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Abstract: This article is aimed at describing the way rotation and magnetic field
affect the propagation of waves in an infinite poroelastic cylindrical bone. It offers
a solution with an exact closed form. The authors got and examined numerically
the general frequency equation for poroelastic bone. Moreover, they calculated the
frequencies of poroelastic bone for different values of the magnetic field and rota-
tion. Unlike the results of previous studies, the authors noticed little frequency
dispersion in the wet bone. The proposed model will be applicable to wide-range
parametric projects of bone mechanical response. Examining the vibration of sur-
face waves in rotating cylindrical, long human bones under the magnetic field can
have an impact. The findings of the study are offered in graphs. Then, a compar-
ison with the results of the literature is conducted to show the effect of rotation
and magnetic field on the wave propagation phenomenon. It is worth noting that
the results of the study highly match those of the literature.
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1 Introduction

One of the highly considerable clinical methods for identifying the integrity of bones in vivo is
radiographic examination, though, X-ray cannot detect when the loss of a bone decreases less than 30%.
By the same token, periodic X-rays can always be utilized in monitoring the healing of fractures although
evaluating the healing degree is subjective and often inaccurate. Natall et al. [1] examined bones as a
material from a biomechanical perspective. The authors of [2–7] explored various issues related to the
propagation of waves within poroelastic cylinders. In regard to a porous anisotropic solid, Biot [8]
introduced the theory of elasticity and consolidation. In another study, Biot [9] discussed the theory of
elastic wave propagation in a solid that is fluid-saturated and porous. Cardoso et al. [10] investigated the
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role of the biological tissue structural anisotropy in the poroelastic propagation of waves. The authors of [11]
solved issues related to the propagation of coupled poroelastic/acoustic/elastic waves through automatic hp-
adaptively. In 3D poroelastic solids, Wen [12] used the meshless local Petrov–Galerkin method for the
propagation of waves. Morin et al. [13] investigated the arduous multiscale poromicrodynamics method
that is effective in the diverse bone tissues. Employing an iterative active medium approximation, Potsika
et al. [14] introduced the model ultrasound propagation of waves in the healing of long bones. The
authors of [15] analyzed theoretically the process of internal bone restoration motivated by a medullary
pin. Nguyen et al. [16] investigated the performance of the flows of interstitial fluid in cortical bones
controlled by axial cyclic harmonic loads that mimic the behavior of in vivo bones while doing daily
activities, such as going for a walk. Misra et al. [17] derived the relation of dispersion for axisymmetric
acoustic wave propagation along a long composite bone. Qin et al. [18] predicted theoretically the
remodeling of the surface bone in the diaphysis of the long bone under different external loads controlled
by the theory of adaptive elasticity. Mathieu et al. [19] studied biomechanically the performance of the
bone-dental implant interface as an environmental task by taking into account the in silico, in vivo, and ex
vivo projects on animal models. Brynk et al. [20] evaluated relevant experimental findings within a
microporomechanic theoretical framework. Parnell et al. [21] compared the theoretical estimates of the
active elastic moduli of cortical bone at the meso- and macroscales. Shah [22] studied the near-surface
condition of stress established under the oscillatory contact between the artificial components that have a
considerable role in defining fretting severity. Gilbert et al. [23] investigated the viscous interstitial fluid
that plays a role in the ultrasound insonification of non-defatted cancellous bone. The authors of [24]
solved analytically the noticeably long borehole in the isotropic and poroelastic medium inclined to the
far-field principal stresses. Cowin [25] developed the interaction model of fluid and solid stages of a
fluid-saturated porous medium. The effectiveness of bone healing in the ultrasonic reaction of the
titanium implants that take the shape of coins and inserted in rabbit tibiae was discussed by Mathieu et al
[26]. Singhal et al. [27] investigated the interior restoration of bone by defining the process that enables
the bones to have the histological structure to modify within areas of long mechanical load. Kumha [28]
investigated the shear wave in a primarily stressed poroelastic medium that has corrugated boundary
surfaces inserted between a higher material strengthened with fiber and isotropic inhomogeneous half-space.

Abo-Dahab et al. [29] investigated the analytical solution for surface waves’ remodeling in the long
bones under the magnetic field and rotating. Farhan [30] discussed the effect of rotation on the
propagation of waves in a hollow poroelastic circular cylinder with a magnetic field. Marin et al. [31]
investigated the structural continuous dependence in micropolar porous bodies. Abo-Dahab et al. [32]
discussed the effect of rotation on the propagation of waves model in a human long poroelastic bone.

In this paper, the way rotation and magnetic field affect the propagation of waves in an infinite poroelastic
cylindrical bone is discussed. The paper provides a solution with an exact closed form. The authors got and
examined numerically the general frequency equation of the poroelastic bone. Moreover, they calculated the
frequencies of the poroelastic bone for different values of the magnetic field and rotation. Unlike the results
of the previous studies, the authors noticed little frequency dispersion in the wet bone. The proposed model
will be applicable to wide-range parametric projects of bone mechanical response. Examining the vibration
of surface waves in rotating cylindrical, long human bones under the magnetic field can have an impact.
The findings of the study are offered in graphs. Then, a comparison with the results of the literature is
conducted. It is worth noting that the results of the study highly match those of the literature.

2 Formulation of the Problem

Take into account a hollow cylinder in the form of a geometric approximation to a long bone that is well-
defined in the cylindrical coordinates r; h; z: To carry out the analysis, assume the z-axis as the long bone
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axis and a and b as the internal and external radius of the cortical thickness, respectively. Moreover, the linear
theory of transverse isotropy that is effective for small strain provides the resulting stress-displacement and
velocity relationships in the following form

srr ¼ c11
@ur
@r

þ c12 r
�1 ur þ @uh

@h

� �
þ c13

@uz
@z

þM
@vr
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� �
þ @vz

@z

� �
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rrr ¼ leH
2
0 ð
@ur
@r

þ 1

r
ur þ @uz

@z
Þ (2)

where tij acts as the solid stress, t represents the fluid stress, and rrr is the magnetic stress. Additionally,
cij; M; Q; R and c66 ¼ 1

2
c11 � c12ð Þ represent the elastic constants.

The equation of the fluid is

b�1
rr r2sþ b�1

zz r2szz ¼ @ðe� sÞ
@t

(3)

where brr ¼ mf 2=krr; bzz ¼ mf 2=kzz;r2 represent the Laplacian operator in cylindrical coordinates, m
represents the viscosity, f represents the porosity, and krr and kzz represent the permeability of the
medium. The displacements of solid and velocity of fluid are represented by ui and vi, respectively.
Moreover, the strains are given in displacement in the following form:

eij ¼ 1

2
ui;j þ uj;i
� �

(4)

The dilation e ¼ ui;j and e ¼ vi;i.

The motion equations are
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where r is the density, �
!¼ ð0;�; 0Þ represents the rotation vector, H0 represents the magnetic field, and t

represents the time.
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Replacing from Eq. (1) into Eq. (5), the result becomes
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3 The Solution to the Problem

To obtain a solution to Eq. (7), use the following solution in the field equations

ur ¼ ðf;r þ r�1w;hÞeiðkz�xtÞ; vr ¼ �g;re
iðkz�xtÞ;

uh ¼ ðr�1f;h � w;rÞeiðkz�xtÞ; vh ¼ � 1

r
g;he

iðkz�xtÞ;

uz ¼ ix
h
eiðkz�xtÞ; vz ¼ �ikgeiðkz�xtÞ

(8)

where ur; uh; uz; vr; vh and vz represent the displacement components and velocity components, v is the
angular frequency, k represents the wavenumber, and h ¼ b� a represents the thickness of the cylinder.
Additionally, a represents the inner radius; b represents the outer radius; f; w; and g represent the
displacement potentials introduced for solving the field Eq. (8).

Replacing from Eq. (1) into Eqs. (3) and (5) and using Eqs. (6) and (7), the following equations are
obtained:
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(9)
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Introducing the parameter as r ¼ r

h
, e1 ¼ kh and x ¼ k&, Eq. (9) takes a dimensionless form as
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Because the fluid flow through the bone boundaries does not happen while exploring the wave
propagation, j is defined in the above-mentioned form and it is not solved for the variable h. Though, when
prescribing the flow on these boundaries, h may be estimated. Eq. (10) takes a determinant form as:

jððc11 þ lejH2
0 Þr2 þ AÞ �B M

Br2 ðr2 þ CÞ �Qe1
T1 T2 T3

������
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�B ¼ ð1þ �c13Þe1 and C ¼ ðchÞ2 � e21�c13

Estimating the determinant form, we have these equations:
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The solution of Eq. (10) are

f ¼
X3
i¼1

½AiJnðaixÞþBiYnðaixÞ�conðnhÞ;

w ¼
X3
i¼1
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where a2
i are the roots of the following equation

a6 � Pa4 þ Ga2 � H ¼ 0 (16)
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where

F1 ¼ ð27H � 9GP þ 2P3 þ 3
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4G3 þ 27H2 � 18GHP þ 4HP3

p Þ
1

3 and di and ei are calculated
from the following equation

½ð1þ c11Þe1di þMei ¼ ðc11 þ leH
2
0 Þa2i � ðchÞ2 � e21�;

ð�a2i þ ðchÞ2 � e21c33Þdi � Qe1ei ¼ ð1þ c13Þe1a2i :
(17)

The solution of Eq. (11) is

w ¼ A4Jn a4xð Þ þ B4Yn a4xð Þ½ � sin nhð Þ; (18)

where

a24 ¼ 2ððchÞ2 � e21Þ=ðc11 þ leH
2
0 � c13Þ.

4 Frequency Equation

To have the boundary conditions that are free of traction, stress must disappear on the internal and
external surfaces of the hollow cylinder, as follows:

srr þ rrr ¼ srz ¼ srh ¼ s ¼ 0 at r ¼ a

srr þ rrr ¼ srz ¼ srh ¼ s ¼ 0 at r ¼ b (19)

where

a ¼ a

h
; b ¼ b

h
:

Eqs. (8), (15) and (18) together with Eq. (19) and combining A1; B1; A2; B2; A3; B3 and
A4; B4 coefficients help determine the characteristic frequency equation:

aij
�� �� ¼ 0; i; j ¼ 1; 2; 3;…; 8 (20)

where the coefficients of aij are given the form in the appendix.

The roots of Eq. (20) afford the curves of dispersion of the guided modes, namely the wavenumber as a
frequency function.
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Figure 1: Variations of the roots aj
�� �� ðj ¼ 1; 2; 3; 4Þ concerning the rotation Ω with different values for

q; x; h and H0
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Figure 2: Variations of jejjðj ¼ 1; 2; 3; 4Þ with respect to the rotation Ω with different values for
q;x; h and H0
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Figure 3: Variations of jdjjðj ¼ 1; 2; 3; 4Þ concerning the rotation Ω with different values for q;x; h and H0
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5 Frequency Equation: Special Cases

5.1 Motion Independent of z

The frequency Eq. (20) degenerates into the product of two determinants

D1D2 ¼ 0

Figure 4: Variations of the determinant |aij|, Re(aij), Im (aij) (i, j = 1,2,3,4) with respect to the rotationΩwith
different values for ρ, ω, h and H0
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where

D1 ¼

a11 a12 a13 a15 a16 a17
a21 a22 a23 a25 a26 a27
a41 a42 a43 a45 a46 a47
a51 a52 a53 a55 a56 a57
a61 a62 a63 a65 a66 a67
a81 a82 a83 a85 a86 a87

������������

������������
¼ 0; D2 ¼ a34 a38

a74 a78

����
���� ¼ 0: (21)

The terms aijðaÞ and aijðbÞ appearing in D1 and D2 are given in Eq. (21) for the wavenumbers k ¼ 0,
a21; a22; a23 are positive. Therefore, the Bessel functions of the first and second kinds are included in the
solution. This equation could have been obtained immediately from the displacement equation of Eqs. (7)

by setting ur ¼ uh ¼ 0;
@

@z
¼ 0 with the result:

ðc44 þ leH
2
0 Þ
�
@2uz
@r2

þ r�1 @uz
@r

þ r�2 @
2uz
@h2

�
¼ q

@2uz
@t2

� �2

� �
(22)

5.2 Motion Independent of h

If the motion becomes independent of the angular coordinate h, the frequency Eq. (20) is declined to two
determinants D3; D4 in the following form

D3D4 ¼ 0 (23)

The terms aij in D3 and D4 are given by Eq. (23) for n ¼ 0:

D3 ¼

a11 a12 a13 a15 a16 a17
a21 a22 a23 a25 a26 a27
a31 a32 a33 a35 a346 a37
a51 a52 a53 a55 a56 a57
a61 a62 a63 a65 a66 a67
a71 a72 a73 a75 a76 a77

������������

������������
¼ 0; D4 ¼ a44 a48

a84 a88

����
���� ¼ 0: (24)

Now, Eq. (23) is satisfied if D3 ¼ 0 or D4 ¼ 0. The case of D3 ¼ 0 displays the equation of frequency of
vibrations that are axially symmetric of an infinite hollow poroelastic cylinder.

5.3 Motion Independent of h and z

If the wavenumbers k (for the infinite wavelength) � ¼ 2p
k

and n disappear, the frequency equation

declines into three uncoupled mode groups that can be defined as plane-strain extensional, longitudinal
shear, and plane-strain shear. The equations of the frequency of the three types of motion take the
following form

D5D6D7 ¼ 0 (25)

The terms aij in (25) are given by (20).

D5 ¼ a13 a15
a53 a55

����
���� ¼ 0; D6 ¼ a44 a48

a84 a88

����
���� ¼ 0; D7 ¼ a34 a38

a74 a78

����
���� ¼ 0: (26)
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6 Numerical Results and Discussion

The numerical results of the equation of frequency are calculated for the wet bone. The roots are
obtained for n ¼ 0 and the longitudinal mode and flexural mode n ¼ 1; 2. These findings are estimated
within 0 < e1 < 4 and 0 < ch < 4. Based on [8], the elastic constant values of the bone are obtained and
the poroelastic constant is estimated by the following form

Figure 5: Variations of the determinant aij
�� �� ; ReðaijÞ ; ImðaijÞ ði; j ¼ 1; 2; 3; 4Þ with respect to the rotation

Ω with different values of q; x; h and H0 if the motion is independent of z
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Q ¼
f ð1� f � d

v
Þ

ðcþ dþ d2

v
Þ
; R ¼ f 2

ðcþ dþ d2

v
Þ
;

where f is the porosity and c; d; v are the Young’s modulus and the Poisson ratio. The constants c; d; v are

v ¼ 3ð1� 2mÞ
E

; d ¼ 0:6v and c ¼ f ðc� dÞ

where c is zero concerning the incompressibility fluid.

The human bone porosity within the age group 35–40 years is estimated as 0.24 [1]. To evaluate one

more poroelastic constant, the following equation is defined
M

Q
¼ c12

c13
in which the value M is not given.

Because the fluid is generally isotropic, brr ¼ bzz, the fluid density in the porospace, permeability of the
medium, and mass density of the bone take the form of [15] as in Tab. 1.

Fig. 1 shows a considerable modification of the absolute value of a1j j; a2j j; a3j j and a4j j coefficients for
the poroelastic bones concerning the rotation � that increases with increasing rotation for the diverse values
of the density q, frequencyx; thickness h, and magnetic field H0. It rises with an increase in the density,
frequency, and magnetic field at the effect of density and the coefficients of a1j j; a3j j. It also increases
and decreases with the increase of the density.

Fig. 2 displays various coefficients of d1j j; d2j j; d3j j and d4j j for the poroelastic bone concerning the
rotation�, which increases with increasing the rotation for diverse values of the frequencyx; the thickness h,
and the magnetic field H0 except for the effect of the density because it increases and decreases. It declines
with rising the frequency, thickness, and magnetic field except for the coefficient d4j j that rises with rising the
density, frequency, and thickness. Moreover, the coefficients decrease with increasing the magnetic field.

Fig. 3 graphically portrays the variations of the absolute of the coefficients for the poroelastic bone of
e1j j; e2j j; e3j j and e4j j concerning the rotation �. It rises with rising the rotation for diverse values of the
density q, the frequency x; the thickness, and the magnetic field H0, while it rises with rising the density,
frequency, and thickness except for the effect of the magnetic field. In this case, the absolute of the
coefficients is the oscillatory behavior in the scope of the �-axis for the diverse values of the magnetic field.

Fig. 4 shows the variations of the scalar equation aij
�� ��, wave velocity Reð aij

�� ��Þ, and attenuation
coefficient Imð aij

�� ��Þ concerning the rotation � for diverse values of the density q, the frequency x; the
thickness h, and the magnetic field H0. It declines with the growing rotation. We also note that the scalar
equation increases with the higher frequency, thickness, and magnetic field. On the contrary, it decreases
with a higher density. Wave velocity increases with increasing density and rotation. It also rises with the
higher frequency and magnetic field but decreases with higher rotation. It declines with higher thickness,
and the attenuation coefficient declines with the higher frequency, thickness, magnetic field, and rotation,
H0. Additionally, wave velocity rises with higher rotation and density.

Table 1: The constants of the material

c11 c12 c13 c33 c44 a b

2.12 0.95 1.02 3.76 0.75 0.8 1.4
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Figure 6: Variations of the determinant aij
�� �� ; ReðaijÞ ; ImðaijÞ ði; j ¼ 1; 2; 3; 4Þ with respect to the rotation

Ω with different values of q; x; h and H0 (if the motion is independent of h)
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Figure 7: Variations of aij
�� �� ¼ D5j j D7j j; Re aij

�� ��� �
; Im aij

�� ��� �
with respect to the rotation Ω with different

values of q; x; h and H0 (if the motion independent is of h and z)
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Fig. 5 graphically irradiates the effect of the variations of the scalar equation aij
�� ��, the wave velocity

Reð aij
�� ��Þ, and the attenuation coefficients Imð aij

�� ��Þ concerning the rotation � for diverse values of the
density q, the frequency x; the thickness h, and the magnetic field H0 (if the motion is independent of z).
The scalar equation rises with higher density, frequency, thickness, magnetic, field, and rotation. Wave
velocity rises with higher frequency, thickness, magnetic field, and rotation, except for the effect of the
density that rises and declines with higher density. Attenuation coefficients decline with higher density,
frequency, thickness, magnetic field, and rotation. They shift downward from positive to negative values.

Fig. 6 illustrates the variations of the scalar equation aij
�� ��, the wave velocity Reð aij�� ��Þ, and the attenuation

coefficients Imð aij
�� ��Þ concerning the rotation � for diverse values of the density q, the frequency x; the

thickness h, and the magnetic field H0 (if the motion is independent of h). The scalar equation rises with
higher density, frequency, thickness, magnetic field, and rotation. Wave velocity rises with higher
frequency and magnetic field, while it has an oscillatory with the x-axis. However, it declines with higher
density, thickness, and rotation. Attenuation coefficients decrease with higher density, frequency,
thickness, magnetic field, and rotation. They shift downward from positive to negative values.

Fig. 7 displays the variations of the scalar equation aij
�� ��, the wave velocity Reð aij�� ��Þ, and the attenuation

coefficients Imð aij
�� ��Þ concerning the rotation (if the motion is independent of h and z) for the diverse values

of the density q, the frequency x; the thickness h, and the magnetic field H0. The scalar equation decreases
with higher density, frequency, magnetic field, and rotation but declines with higher thickness. Wave velocity
rises with higher rotation, density, frequency, and magnetic field, except for the effect of thickness it declines
with higher thickness. Moreover, the attenuation coefficient decreases with higher density, frequency,
rotation, and magnetic field and rises with higher thickness.

7 Conclusion

In this paper, the wave propagation of a poroelastic bone with a circular cylindrical cavity subjected to
the rotation and the magnetic field is considered. The frequency equation is obtained by considering the
material as transversely isotropic in nature. The numerical results are obtained and compared for the bone
in the presence and absence of the magnetic field and the rotation. The findings of the study can be useful
for the applications of the poroelastic materials in the orthopedics, the dental, and the cardiovascular
fields are well known. The results obtained have significant applications related to medicine, chemical
engineering, and orthopedics surgery.
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The remaining four rows can be obtained from the above equations by replacing a by b.
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