel evaluation. But, the Private Circuits II used for FA resistance in the
PRESENT block cipher was expensive.

Azari et al. [20] implemented the PRESENT Cipher model that incorporated both encryption
and decryption process. The encryption and decryption process were accomplished by using
80/128-bit key to obtain the security for 64-bit input value. The plain text of 64 bits processing
requires 16 cycles to load the data during encryption process. Here, the PRESENT cipher obtains
a higher throughput based on the effective encryption and decryption process. However, the
PRESENT cipher used high number of S-boxes which increased the hardware utilization.

Rashidi [21] presented the two different low-cost and high-throughput block ciphers such
as HIGHT and PRESENT to improve the security. Since, the modulo 28 was one of the
complex blocks in the HIGHT algorithm. Next, the parallel prefix adders such as Sklansky, Han–
Carlson, Kogge–Stone and Ladner–Fischer were used to design the modular adder. Moreover, the
PRESENT cipher was supported by two key lengths such as 80-bit and 128-bit. The Karnaugh
mapping was used to reduce the amount of logic gates in the S-box and critical path delay.
But, the computation time was high and throughput was less when the unroll factor is high in
block ciphers.

Lara-Nino et al. [22] developed the standardized lightweight cipher namely PRESENT to
overcome the security issues caused at the extremely constrained environments. Moreover, the data
in the registers were moved to the right that used to reduce the MUX size. The PRESENT
architecture used two different alternatives to generate the RK of 80 bit and 128 bit. Since, the 80
bit and 128 bit input keys were generated using 20 bit registers and 32 bit registers respectively.
The key given to the PRESENT architecture was manually generated by the key generator module
and it can be easily predicted by hackers.

3 Problem Statement

The problems obtained from the existing literature survey along with the solution by the
PRESENT-TRNG-PRNG architecture is as follows.

The STS based PRESENT architecture requires an additional comparator to generate the
output [19]. Next, the conventional PRESENT architecture uses high amount of S-box operation
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to accomplish the encryption process [20]. The unroll factor considered in the loop unrolling
method also affects the performance of the hardware utilization [21]. The aforementioned con-
straints increase the number of logical elements used in the PRESENT architecture. Since,
the increment of hardware utilization leads to affect the operating frequency and power of
the overall PRESENT architecture. The manual key generation accomplished in the PRESENT
architecture [22] generates the same key value for each clock cycle. The generation of same clock
cycle for each round can be easily predicted by the malicious attackers.

Solution:

The logical components of PRESENT architecture are minimized by using the DROM.
In this PRESENT architecture, 8 DROM is used instead of 16 S-boxes of the conventional
PRESENT architecture. The DROM used in the PRESENT-TRNG-PRNG accomplishes the
same process which is performed by the S-box. Moreover, the security of the PRESENT-
TRNG-PRNG architecture is improved by using two different approaches: (1) two stage security
approach and (2) unpredictable key generation using TRNG-PRNG module. The robustness of
the PRESENT architecture is improved by generating the random key for each clock cycle and
each plaintext.

4 PRESENT-TRNG-PRNG Architecture

In the PRESENT-TRNG-PRNG architecture, the logical elements are optimized by using the
DROM to accomplish the encryption/decryption process. The PRESENT architecture is designed
to support the 64-bit input value with 80-bit key length. Here, the random key generation is
carried out by using the TRNG-PRNG module. The randomness of the key from the TRNG-
PRNG module is improved using the two-stage security enabled during encryption process. The
block diagram of the PRESENT-TRNG-PRNG architecture is shown in Fig. 1.

Figure 1: Block diagram of the PRESENT-TRNG-PRNG architecture
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The overall working process of the PRESENT-TRNG-PRNG architecture are given
as follows:

1. At first, the input image (P) is read from the MATLAB R2018a software and the image
pixels are converted into binary format.

2. Next, the binary value of the image pixels is written in the text format using MATLAB.
3. The TRNG-PRNG module is used to generate the random key value to accomplish

the encryption operation. The decryption process is generally the inverse process of the
encryption operation.

4. The Verilog (Modelsim) is used to process both the encryption/decryption process. More-
over, the output of encryption and decryption is written in the text format using the Verilog
(Modelsim).

5. Then the text files are used in the MATLAB to convert the encrypted and decrypted binary
value into the image.

4.1 64-Bit Path Encryption
The overall architecture of the path encryption for 64-bit data is shown in Fig. 2. At first, the

one pixel from the image is converted into 8 bits and total plain text of 64-bit data (PT) is kept
in the register. The plaintext stored in the register is denoted as Dreg. On the other hand, the
TRNG-PRNG module generates an appropriate key to accomplish the encryption operation over
the 64-bit value of plaintext. The conventional PRESENT architecture manually generates the key
values which are subjected to predict by the hackers. The main objective of using TRNG-PRNG
module in PRESENT architecture is to obtain high security level by generating the random key
value for each pixel at every clock cycle.

Figure 2: Architecture of 64-bit path encryption
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The 80 bit of key value (kdat1) generated from the TRNG-PRNG module is stored in the
register kreg. From the 80 bit of kdat1, the MSB of 64 bit data (kdat2) is selected and then it is
XORed with the 64 bit of PT value as shown in Eq. (1).

dat1=XOR (PT , kdat2) (1)

where, the dat1 represents the XOR value between the plaintext and MSB of 64-bit data from the
key value generated by TRNG-PRNG module.

Next, the XORed data is truncated into 16 four bit values which are shown in Eq. (2).

Tdat= {dat1 [0 : 3] , dat1 [4 : 7] , . . . , dat1 [56 : 59] , dat1 [60 : 63]} (2)

From the 16 sets of 4-bit values, each 2 sets of 4-bit values are given into the DROM which
processes the operation of Substitution box (S-box). For example, the dat1 [0 : 3] and dat1 [4 : 7]
are given to the DROM1 to process the S-box operation. Totally, there are eight DROMs are used
to produce the 64-bit value based on the S-box operation shown in the Tab. 1. The conventional
PRESENT architecture uses the 16 different S-box operation that leads to increase the hardware
utilization and increases the delay while processing the input plain text. Hence, the PRESENT-
TRNG-PRNG architecture uses only 8 DROMs to process the S-box operation which minimizes
the number of logical elements used in the encryption process. The reduction in logical elements
minimizes the hardware utilization and increases the speed of the encryption process.

Table 1: Operation of S-box

x 0 1 2 3 4 5 6 7 8 9 A B C D E F

S[x] C 5 6 B 9 0 A D 3 E F 8 4 7 1 2

The value obtained from the DROM is represented as Sdat which is obtained through the S-
box operation. The value from the 8 DROMs are concatenated together and generated one 64-bit
value i.e., dat2 which is shown in the Eq. (3).

dat2= {Sdat [0 : 3]‖Sdat [4 : 7] , . . . , Sdat [56 : 59]‖Sdat [60 : 63]} (3)

Then the concatenated 64-bit value is processed through the permutation layer (P-layer). This
P-layer used to move the bit value in new bit position as shown in the Tab. 2. Moreover, the value
from the P-layer is represented as dat3 and this updated dat3 is considered instead of plaintext
for next 31 rounds.

Table 2: Operation of P-layer

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

P(i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51
i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P(i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55
i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P(i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59
i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P(i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63
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On the other hand, the 80-bit key value of processed under the 61 left shift operation as
shown in the Eq. (4).

kdat2= {kdat1 [18 : 0] , kdat1 [79 : 19]} (4)

Next, the kdat2 is divided into four sets such as kdat2 [79 : 76] , kdat2 [75 : 20] , kdat2 [19 : 15],
and kdat2 [14 : 0], to obtain the first stage security. The 56-bit and 15-bit of the kdat2 [75 : 20]
and kdat2 [19 : 15] are directly taken while updating the key value. Additionally, kdat2 [79 : 20] and
kdat2 [19 : 15] are processed through the S-box and add counter to update the key value. The
aforementioned steps are illustrated in the following Eq. (5).

kdat3 [14 : 0]= kdat2 [14 : 0]

kdat3 [19 : 15]=XOR (kdat [19 : 15] , RC)

kdat3 [75 : 20]= kdat2 [75 : 20]

kdat3 [79 : 76]= Sbox (kdat2 [79 : 76]) (5)

where, RC represents the round counter that varies from 0 to 31 for each round. The updated
key values such as kdat3 [79 : 76] , kdat3 [75 : 20] , kdat3 [19 : 15] and kdat3 [14 : 0] are concatenated
to generate a kdat4 which is shown in the Eq. (6).

kdat4= {kdat3 [79 : 76]‖kdat3 [75 : 20]‖kdat3 [19 : 15]‖}kdat3 [14 : 0] (6)

This updated kdat4 is given to the key scheduling process to accomplish the second stage
security. Both the first and second stage security are used to improve the randomness of the
key values.

4.2 Key Scheduling Process
The architecture of key scheduling used in the 64-bit path encryption is shown in Fig. 3.

This key scheduling is processed for the next 31 rounds to improve the security of the plaintext
against malicious attackers. The 80 bit value of kdat4 is truncated into four 20 bit values such
as K1, K2, K3, and K4. Subsequently, these four 20-bit values are processed through the rotation
operation in which the bit position is changed as shown in the Tab. 3.

The rotation operation provides four different 20-bit values such as R1, R2, R3, and R4. Next,
the truncation operation is processed for each 20-bit value obtained through the rotation. This
truncation operation provides five 4-bit values for each 20-bit value. Totally, 20 four-bit values i.e.,
{TR1, TR2, . . . , TR20} are acquired from the four 20-bit value. Moreover, the security is effectively
improved by processing the 20 four-bit values through the DROM. Here, each DROM processes
two 4-bit value, totally 10 DROMs are utilized in the key scheduling process. The DROM used to
perform the operation of the S-box as shown in Tab. 1. Finally, the DROM provides 20 four-bit
values such as i.e., {Y1, Y2, . . . , Y20}. This Y1, Y2, . . . , Y20 is given to the rotation operation
that generates the 80-bit value i.e., kdat5.

After completing the 32 rounds, the PRESENT architecture provides the encrypted cipher text
that is denoted as CT . Moreover, the decrypted value is obtained based on the inverse process
of PRESENT decryption. Here the reverse architecture of PRSENT module is used during the
decryption process. The process of key generation using the TRNG-PRNG module is explained
in the following section.
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4.3 Key Generation Using TRNG-PRNGModule
In this TRNG-PRNG module, the key value is generated for each clock cycle as well as

for each plain text to improve the security. The overall architecture of 80-bit key generation
using TRNG-PRNG module is illustrated in Fig. 4. Generally, the TRNG is designed by the
digital circuits to produce the true randomness using the unpredictable effects. Here the TRNG is
generated by using the $random function. The sequence generated by the TRNG is mainly based
on two essential features such as uniformity and statistical independence among the actual symbol
and the numbers generated in previous rounds. Moreover, the overall circuit design being used to
generate 80-bit key is referred as PRNG.

Figure 3: Architecture of key sampling process

Table 3: Operation of rotation

K1(j) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

R1(j) 14 10 9 13 16 11 8 2 17 5 18 3 15 1 19 4 7 12 0 6

The steps processed in the key generation using TRNG-PRNG module are given
as follows:

a. Initially, the TRNG-PRNG module generate the 80-bit true random number that is rep-
resented as RN0. Next, this 80-bit RN0 value is truncated into four 20 bits such as
T1, T2, T3, and T4 which is shown in Eq. (7).
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T1=RN0 [0 : 19]

T2=RN0 [20 : 39]

T3=RN0 [40 : 59]

T4=RN0 [60 : 79] (7)

Figure 4: Architecture of TRNG-PRNG module

b. The pair of truncated values such as T1 − T2 and T3 − T4 is processed under MUX
operation. The output from the MUX is operated using the selection line and it is shown
in Eq. (8).

M1=MUX (T1, T2)

M2=MUX (T3, T4) (8)

where, M1 and M2 represents the MUX operation value between the pairs of T1−T2 and T3−
T4 respectively.
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c. The values from the MUX processes M1 and M2 are XORed with the 20bit values of
the T1 and T4 respectively. The XOR operation between the pairs of M1−T1 and M2−
T4 are denoted as X1 and X2 respectively as shown in Eq. (9). For example, the XOR
operation between the M1−T1 pair is shown in Tab. 4.

X1=XOR (M1, T1)

X2=XOR (M2, T4) (9)

Table 4: Sample XOR operation for M1−T1

M1 T1 X1

0 0 0
0 1 1
1 0 1
1 1 0

d. In this key generation process, one more TRNG is used to generate four 20-bit values such
as RN1, RN2, RN3, and RN4. This structure uses 4 different adders to sum the different
pair values such as X1−RN1,M1−RN2, X2−RN3 and M2−RN4 as shown in Eq. (10).

A1=X1+RN1

A2=M1+RN2

A3=X2+RN3

A4=M2+RN4 (10)

where, A1, A2, A3, and A4 are the values obtained through the addition process.

e. The values of A1 − A2 and A3 − A4 are processed under XNOR operation, once the
addition is completed. Eq. (11) shows the process of XNOR operation and sample XNOR
operation between the pair of A1−A2 is shown in Tab. 5.

X3=XNOR (A1,A2)

X4=XNOR (A3,A4) (11)

where, X3 andX4 are the XNOR values between the A1−A2 and A3−A4 pair respectively.

Table 5: Sample XNOR operation for A1−A2

A1 A2 X3

0 0 1
0 1 0
1 0 0
1 1 1

f. One more MUX operation is carried out using 4 different inputs such as A1, X3, A4, and
X4. The output (M3) from the MUX operation is mainly defined based on the counter
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value. For instance, the MUX gives A1 as output when the counter value is 0. Similarly,
the MUX provides the output of X3, A4 and X4, when the counter value is 1, 2 and 3
respectively.

g. Finally, the concatenation operation between the X3,M3, X4 and A4 is carried out to
generate the 80 bit key value i.e., kdat1=X3||M3||X4||A4. This kdat1 of 80-bit value from
the TRNG-PRNG module is given as input to the encryption process.

The optimization of hardware components using DROM leads to obtain the high operating
frequency and less area utilization while designing the PRESENT architecture. Moreover, the
generation of key for each round and each plaintext improves the robustness of the encrypted
cipher text against attackers. Therefore, it is difficult to predict the original plain text without
knowing key value generated from the TRNG-PRNG module.

5 Results and Discussion

The results and discussion of the TRNG-PRNG based PRESENT architecture is described in
this section. The implementation of the PRESENT architecture along with key generation module
i.e., TRNG-PRNG module is carried out using the Xilinx ISE 14.2 software. This TRNG-PRNG
based PRESENT architecture is designed using the very high speed integrated circuit hardware
description language and ModelSim simulator is used to perform the functional simulations.
Moreover, the MATLAB R2018a software is used to convert the image file into txt file. In
PRESENT architecture, the TRNG-PRNG module is used to generate the key to accomplish
the encryption/decryption process. The developed PRESENT architecture supports the 80-bit key
value for 64-bit input.

5.1 Performance Analysis of PRESENT-TRNG-PRNG Architecture for Different FPGA Devices
The PRESENT-TRNG-PRNG architecture is developed for 64-bit path encryption using

the 80-bit key value. The 64-bit path encryption using PRESENT-TRNG-PRNG architecture is
analyzed in six different Xilinx FPGA devices such as Spartan 6, Virtex 4, and Virtex 5. The
sample input image considered for 64-bit path encryption is “monarch.png” highlighted in Fig. 5.
Next, this sample image is converted as gray scale image and it is converted into 128× 128 as
shown in Fig. 6. The input image sizes are decided by the user and it is not stable.

Figure 5: Input image
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Figure 6: Gray image

Figure 7: Binary format of gray scale image
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The gray scale input image shown in the Fig. 6 contains totally 16384 pixels. Additionally, the
gray scale image is converted into binary format using the dec2bin function. The binary format
of the image is shown in Fig. 7 and this binary value is stored in the memory of the FPGA
processor. The histogram of the input image obtained using imhist function is shown in the Fig. 8.
Next, the binary values of the sample image are divided into 64-bits and it is given as input to
the encryption process. On the other hand, the TRNG-PRNG module generates the efficient key
value of 80-bit that used to encrypt the input plain text.

Figure 8: Histogram for input image

Fig. 9 shows the simulation waveform obtained from the ModelSim simulator. The control
signals given to the PRESENT-TRNG-PRNG architecture are clk and load. The idat and odat
in Fig. 9 represents the input data (PT) and cipher text (CT). Here, the input data (PT) is given
to encryption and cipher text (CT) is obtained from the encryption operation. The key represents
the 80-bit key value generated using TRNG-PRNG module.kreg and dreg are the registers used
to store the input plaintext and key value from the TRNG-PRNG module respectively. Next,
dat1,dat2,dat3 and kdat1,kdat2 are the intermediate variables of plaintext and key value that
process 64-bit path encryption. Further, the round represents the number of rounds processed
during the encryption process. Fig. 9 highlights that the encryption PRESENT-TRNG-PRNG
architecture satisfies the test vector. For example, the output cipher text (i.e., 5579C1387B228445)
marked by the red box in the Fig. 9 is equal to the cipher text given in the test vector. From the
test vector analysis, it is proved that the PRESENT-TRNG-PRNG architecture works precisely
during encryption. This test vector is verified for the PRESENT architecture except the 2nd stage
key scheduling security.

The hardware utilization, power, delay, and frequency for the different FPGA architectures
are illustrated as follows:

The hardware utilization of the PRESENT-TRNG-PRNG architecture for Spartan 6 is shown
in the Tab. 6. The results shown from Tab. 6 is taken for the 64-bit path encryption using 80-bit
key value. The LUT, slices and flip flops for the Spartan 6 device are 45, 35 and 48 respectively.
From hardware analysis, the amount of LUT used by the Spartan 6 is less as compared to the
remaining five FPGA devices. If the PRESENT-TRNG-PRNG architecture is implemented in the
hardware Spartan 6, the encryption output is easily verified by using the 16-output light emitting
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diodes present in the Spartan 6 FPGA device. The utilization of 8 DROMs instead of 16 S-
boxes in PRESENT architecture helps to minimize the hardware utilization. Moreover, the analysis
of frequency, delay and power are shown in the Tab. 7. These performances are evaluated for
different FPGA devices. Tab. 7 shows that the PRESENT-TRNG-PRNG architecture using Virtex
5 FPGA device provides higher frequency i.e., 612.208 MHz when compared to the remaining
FPGA devices. The frequency of the PRESENT architecture with Virtex 5 device increase due to
the less amount of hardware utilization.

Figure 9: Simulation waveform

Table 6: Hardware utilization of PRESENT-TRNG-PRNG architecture in spartan 6 FPGA

FPGA performances Total resources Occupied resources % of utilization

Number of slice registers 4800 62 1.29
Flip Flops 4800 48 1
Number of slice LUTs 2400 45 1.87
Number of logical elements 2400 78 3.25
Slices 600 38 6.33
Bonded IOB 12 6 50

Table 7: Analysis of frequency, delay and power for different FPGA devices

FPGA devices Frequency (MHz) Delay (ns) Power (mW)

Spartan 3 226.341 6.126 38.22
Spartan 6 356.123 5.021 19.23
Virtex 4 423.415 4.126 210.43
Virtex 5 612.208 2.013 465.38
Artix 7 413.236 4.894 198.32
Kintex 7 530.561 3.672 423.84
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The encrypted binary value of input image pixel is transferred to the MATLAB R2018a soft-
ware. The encrypted image using PRESENT-TRNG-PRNG architecture and its histogram count
are shown in the Figs. 10 and 12, respectively. Similarly, the decrypted image and its histogram
count are shown in the Figs. 11 and 13 respectively. The amount of error occurred between the
input sample image to the decrypted sample are calculated using the histogram count. More-
over, the image retrieval performance of the PRESENT-TRNG-PRNG architecture are analyzed
using the MSE, PSNR and SSIM. The PRESENT-TRNG-PRNG architecture obtains significant
PSNR and SSIM of 49.8762 dB and 0.8211 respectively. Hence, the PRESENT-TRNG-PRNG
architecture preserves the details in the image during the encryption/decryption process.

Figure 10: Encrypted image

Figure 11: Decrypted image



1462 CMC, 2021, vol.68, no.2

Figure 12: Histogram for encrypted image

Figure 13: Histogram for decrypted image

5.2 Comparative Analysis
The effectiveness of the PRESENT-TRNG-PRNG architecture is evaluated by comparing

with three existing PRESENT architecture designs. The existing methods used for the performance
evaluation are PRESENT-OTF [18], PRESENT-STS [19] and PRESENT-RK [22]. The compara-
tive analysis is accomplished by using five different FPGA devices such as Spartan 3, Spartan 6,
Virtex 4, Virtex 5 and Kintex 7.

Tabs. 8 and 9 shows the comparison of the PRESENT-TRNG-PRNG architecture with
the PRESENT-OTF [18], and PRESENT-RK [22] respectively. The comparison shows that the
PRESENT-TRNG-PRNG architecture utilizes less amount of hardware components when com-
pared to the PRESENT-OTF [18], and PRESENT-RK [22]. The PRESENT-STS [19] is used for
high amount of S-box operation (e.g., 16 S-boxes) during encryption/decryption as well as this
PRESENT-STS [19] requires additional comparator to generate the output that leads to increase
the hardware utilization. But, the PRESENT-TRNG-PRNG uses only 8 DROM to accomplish
the operation of the S-box. The DROM is used in both the encryption and key scheduling
process that minimizes the overall hardware utilization. Moreover, the manual key generation of
the PRESENT-RK [22] is vulnerable to the malicious attackers because the manually generated
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keys in PRESENT-RK [22] can be easily detected by the attackers. The two-stage security in
the 64-bit path encryption and random key generation using TRNG-PRNG module increases the
security against the malicious attackers.

Table 8: Comparison of PRESENT-TRNG-PRNG with PRESENT-OTF

Performance Spartan 3 Virtex 5

PRESENT-
OTF [18]

PRESENT-
TRNG-PRNG

PRESENT-
OTF [18]

PRESENT-
TRNG-PRNG

Slices 326 114 56 39
Registers 217 98 215 70
LUT 590 201 217 102
Power (mW) 98 38.22 637 465.38

Table 9: Comparison of PRESENT-TRNG-PRNG with PRESENT-RK

Performance Spartan 3 Spartan 6 Virtex 4 Virtex 5

PRESENT-
RK [22]

PRESENT-
TRNG-
PRNG

PRESENT-
RK [22]

PRESENT-
TRNG-
PRNG

PRESENT-
RK [22]

PRESENT-
TRNG-
PRNG

PRESENT-
RK [22]

PRESENT-
TRNG-
PRNG

Slices 124 114 48 38 124 47 67 39
Flip flops 153 82 153 48 153 78 153 56
LUT 215 201 170 45 215 194 190 102
Frequency (MHz) 213.81 226.341 257.40 356.123 375.66 423.415 542.30 612.208
Power (mW) 42.08 38.22 21.61 19.23 245.78 210.43 562.75 465.38

6 Conclusion

In this paper, the TRNG-PRNG module based key generation is accomplished in PRESENT
architecture to generate the 80-bit key value to support the 64-bit of input value. Additionally,
the randomness of the key obtained from the TRNG-PRNG module is increased using the two
stage security during the 64-bit path encryption. Therefore, the key value used in the PRESENT-
TRNG-PRNG architecture is unpredictable by the malicious attackers which improves the security
of the input value. Moreover, the hardware utilization of the PRESENT architecture is mini-
mized using the DROM to process the operation of S-box. Hence, the PRESENT-TRNG-PRNG
architecture minimizes the logical elements while maintaining the higher security. The PRESENT-
TRNG-PRNG architecture provides better performance when compared to the PRESENT-OTF,
PRESENT-STS and PRESENT-RK. The operating frequency of the PRESENT-TRNG-PRNG
is 612.208 MHz for Virtex 5, it is high when compared to the PRESENT-RK. In future, the
architecture level optimization can be implemented as well as the hardware utilization and power
consumption will be reduced for the entire PRESENT architecture.
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