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Abstract: In this research, we proposed a non-linear SIS model to study the
effect of variable interaction rates and non-emigrating population of the
human habitat on the spread of bacteria-infected diseases. It assumed that
the growth of bacteria is logistic with an intrinsic growth rate is a linear
function of infectives. In this model, we assume that contact rates between
susceptibles and infectives as well as between susceptibles and bacteria depend
on the density of the non-emigrating population and the total population
of the habitat. The stability theory has been analyzed to analyzed to study
the crucial role played by bacteria in the increased spread of an infectious
disease. It is shown that as the density of non-emigrating population increases,
the spread of an infectious disease increases. It is shown further that as the
emigration increases, the spread of the disease decreases in both the cases
of contact mentioned above rates, but this spread increases as these contact
rates increase. It suggested that the control of bacteria in the human habitat
is very useful to decrease the spread of an infectious disease. These results are
confirmed by numerical simulation.
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1 Introduction

Most of the deaths worldwide are caused due to infectious diseases. A severe threat to the
wellbeing and public health is caused not only due to the new infectious diseases but also due to
the increasing prevalence of drug-related diseases as well as the resurgence of chronic infectious
diseases. Recently, considerable evidence found to suggest that common strategies are adopted
by different pathogens to cause disease and infection. The infectious organism causes Infectious
diseases; these are bacteria, viruses, fungi, etc. Under normal circumstances, disease symptoms
may not develop when the immune system of the host is fully functional, but an infectious disease
ensues if the immune system of the host is compromised. Bacteria, protozoa, viruses, etc. cause
most of the infections in living organisms. Bacteria is a unicellular prokaryotic micro-organism.
In the human habitat, due to household emission, various kinds of carriers and vectors grow and
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survive. They become agents to carry bacteria to food and water of Susceptibles, causing them to
be infected by various diseases. Notably, in habitats, which are not clean enough, various types
of bacteria such as mycobacterium tuberculosis, vibrio cholera etc. are present, the growth rate
of which depends upon the following factors:

• The Bacteria discharges by infective in the environment.
• The characteristics of household discharges such as nutrients, salts, amino acids, and

vitamins etc.
• The characteristics of bacteria related to particular diseases such as TB, Typhoid etc.
• The natural conditions such as the climate of the habitat.

Therefore, we assume that the bacteria population density is proportional to the density
of carriers, such as house flies, and hence its growth rate is assumed to follow the logistic
model [1]. These bacteria get transported by carriers to susceptible and their food as well as
water, making them infectives indirectly [2]. Mathematical models have been used in the study
of the spread and control of infectious diseases for a long time. In classical models, the contact
rates between susceptible and infectives have been assumed to be constant [3–6], but recently the
effect of density-dependent contact rate, death rate etc. on the spread of infectious diseases have
been studied. However, the effect of the non-emigrating population of the habitat on the spread
of the infectious disease has never been considered in various studies. However, in a realistic
situation, the contact rates between susceptible and infectives as well as between susceptible and
bacteria depends upon the density of non-emigrating population [7–9]. The massive consumption
of alcohol affects almost all parts of the body, which in turn responsible for gonorrhea, which
is a bacterial disease. This disease infects the parts of the body like urine, eyes, throat, vagina
anus, and the female’s fallopian tubes, uterus etc. [10]. Recently researchers work in the field of
application of mathematical modeling multiscale fast correlation filtering tracking algorithm [11],
grammar model [12], grammar mapping and the integer modulo Arithmetic [13] and decision
model of knowledge [14] transfer The spread of an infectious disease can be controlled by using
awareness programs. However, the disease remains endemic due to immigration [11,12,15,16].

Therefore, we proposed a non-linear mathematical model to study the effects of the following
aspects of the spread of bacteria-infected diseases:

• Effect of the non-emigrating population of the habitat.
• Effect of emigration dependent contact rate between susceptible and infective population as

well as between susceptible and bacteria population.
• Effects of discharge of bacteria by infectives in the habitat.
• Effect of control of bacteria by using chemicals and pesticides.

2 Mathematical Model with Emigration Dependent Contact Rates

Let the total human population of the habitat at time t be N(t), which consists of the
susceptible population density X(t) and infective population density Y (t). We assume that the
susceptible population of the habitat may be affected by the bacterial populations with density
B(t) (Fig. 1). The bacteria population grows logistically with its intrinsic growth rate coefficient
as a linear function of infective population Y (t). The contact rate β(N) between susceptibles and
infectives is assumed to be emigration dependent, and the contact rate λ(N) between susceptibles
and bacteria depends upon the densities of non-emigrating population and the total population N.
It is assumed as follows,

β(N)= β −β0(N−N0), (1)
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where, N0 is the non-emigrating population density of the habitat which is a fraction of N, β and
β0 are constant contact rate coefficients. It is noted from Eq. (1), β(N) increases as N0 increases,
but it decreases as β0 increases.

Figure 1: Interaction phenomena between susceptibles and infectives

Similarly, the emigration dependent contact between susceptibles and bacteria population is
assumed to be a non-negative linear function of the total population as,

λ(N)= λ−λ0(N−N0), (2)

where, λ and λ0 denotes the contact rate coefficients. From Eq. (2) as N0 increases, λ(N) increases
but λ(N) decreases as λ0 increases. The primary purpose of this paper is to study the effect of
variable contact rate between susceptibles and infectives, variable contact rate between susceptibles
and bacteria, and non-emigrating population on the spread of bacteria-infected disease and the
growth of bacteria due to infectives.

In view of the above situation, the diseases dynamics model given below:

dX
dt

=A−{β −β0 (N −N0)}XY −{λ−λ0 (N−N0)}XB− dX + νY

dY
dt

= {β −β0 (N −N0)}XY +{λ−λ0 (N−N0)}XB− (ν +α + d)Y

dB
dt

= (θ +φY )B− θ0B
2−φ0B, (3)

where, X(0)=X0 > 0, Y (0)=Y0 ≥ 0,N(0)=N0 > 0,B(0)=B0 ≥ 0 and N =X +Y .

The model system Eq. (3) has the following parameters:

• A: Immigration rate of the human population from outside.
• β: Interaction coefficient due to infective human population density.
• β0: Emigration dependent transmission coefficient due to infectives density.
• λ: Constant transmission coefficient due to bacteria population density.
• λ0: Emigration dependent transmission coefficient due to bacteria population density.
• d: Natural death rate coefficient.
• α: Disease related death rate coefficient.
• ν: Recovery rate coefficient.
• θ : Growth rate coefficient of bacteria population due to natural conducive factors in
the habitat.

• θ0: Natural depletion rate coefficient of bacteria population.
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• φ: Growth rate coefficient of bacteria by the discharge of the infective population.
• φ0: The control rate of bacteria population by using chemicals and pesticides etc.

The model system Eq. (3) is reduced as follows by using X = N − Y and θs = θ − φ0 > 0,
we get

dY
dt

= {β −β0(N −N0)}(NY −Y2)+{λ−λ0(N −N0)}(N −Y )B− (d + ν +α)Y (4)

dN
dt

=A−αY − dN (5)

dB
dt

= (θs+φY )B− θ0B
2 (6)

With the initial conditions: Y (0)=Y0 ≥ 0, N(0)=N0 > 0, B(0)=B0 ≥ 0.

Region of attraction: The following set gives the domain region of the model system Eqs. (4)–
(6) as

Ω=
{
(Y ,N,B)∈R+3 : 0≤Y ≤ A

(α+ d)
,

A
(α+ d)

≤N ≤ A
d
, 0≤B≤Bm

}
. (7)

where, Bm = θs
θ0
+ φA

θ0(α+d) .

3 Basic Reproduction Number and Equilibrium Analysis of the Model

The basic reproduction number R0 is used to measure the transmission potential of a disease.
It is the average number of secondary infections produced by an infection in a human habitat
where the living population is susceptible [17,18].

The non-linear mathematical model Eqs. (4)–(6) has three non-negative equilibria as:

1. E0(0, Ad , 0), this is the trivial equilibrium point which exists always.

2. E1(Y ,N, 0), this is the bacteria-free equilibrium point, which exists if the reproduction
number

R0 =
(β +β0N0)

A
d

(ν +α+ d)+β0
A2

d2

> 1. (8)

3. E2(Y∗,N∗,B∗), this is the non-trivial equilibrium point, which exists if

R1 =
{
(β +β0N0)+ (λ+λ0N0)

φ
θ0
+ λ0θs(d+2α)

θ0d

}
A
d

(ν +α+ d)+ (λ+λ0N0)
θs(α+d)

θ0d
+

(
β0+ λ0φ

θ0

)
A2

d2

> 1. (9)

It is noted that when λ= 0, λ0 = 0 then R1 =R0.

Proof. The equilibrium point E0 exists obviously. For the model system Eqs. (4)–(6), we prove
the existence of E1(Y ,N, 0). Let Y �= 0 and B = 0 then Y and N are the solution, which is
obtained from the following two equations:

{β −β0(N −N0)}(N−Y )− (ν +α+ d)= 0. (10)
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A− dN−αY = 0. (11)

By using Eqs. (10) and (11) we define a polynomial function in Y as,

F(Y )=
{(

β +β0N0−β0
A
d

)
A
d
− (ν +α + d)

}
+

{
β0

αA
d2

− (α+ d)

d

(
β +β0N0 −β0

A
d

)}
Y

−
{

α (α+ d)

d2
β0

}
Y2 = 0 (12)

We note from Eq. (12),

• F(0)=
{(

β +β0N0−β0
A
d

)
A
d − (d+ ν +α)

}
> 0 for R0 > 1.

• F( A
α+d )=−(ν +α + d) < 0.

Thus, the equation F(Y )= 0 has at least one root Y ∈
(
0, A

α+d
)
. To show the root is unique,

we show that F ′(Y ) < 0. By differentiating Eq. (12) with respect to Y , we get

F ′(Y )= 0+
{
β0

αA
d2

− (α+ d)

d

(
β +β0N0 −β0

A
d

)}
−

{
α (α+ d)

d2
β0

}
2Y (13)

then, by using Eq. (12) in Eq. (13), we get

YF ′(Y )=−
{(

β +β0N0 −β0
A
d

)
A
d
− (ν +α+ d)

}
−

{
α (α+ d)

d2
β0

}
Y2 < 0 (14)

Hence F ′(Y ) < 0 for R0 > 1. Thus a unique root of F(Y ) = 0, Y exists. Now by using the
value of Y , the value of N can be uniquely determined from Eq. (11).

The other equilibrium point E2(Y∗,N∗,B∗) is obtained by solving the following equations:

(β −β0(N −N0))(N −Y )Y + (λ−λ0(N −N0))(N−Y )B− (d+ ν +α)Y = 0. (15)

A−αY − dN = 0. (16)

θs− θ0B+φY = 0. (17)

By using the equations Eqs. (16) and (17) in Eq. (15) and setting

βm = β +β0N0−β0
A
d ,λm = λ+λ0N0 −λ0

A
d and θs = θ −φ0.

We define the following function

H (Y )=
{
λm

Aθs

θ0d

}
+

{
βm

A
d
− (ν +α+ d)+λm

Aφ

θ0d
−λm

(α+ d)θs)

θ0d
+λ0

Aαθs

d2θ0

}
Y

+
{
β0
Aα

d2
−βm

(α+ d)

d
−λm

φ(α+ d)

θ0+ d
+λ0

φAα

θ0d2
−λ0

α(α+ d)θs

θ0d2

}
Y2

−
{
β0

α(α+ d)

d2
+λ0

αφ(α+ d)

θ0d2

}
Y3. (18)

It is noted from Eq. (18)
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• H(0)= λm
Aθs
θ0d

> 0.

• H
(

A
(α+d)

)
=−(ν +α+ d) A

(α+d) < 0.

Hence, the equation H(Y )= 0 has at least one root in Y ∈
(
0, A

α+d
)
. To show the uniqueness

of root Y ∈
(
0, A

α+d
)
, We need to show that H ′(Y ) < 0. For this, we differentiate Eq. (18) with

respect to Y , we get

H ′ (Y )= 0+
{
βm

A
d
− (ν +α+ d)+λm

Aφ

θ0d
−λm

(α+ d)θs)

dθ0
+λ0

Aαθs

θ0d2

}

{
β0
Aα

d2
−βm

(α+ d)

d
−λm

φ(α+ d)

θ0+ d
+λ0

φAα

θ0d2
−λ0

α(α+ d)θs

θ0d2

}
2Y

−
{
β0

α(α+ d)

d2
+λ0

αφ(α+ d)

θ0d2

}
3Y2 (19)

By using Eq. (18) in Eq. (19), we have

YH ′(Y )=−2λm
Aθs

θ0d
−

{
βm

A
d
− (ν +α + d)+λm

Aφ

θ0d
−λm

(α+ d)θs)

θ0d

+λ0
Aαθs

θ0d2

}
Y −

{
β0

α(α+ d)

d2
+λ0

αφ(α+ d)

θ0d2

}
Y3 < 0. (20)

Provided R1 > 1, where R1 is the reproduction number. Hence the equation Eq. (18) have

unique root in the interval Y ∈
(
0, A

α+d
)
.

4 Stability Analysis

The stability of the equilibrium points E0(0, Ad , 0), E1(Y ,N, 0) and E2(Y∗,N∗,B∗) are stated

in the following two theorems [19]. The equilibrium points E0(0, Ad , 0) and E1(Y ,N, 0) are unstable
and E2(Y∗,N∗,B∗) is locally asymptotically stable provided the following conditions are satisfied

α{(β0Y∗ +λ0B∗)(N∗ −Y∗)}2 < d{β(N∗)Y∗ +B∗λ(N∗)}2. (21)

2φ2{(N∗ −Y∗)λ(N∗)}2 < θ0
2{β(N∗)Y∗ +B∗λ(N∗)}2. (22)

Proof. See Appendix A.

The equilibrium point E2(Y∗,N∗,B∗) is non-linearly stable in Ω provided the following
conditions are satisfied:

α

{
(β0Y

∗ +λ0Bm)
A
d

}2

< d{Y∗β(N∗)+B∗λ(N∗)}2. (23)

2φ2
{
λ(N∗)

A
d

}2

< θ0
2{β(N∗)Y∗ +B∗λ(N∗)}2. (24)

where, Bm is defined in Section 2 Eq. (7).
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Proof. See Appendix B: It is noted from Eq. (4), the inequalities Eqs. (23) and (24) are
stronger than inequalities Eqs. (21) and (22), as expected. Further, the inequalities Eqs. (21) and
(23) are satisfied automatically when α = 0. Also, when φ = 0, then inequalities Eqs. (22) and (24)
are satisfied automatically. Hence the death rate related coefficient and rates of growth of bacteria
caused by infective population density have destabilizing effects on the system.

5 Numerical Simulation of the Model

By using MAPLE, we show the existence and stability of the equilibrium point E2(Y∗,N∗,B∗)
for the following set parameters as given in Tab. 1 value of the set of parameters

Table 1: Value of parameters

A 500

d 0.03
α 0.06
β 0.000012
ν 0.06
λ 1.0× 10−8

N0 10000
φ0 0.03
λ0 1.0× 10−12

β0 1.98× 10−10

θ 0.04
θ0 0.001
φ 0.04

For these values of parameters, the value of the non-trivial equilibrium point E2(Y∗,N∗,B∗)
corresponding to Eqs. (4)–(6) is obtained as follows:

Y∗ = 1155.45≈ 1155,N∗ = 14355.75≈ 14356,B∗ = 46228.23≈ 46228

The Jacobian matrix at E2(Y∗,N∗,B∗) is⎡
⎢⎢⎢⎣
−0.0161107584 0.009499689946 0.00007450572410

−0.06 −0.03 0

1849.129589 0 −46.22823972

⎤
⎥⎥⎥⎦

The eigenvalues of the above matrix at E2(Y∗,N∗,B∗) are:

−0.02156484178+ 0.02233366797i,−0.02156484178− 0.02233366797i,−46.23122079.

Since the sign of one eigenvalue is negative and two of them having negative real part,
therefore the non-trivial equilibrium point E2(Y∗,N∗,B∗) is stable asymptotically. It is noted
here that for the assumed set of positive parameters, the conditions Eqs. (21)–(24) are satisfied.
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By using MAPLE software, the graph of Y vs. N for the model Eqs. (4)–(6) is shown in Fig. 2,
which indicated the non-linear stability of the equilibrium point in the YN plane.

Figure 2: Phase plots between infected human population density Y (t) and human population
density N(t)

Figure 3: Effect of transmission coefficient β due to infectives on infective population density Y
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Figure 4: Effect of emigration coefficient β0 due to infectives on infective population density Y

Figure 5: Effect of transmission coefficient λ due to bacteria population density on infective
population density Y

It depicted in Fig. 3, as β increases, the number of infectives increases. From Fig. 4, we
can see that as the emigration dependent contact rate β0 between susceptibles and infectives
increases, the number of infectives decreases. From Fig. 5, as constant contact rate λ between
susceptible and bacterial population increases, the number of infectives increases and from Fig. 6,
as emigration dependent contact rate λ0 between susceptibles and Bacteria population density of
habitat increases, then the number of infectives decreases. From Fig. 7, it is also observed that as
the growth rate coefficient of bacteria due to infective population increases, the infectives increases.
It observed from Fig. 8, that as the constant depletion rate coefficient φ0 increases, the spread
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of the disease decreases, and from Fig. 9, as the natural growth rate θ of bacteria increases,
the spread of bacteria-infected disease increases. From Fig. 10, we observed that immigration
increases, then the number of infectives increases, and from Fig. 11, as non-emigrating population
increases, then the number of infective populations increases.

Figure 6: Effect of emigration coefficient λ0 due to bacteria population density on infective
population density Y

Figure 7: Effect of growth rate coefficient φ of bacteria due to infective population density on
infective population density Y
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Figure 8: Effect of the depletion rate coefficient φ0 of bacteria due to chemicals and pesticides
etc. on infective population density Y

Figure 9: Effect of the natural growth rate coefficient of bacteria population θ on infective
population density Y
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Figure 10: Effect of constant immigration rate A on infective population density Y

Figure 11: Effect of non-emigrating population N0 on infective population density Y

6 Conclusions

In this study, an SIS non-linear model with emigration has been proposed and analyzed to
study the effects of the following factors on the spread of bacteria-infected diseases.

• Effect of non-emigrating population.
• Effect of the emigration dependent contact rate between susceptibles and infectives, which

is dependent on non-emigrating population and the total human population in the habitat.
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• Effect of the emigration dependent contact rate between susceptibles and bacteria pop-
ulation, which depends on non-emigrating population and the total population in the
habitat.

• Effect of the discharge rate of bacteria by the infectives in the habitat.
• Effect of the growth rate of bacteria, which is assumed to follow the logistic model, the
growth rate of which is a linear function of the infective population.

Using the stability theory, the analysis of the model has shown the following results.

• As the discharge rate of bacteria by infectives increases, the spread of bacteria-infected
disease increases.

• As the non-emigrating population density increases, the spread of bacteria-infected diseases
increases.

• As the direct contact rate between susceptibles and infectives increases, the spread of a
bacteria infected disease increases.

• As the contact rate between susceptibles and bacteria population increases, the spread of
bacteria infected disease increases.

• As the emigration rate increases, the spread of bacteria-infected disease decreases.
• As the natural growth rate of bacteria increases, the spread of an infectious disease
increases.

• As the immigration rate increases, the spread of bacteria-infected disease increases.
• As the control rate of bacteria in the habitat increases, the spread of the disease decreases.

The simulation study of the non-linear model confirms the above outcomes. It has been
concluded that if the bacteria population in the habitat controlled by using pesticides, the spread
of bacteria-infected disease can be reduced considerably.
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Appendix A. Proof of Theorem 4.1

Proof. The model system Eqs. (4)–(6) as:

dY
dt

= {β −β0(N −N0)}(NY −Y2)+{λ−λ0(N −N0)}(NB−YB)− (d + ν +α)Y (25)

dN
dt

=A−αY − dN (26)

dB
dt

= (θs+φY )B− θ0B
2 (27)
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For the above model system Eqs. (4)–(6), the Jacobian matrix is defined for the system as⎡
⎣A11 A12 (N−Y )λ(N)

−α −d 0
φB 0 θs− θ0B+φY

⎤
⎦ where,

A11 = β (N) (N− 2Y )−λ (N)B− (ν +α + d)

and

A12 = β (N)Y − (β0+λ0)

(
YN−Y2

)
+λ (N)B.

The Jacobian matrix for the first equilibrium point E0

(
0, Ad , 0

)
is

⎡
⎢⎢⎣

β

(
A
d

)
A
d
− (d+ ν +α) 0 λ

(
A
d

)
A
d

−α −d 0
0 0 θs

⎤
⎥⎥⎦

From the above Jacobian matrix, it is clear that one of the eigenvalues is θs > 0. Hence the

disease and the bacteria-free equilibrium point E0

(
0, Ad , 0

)
is unstable. Now the Jacobian matrix

for the second equilibrium point E1(Y ,N, 0) is⎡
⎢⎣

β
(
N

) (
N − 2Y

)− (ν + d+α) β
(
N

)
Y −β0

(
YN −Y

2
)

λ
(
N

) (
N −Y

)
−α −d 0
0 0 θs+φY

⎤
⎥⎦

It is clear from the above Jacobian matrix, one eigenvalue θs + φY is positive. Hence the
bacteria-free equilibrium point E1(Y ,N, 0) is unstable. We study the local stability behavior of
E2(Y∗,N∗,B∗) by direct Lyapunov’s method. Here we use the transformation of variables to
linearize the model system as

Y −Y∗ = y,N−N∗ = n,B−B∗ = b and by considering a positive definite function V as:

V = 1
2
y2+ k1

2
n2+ k2

2
b2 (28)

Differentiating Eq. (27) with respect to t, we get

V̇ = yẏ+ k1nṅ+ k2bḃ (29)

The linearization of the functions gives,

ẏ=
{
− (

Y∗β(N∗)+λ(N∗)B∗)− λ(N∗)(N∗ −Y∗)B∗

Y∗

}
y

+ {
β(N∗)Y∗ +λ(N∗)B∗ − (N∗ −Y∗)(β0Y

∗ +λ0B
∗)

}
n+ {

(N∗ −Y∗)λ(N∗)
}
b (30)

ṅ=−αy− dn (31)

ḃ= φB∗y− θ0B∗b (32)



1874 CMC, 2021, vol.68, no.2

Then by Eq. (28), we have

V̇ =−
{
β(N∗)Y∗ +λ(N∗)B∗ + (N∗ −Y∗)λ(N∗)B∗

Y∗

}
y2+ {

β(N∗)Y∗ +λ(N∗)B∗ − (N∗ −Y∗)

×(β0Y
∗ +λ0B

∗)
}
ny+ {

(N∗ −Y∗)λ(N∗)
}
by− k1dn

2− k1αny+ k2φB
∗by− k2θ0B

∗b2 (33)

Here we choose the constant k1 such that k1 = Y∗β(N∗)+B∗λ(N∗)
α

, we get

V̇ =
{
−(N∗ −Y∗)B∗λ(N∗)

Y∗

}
y2+

[
−1
4

{
Y∗β(N∗)+λ(N∗)B∗}y2− {

(β0Y∗ +λ0B∗)(N∗ −Y∗)
}
ny

−k1dn2
]
+

{
−1
2

{
Y∗β(N∗)+λ(N∗)B∗}y2+λ(N∗)(N∗ −Y∗)by− 1

2
k2θ0B

∗b2
}

+
{
−1
4

{
Y∗β(N∗)+λ(N∗)B∗}y2+ k2φB

∗by− 1
2
k2θ0B

∗b2
}

(34)

The derivative V̇ < 0 if the following inequalities hold.
{
(β0Y

∗ +λ0B
∗)(N∗ −Y∗)

}2
<

{
Y∗β(N∗)+B∗λ(N∗)

}
k1d (35)

{
(N∗ −Y∗)λ(N∗)

}2
<

{
Y∗β(N∗)+B∗λ(N∗)

}
k2θ0B

∗ (36)

2
{
(k2φB

∗}2 <
{
Y∗β(N∗)+B∗λ(N∗)

}
k2θ0B

∗ (37)

By combining conditions Eqs. (35), (36) and on substituting the value of k1 in Eq. (34), we
get the conditions as stated in Theorem 4.

α{(N∗ −Y∗)(β0Y∗ +λ0B∗)}2 < d{β(N∗)Y∗ +B∗λ(N∗)}2 (38)

2φ2{(N∗ −Y∗)λ(N∗)}2 < θ0
2{β(N∗)Y∗ +B∗λ(N∗)}2 (39)

Appendix B. Proof of Theorem 4.2

Proof. We consider the Lyapunov function,

U = {
(Y −Y∗)−Y∗(lnY − lnY∗)

}+ K1

2
(N −N∗)2+K2

{
(B−B∗)−B∗(lnB− lnB∗)

}
(40)

On differentiating Eq. (39) with respect to ‘t’, we get

U̇ = Ẏ
Y

(Y −Y∗)+K1Ṅ(N −N∗)+K2(B−B∗)
Ḃ
B

(41)

U̇ =
{
−(N −Y )Bλ(N)

YY∗ (Y −Y∗)2 −
(

β(N∗)+λ(N∗)
B∗

Y∗

)
(N−N∗)(Y −Y∗)

−
(

β0+λ0
B
Y∗

)
(N −Y )(N −N∗)(Y −Y∗)+ λ(N∗)(N−Y )

Y∗ (Y −Y∗)(B−B∗)
}

(42)
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By choosing K1 = β(N∗)Y∗+λ(N∗)B∗
αY∗ , we can write the equation Eq. (41) as:

U̇ =−
{

(N −Y )Bλ (N)

YY∗

}(
Y −Y∗)2

+
{
−1
4
(β(N∗)+ B∗

Y∗λ(N∗))(Y −Y∗)2− (β0+λ0
B
Y∗ )(Y −N)(Y −Y∗)(N −N∗)−K1d(N−N∗)2

}

+
{
−1
2
(β(N∗)+ B∗

Y∗λ(N∗))(Y −Y∗)2+ λ(N∗)(N−Y )

Y∗ (Y −Y∗)(B−B∗)− 1
2
K2θ0(B−B∗)2

}

+
{
−1
4
(β(N∗)+ B∗

Y∗λ(N∗))(Y −Y∗)2+K2φ(B−B∗)(Y −Y∗)− 1
2
K2θ0(B−B∗)2

}
(43)

For U̇ < 0, the following inequalities must satisfy for all values of parameters.
{
(β0+λ0

B
Y∗ )(N−Y )

}2

<

{
β(N∗)+ B∗

Y∗λ(N∗)
}
K1d (44)

α

{
(β0Y∗ +λ0Bm)

A
d

}2

< d
{
β(N∗)Y∗ +λ(N∗)B∗}2 (45)

and,
{
(N −Y )

λ(N∗)
Y∗

}2

<

{
β(N∗)+ B∗

Y∗λ(N∗)
}
K2θ0 (46)

2 {K2φ}2 <

{
β(N∗)+ B∗

Y∗λ(N∗)
}
K2θ0 (47)

By combining the inequalities Eqs. (45)–(46)

2φ2 {
(N−Y )λ(N∗)

}2
< θ20

{
β(N∗)Y∗ +λ(N∗)B∗}2 (48)

2φ2
{
A
d

λ(N∗))
}2

< θ20
{
β(N∗)Y∗ +B∗λ(N∗)

}2 (49)

Hence the non-trivial equilibrium point is non-linearly stable in Ω provided the following
inequalities holds.

α

{
(β0Y

∗ +λ0Bm)
A
d

}2

< d
{
Y∗β(N∗)+B∗λ(N∗)

}2 (50)

2φ2
{
A
d

λ(N∗))
}2

< θ20
{
β(N∗)Y∗ +B∗λ(N∗)

}2 (51)


