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Abstract: Breast cancer is one of the most common cancers in the world and seriously threatens the health of women

worldwide. Prognostic models based on immune-related genes help to improve the prognosis prediction and clinical

treatment of breast cancer patients. In the study, we used weighted gene co-expression network analysis to construct a

co-expression network to screen out highly prognostic immune-related genes. Subsequently, the prognostic immune-

related gene signature was successfully constructed from highly immune-related genes through COX regression and

LASSO COX analysis. Survival analysis and time receiver operating characteristic curves indicate that the prognostic

signature has strong predictive performance. And we developed a nomogram by combing the risk score with multiple

clinical characteristics. CIBERSORT and TIMER algorithms confirmed that there are significant differences in tumor-

infiltrating immune cells in different risk groups. In addition, gene set enrichment analysis shows 6 pathways that

differ between high- and low-risk group. The immune-related gene signature effectively predicts the survival and

immune infiltration of breast cancer patients and is expected to provide more effective immunotherapy targets for the

prognosis prediction of breast cancer.

Introduction

Breast cancer is a biologically heterogeneous disease (Desantis et
al., 2011). Breast cancer is the most common cancer affecting
women worldwide, and its incidence and mortality are
expected to increase significantly (Greaney et al., 2015). In
developing countries, the incidence of these cancers is
expected to increase proportionally and is estimated to grow
55% and the mortality rate of 58% within 20 years (Villarreal-
Garza et al., 2013). Breast cancer is mainly classified into 4
major subtypes based on the presence/absence of critical
molecular biomarkers estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth factor 2 (HER2),
namely ER+/PR+/HER2− (luminal A), ER+/PR+/HER2+
(luminal B), and ER−/PR−/HER2+, and triple-negative breast
cancer (TNBC) (Abubakar et al., 2019). Extensive research on
breast cancer has promoted cytotoxic and targeted therapies,
improving survival rates (Sledge et al., 2014). Although related
treatment has improved, there are still challenges in combating

tumor heterogeneity due to prognostic prediction difficulty
(Eisenstein, 2015). Therefore, the paper outlines the relevant
immune signatures for the prognostic diagnosis of breast cancer.

The immune microenvironment of breast cancer can be
considered at the local (intratumor), regional (in the breast)
and distant (metastatic) levels (Coleman et al., 2013).
Abnormal gene expression in immune microenvironment
cells affected the progression of the disease (Finak et al.,
2008; Hu et al., 2005). The impact of the immune
environment on breast cancer progression depends on the
cancer phenotype and inflammatory cell subsets in the
breast cancer microenvironment (Desantis et al., 2011).
Breast cancer may be an immunogenic tumor. Immune
escape is mainly caused by histocompatibility complex
(MHC) class I, abnormal antigen signaling mechanism,
immunosuppressive components (such as HLA-G), Fas and
its ligands to activate apoptosis and overexpression of other
immunosuppressive molecules, such as lymphocyte
activation gene 3 (LAG-3), T cell immunoglobulin and
mucin domain 3 (TIM-3) (Steven and Seliger, 2018).
Immune cell infiltration plays a critical role in regulating
breast cancer development and serves as an independent
indicator for the treatment (Choi et al., 2017).
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Sequencing technology is widely used with the updating of
bioinformatics methods. Molecular markers have shown
excellent prognostic performance with the development of
genome sequencing technology. Multiple biomarker signatures
are developing rapidly to enhance the prognostic prediction of
tumors and demonstrated better performance than a single
biomarker (Kaanane et al., 2019). For example, the 2-gene
signature strongly predicted distant metastasis-free survival and
breast cancer-specific survival (Alsaleem et al., 2020). The
signature served as a genetic marker for predicting breast
cancer patient’s prognosis and may guide clinical management
(Ibrahim et al., 2017). Moreover, the 12-gene prognostic
signature identifies a high risk of death of breast cancer
effectively (Xie et al., 2020). The 17-gene signature effectively
divided breast cancer patients into different survival groups
and served as a candidate prognostic indicator clinically (Qian
et al., 2020). However, the application of gene signatures is
currently controversial and requires more clinical trials to
verify. And immune dysfunction may be why the difference in
survival observed between the patient groups defined by the
gene signature (Ren et al., 2013).

Immune-related gene (IRGs) signature has the potential to
improve the prognosis prediction of breast cancer patients. For
example, the 10-IRG in breast cancer immune infiltration and
tumor-immune interaction has been established based on the
TCGA database (Ren et al., 2013). The IRGs contribute to
longer overall survival (OS) by changing the abundance and
checkpoint expression of tumor-infiltrating lymphocytes
(TIL) in breast cancer (Li et al., 2020). The 130-IRGs helps to
stratify luminal breast tumors patients further to benefit from
checkpoint immunotherapy (Zhu et al., 2019). IRGs-based
gene signatures served as prognostic biomarkers and potential
therapeutic targets for breast cancer (Gordon and Gadi,
2020). Therefore, it is essential to establish an IRG based gene
signature to predict the survival and immune infiltration status.

The paper screened out the common immune genes in
TCGA, GEO, and Immport databases. And we use weighted
gene co-expression network analysis (WGCNA) technology
to construct a co-expression network of these overlapping
genes. We applied univariate COX regression and LASSO
COX regression to build gene signatures based on risk
scores to improve breast cancer survival prediction. Next,
the nomogram is constructed to improve the prediction of
patient survival. The TCGA and GEO data sets were used to
evaluate and verify gene signatures and to predict the
survival of patients. The deconvolution method based on
CIBERSORT obtained the proportion of 22 immune cells in
patient samples. And we used TIMER algorithm to observe
the infiltration changes of signature genes and 7 immune
cells. Finally, we used the gene set enrichment analysis
(GSEA) to analyze IRGs and obtained the different
pathways between high- and low-risk patients.

Materials and Methods

Data source
We obtained transcriptome sequencing and clinical data of
breast cancer patients from TCGA (https://cancergenome.
nih.gov) and GEO (https://www.ncbi.nlm.nih.gov/geo/). The
micro-array data set GSE42568 is queried from the GEO

database for subsequent external study. The cohort contains
mRNA expression data of 1097 cases of tumor tissues and
120 cases of adjacent tissues. Moreover, breast cancer
patients’ clinical data included survival time, survival status,
age, gender, tumor grade, pathological stage, etc. In
addition, 2483 IRGs are obtained from the ImmPort
database (https://immport.niaid.nih.gov). The intersection
IRGs were determined between TCGA, GEO, and ImmPort
databases through Venn diagrams.

Weighted gene co-expression network analysis
We used WGCNA implemented in the R platform program
package to construct a co-expression network of IRGs.
WGCNA is an efficient method for analyzing association
patterns between genes. First, we performed a cluster analysis
on the expression profile to calculate the Pearson correlation
coefficient of the genes and established a correlation matrix:

S ¼ Sij
� � ¼ cor i; jð Þj j½ �
Next, the adjacency matrix was built:

A ¼ aij
� � ¼ power Sij; b

� �� � ¼ Sij
�� ��bh i

Finally, we constructed the topological adjacency matrix:

TOM ¼ xij

� � ¼ lij þ aij
min ki; kj

� �þ 1� aij

" #

Finally, IRGs in the most significant modules are selected
for subsequent analysis.

Development of the prognostic model
The IRGs in the significant WGCNA modules are analyzed
further to obtain gene signatures highly correlated with the
patient’s prognosis. We excluded samples with zero survival
time or missing visit information in the clinical data. First,
univariate COX regression was performed to initially
identify IRGs related to the patient’s survival (P < 0.05).
Then we used the LASSO COX model to construct a
penalty function to get a more refined prognosis model.
LASSO COX regularization can be expressed as:

k �
Xk

i¼1
#ik k

We constructed a risk scoring formula by linear fitting
with the obtained IRGs, which is expressed as:

RS ¼
Xn
i¼1

bi � ExpIRGsi

where Exp is the expression value of IRGs in the sample in the
model, and P is the regression analysis coefficient of each IRG
after multivariate LASSO COX regression analysis.

Validation of the prognostic model
We take the median of the risk score (RS) value as the cut-off
value and divide the samples into high and low-risk groups.
And we use the tROC curve to evaluate the predictive ability
of 1-year, 3-year and 5-year survival period, and further use
Kaplan–Meier method to draw survival curves of high and
low-risk groups (P < 0.05). The R package “pheatmap” was
used to draw a heat map, and the R package “timeROC” was
used to draw a time-dependent ROC curve.
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Establishment of a prognostic nomogram
The patient’s risk score and various clinical information were
used as analysis variables, univariate and multivariate COX
regression were performed, and the model C index was
calculated to calculate the patient’s prognosis (P < 0.05).
The R package “rms” was used to construct a nomogram
and a calibration chart to score the patients’ 1-year, 3-year,
and 5-year survival prognosis and fit and calibrate it with
the real survival situation.

Tumor-infiltrating immune cell analysis
The expression of 22 immune cells in patients was
calculated through CIBERSORT. The immune infiltration
differences between the high- and low-risk groups were
analyzed by comparing the expression differences of
immune cells between both groups. The correlation
between prognostic IRGs and various immune cell
infiltration is analyzed and visualized through the TIMER
database.

Gene set enrichment analysis
We used “high” and “low” as phenotypic labels based on the
expression value of RS predicted by patients. The R package
“limma” was used to calculate the logFC value of the high
and low-risk group genes. The R package “clusterprofiler”
was used to perform GSEA analysis on the whole genome
and run 1,000 genome permutations to obtain a
standardized enrichment score (NES). P < 0.05 was used as
the cut-off value for determining a significantly enriched
gene set. The pathways enriched by differentially expressed

genes in samples of high- and low-risk patients were
obtained and visualized.

Statistical analysis
All R language packages for statistical analysis are implemented
on the “R v4.0.2” platform. P < 0.05 is statistically significant in
the study. TCGA data source (https://cancergenome.nih.gov/),
GEO data source (https://www.ncbi.nlm.nih.gov/geo), ImmPort
data source (https://immport.niaid.nih.gov); CIBERSORT
website (https://CIBERSORT.stanford.edu/); TIMER website
(https://cistrome.shinyapps.io/timer/).

Results

The identification of prognostic-related IRGs modules
1279 overlapping IRGs expression data were screened for
WGCNA analysis (Fig. 1A). By clustering the samples
(Fig. 1B), we constructed a scale-free network in WGCNA
with β = 3 (Fig. 1C). Six IRGs modules were identified
(Fig. 1D). The module correlation analysis showed that blue
and brown had a strong correlation (Fig. 2A). Fig. 2B is a
network heat map based on hierarchical clustering of IRGs
and sample data. Correlation analysis of 6 modules and
multiple clinical phenotypic parameters found that the blue
module strongly correlates with status (cor = 0.3, P = 0.002)
(Fig. 2C). The IRGs significance average of all IRGs is used
to characterize the correlation between the module and the
cancer phenotype. The relationship between the blue module and
each phenotype is the most significant (P = 4.7e−24) (Fig. 2D).

FIGURE 1. Determination of immune genes. (A) 1279 immune genes overlapped by the three databases of TCGA, GEO and Immport. (B)
Clustering of immune genes. (C) Determining the weighted value β that satisfies the scale-free network. (D) IRGs dendrogram of gene modules,
including gray modules (genes not classified as modules).
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The blue module (N = 160) was identified as a collection of IRGs
related to the prognosis of breast cancer.

Prognosis model performance in both training and validation cohort
69 IRGs significantly related to patient survival in the GEO
training set were identified (P < 0.05) through univariate COX
regression. The results were further optimized using LASSO
COX analysis to obtain a 5-IRGs signature (IL6ST, PLCG1,
PLXNA1, TBK1, and VAV3) that significantly affected the
survival of patients (Table 1; Figs. 3A and 3B). Thus, the
signature-based prognosis model was established. The model
formula is RS = (−0.096) × IL6ST+ 0.3352 × PLCG1+ 0.3200 ×
PLXNA1+ (−0.1694) × TBK1+ −0.0418 × VAV3.

The 101 patients in the training set were divided into low-
and high-risk group by calculating the patients’ risk score (50
vs. 51, Figs. 3C and 3D). Correspondingly, the 1,037 patients

fell into low- and high-risk patients in the validation set (519
vs. 518). Compared with low-risk patients, the expression of 5
IRGs signatures in high-risk patients in the training and
validation cohort showed a significant up-regulation (Figs. 3E
and 4). The results based on the GEO training set clarified
that low-risk significantly improved patient survival
compared with high-risk one (P < 0.0001; Fig. 5A). Time
receiver operating characteristic (tROC) analysis shows that
the risk model has outstanding predictive capability, and its
1-, 3-, and 5-year AUCs are 0.776, 0.739, and 0.765 (Fig. 5B).
Moreover, the K–M curve analysis based on the TCGA
validation set (P = 0.0016; Fig. 5C) and the time-dependent
ROC analysis results confirmed the above results. In the
TCGA validation set, the risk model predicts the AUCs of the
1-year, 3-year, and 5-year patient survival rates to be 0.657,
0.641, and 0.663, respectively (Fig. 5D).

FIGURE 2. The establishment of a co-expression network to determine the key immune genes. (A) Module clustering and module-module
correlation analysis diagram. (B) Topological overlap matrix diagram of immune genes. (C) Module and clinical traits (time, survival status,
age, and grade) traits. The blue modules show a significant correlation. (D) Distribution of the gene significance of 7 modules.
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Incorporation of critical clinical features into the nomogram
Next, we performed univariate and multivariate COX regression
on the patients’ risk score and various clinical features. The
results show that risk score, grade, and stage in the training
and validation set significantly correlate with the patients’
overall survival (Table 2). Subsequently, risk score and grade
were incorporated into the nomogram. The training group-
based nomogram (C-index = 0.82; Fig. 6A) provided a better
survival prediction than that using risk score (C-index = 0.76)
and grade (C-index = 0.67). The overall survival of 1-, 3- and
5-year survival rate predicted by the nomogram closely
matches the best performance prediction (Fig. 6B). Consistent
with the above results, in the validation set, the prognostic
factor risk score (C-index = 0.64) and stage (C-index = 0.63)

were compared with the risk score (C-index = 0.63), and the
nomogram (C-index = 0.65) established by combining the two
prognostic factors; Fig. 6C) has a better ability to predict
prognosis. Simultaneously, the validation group-based
calibration curve verified the prognostic prediction ability of
the nomogram (Fig. 6D).

Immune cell infiltration of risk groups
The deconvolution method-based CIBERSORT algorithm
revealed the proportion of 22 immune cells of patients in
different risk groups. The results of immune cells
proportion in the training and the validation set show that
macrophages M0, T cells gamma delta, T cells CD8, T cells
CD4 memory resting, and macrophages M2 are the five

TABLE 1

The 5-IRGs signature obtained from the univariate COX regression and LASSO COX analysis

Symbol Univariate COX regression analysis LASSO

HR 95% CI P-value coefficient

PLXNA1 3.257381 2.0093–5.2808 1.66E−06 −0.09620172

IL6ST 0.6340937 0.50918–0.78965 4.70E−05 0.33518286

PLCG1 4.223717 2.0969–8.5078 5.52E−05 0.32003058

TBK1 0.2888914 0.15404–0.5418 0.0001088 −0.16944156

VAV3 0.6971649 0.57342–0.84762 0.0002967 −0.04179395

FIGURE 3. Model construction for predicting immune gene signatures. (A) Distribution of the coefficient in the LASSO COX model. (B)
LASSO COX algorithm identified 5 gene signatures related to survival based on the ten-fold cross-coefficient verification. (C) Classification
of 101 patients based on risk scores. (D) The distribution of patient survival status in the high-risk and the low-risk group. (E) The expression
distribution of five important gene signatures in 101 patients.
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most abundant immune cell types in the patients’ immune system
(Figs. 7A and 7B). Difference analysis shows that there are
differences in the infiltration of the 5 immune cells in high-risk

and low-risk patients in the training set (Fig. 7E). The 8 types
of immune cells have different infiltration differences in various
risk groups in the validation set (Fig. 7F).

FIGURE 4. Differences in the
expression patterns of 5 immune
gene signatures in the high-risk and
the low-risk group. (A, B) Based on
the gene expression data in the
TCGA and GEO databases, the 5
immune gene signatures in the
high-risk and the low-risk group.
There are significant differences
between both group (P < 0.05).

FIGURE 5. Evaluating the accuracy of the prediction model. (A) In the GEO cohort, the survival curve (Kaplan–Meier curve) of the high-risk
and low-risk groups grouped according to the median value of the risk score showed that the survival rate of patients in the high-risk and low-
risk groups was significantly different (P < 0.0001). (B) ROC curve of GEO cohort, 0.776, 0.739, 0.766 for 1, 3 and 5 years, respectively, showing
that the risk score can predict patient survival. (C) The survival curve showed that the survival rate of patients in the high-risk and low-risk
groups was significantly different in the TCGA cohort (P < 0.0001). (D) The AUCs of ROC curves of the TCGA cohort for 1, 3 and 5 years were
0.657, 0.641, and 0.663, respectively. The risk score shown good performance in predicting patient survival.
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TIMER obtained the immune infiltration changes mediated
by prognostic markers of IRGs (Fig. 8). The results showed that
in the prognostic signature of 5-IRGs (IL6ST, PLCG1, PLXNA1,
TBK1, and VAV3), the high expression of each IRG significantly
increased the infiltration level of 6 immune cells. And the low
expression of PLCG1 and PLXNA1 significantly promotes the
purity of the tumor, and the increased expression of TBK1 and
VAV3 can significantly promote the tumor’s purity.

Analysis of GSEA
Pathway Differences GSEA shows 6 pathways that differ
between high- and low-risk patients (Fig. 9). The 6 pathways

are cytokine signaling in immune system, developmental
biology, innate immune system, proteasome, adaptive
immune system, cell cycle and GPCR ligand binding.

Discussion

Breast cancer is a disease that seriously threatens women’s
health worldwide. Prognostic prediction is the most effective
way to reduce breast cancer mortality (Desantis et al., 2011).
However, it is difficult to achieve this goal due to the lack of
specific biomarkers. The study used WGCNA to construct a
co-expression network to screen out highly immune-related

TABLE 2

Univariate and multivariate COX regression on the patients’ risk score and various clinical
characteristics, including age, grade, risk score, pT, pN, pM

Characteristics HR 95% CI P-value

GEO Age 0.9971757 0.96917–1.026 0.8457217

Grade 4.271313 1.9929–9.1547 0.000189336

RiskScore 0.750026 0.39993–0.4066 3.38E−10

TCGA pT 2.113814 1.3805–3.2368 0.000575091

pN 2.845809 1.8935–4.2772 4.88E−07

pM 1.382118 0.79437–2.4047 0.252095

Stage 3.089217 2.1072–4.529 7.54E−09

Age 0.9995417 0.98444–1.0149 0.9529407

RiskScore 2.442611 1.6759–3.5601 3.38E−06

FIGURE 6. (continued)
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prognostic genes. Subsequently, the 5-IRG genes signatures were
successfully constructed from highly IRGs through COX
regression and LASSO COX analysis. The survival and tROC
curves show that the prognostic signature has a strong predictive
capability. Then, a nomogram composed of risk score and grade
markers was constructed by combining with the risk score of the
prognostic signature and multiple clinical characteristics.
CIBERSORT and TIMER algorithm-based analysis confirmed
significant differences in tumor-infiltrating immune cells between
high- and low-risk groups. Besides, GSEA shows 6 pathways that
differ between high- and low-risk patients.

We successfully constructed a prognostic signature based
on IRGs through WGCNA and LASSO COX algorithms for
the prognostic stratification of breast cancer. The LASSO
COX algorithm solved the over-fitting problem that often
occurs in the construction of prognostic models in the past
(Meng et al., 2020). The risk score based on the prognostic
signature showed that the overall survival of patients in the
high-risk group was significantly shorter than that of the
patients in the low-risk group. Moreover, the nomogram
shows good performance in predicting the overall survival
rate. The tROC analysis shows that the AUCs of the 1-, 3-, 5-
year OS is 0.776, 0.739, and 0.766, which is comparable to
the previous models (Piñero-Madrona et al., 2020; Wu et al.,
2021), indicating our model has good prognostic performance.

The study uses various bioinformatics analyses to
determine potential immune targets related to the prognosis
of breast cancer. The immunotherapy and prognosis of

breast cancer previously discussed by authors did not screen
prognostic genes (Baxevanis et al., 2021; Choi et al., 2017).
However, we conducted a WGCNA analysis to identify the
modular genes most related to breast cancer prognosis. In
addition, previous studies did not report the immune
infiltration characteristics of the prognostic biomarkers of
breast cancer (Chen et al., 2015; Wang et al., 2020). In the
study, the TIMER and CIBERSORT algorithms calculated
the change of immune cell infiltration, which promotes
prognosis prediction in breast cancer. And we performed
univariate COX regression and LASSO COX to determine
5-IRGs signature. These results provided a prospect for
exploring breast cancer-related treatment methods and
prognostic prediction.

The 5-IRGs signatures demonstrated good predictive
capability for patients’ survival. IL6ST (gp130), an essential
signaling subunit of interleukin-6 cytokine family receptors,
plays a vital role in promoting the growth and metastasis of
breast cancer (Ibrahim et al., 2017; Ren et al., 2013).
Besides, IL6ST serves as a potential therapeutic target for
breast cancer and participates in cancer development
(Selander et al., 2004; Tian et al., 2019). PLCG1 is highly
correlated with tumorigenesis and the development of breast
cancer. PLCG1 regulated EGF receptor-driven invasion (Li
et al., 2009), cell proliferation, and apoptosis of BC cells
(Markova et al., 2010). FGFR1 promotes the occurrence of
small cell carcinoma, and PLCG1 is the effector of FGFR1
signal transduction (Kim et al., 2020). PLXNA1 is a member

FIGURE 6. Construction and verification of nomogram. (A) Construction a nomogram based on the risk score and grade in GEO. (B) Prediction
of the survival of 1, 3, and 5 years in GEO. (C) Construction of a nomogram based on risk score and stage in TCGA. (D) Survival prediction for 1,
3, and 5 years in TCGA.
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of the Plexin A family and is involved in regulating malignant
cells and nervous tissue in cancer specimens (Müller et al.,
2007). PLXNA1 may be a biomarker for identifying breast
cancer cases vulnerable to immunotherapy (Naik et al.,
2017). The increase of PLXNA1 expression promotes the
growth of prostate tumors and impacts the tumor’s
biochemical recurrence, metastasis, and poor survival rate
(Ren et al., 2018). TBK1 (Tumor Necrosis Factor TNF) is a
ubiquitously expressed serine-threonine kinase, belonging to
“non-standard” IκB kinases (IKKs) (Fitzgerald et al., 2003).
Cytokines regulated by TBK1 affect tumor microenvironment
and angiogenesis (Czabanka et al., 2008). TBK1’s autophagy
regulation and anti-tumor immunity play an important role

in melanoma and non-small cell lung cancer (Cooper et al.,
2017; Durand et al., 2018; Eskiocak et al., 2017). VAV3
oncogene is involved in various cell signal transduction
processes, including cytoskeletal organization, calcium influx,
gene transcription, cell transformation, cell proliferation, and
apoptosis (Bustelo, 1996). It is the upstream mediator of Ras-
related C3 botulinum toxin substrate 1, enhancing the
transcriptional activity of estrogen receptor alpha (ER-α) in
breast cancer cells (Rosenblatt et al., 2011). Also, VAV3 is
epigenetically regulated in breast cancer development (Loss
et al., 2010). And studies have shown VAV3 was an
independent prognostic risk factor in gastric cancer (Tan
et al., 2017). Chen et al. (2015) found that the up-regulated

FIGURE 7. Analysis of the level of immune infiltration in the immune microenvironment of breast cancer. (A) Immune infiltration ratio of 22
immune cells in GEO. (B) Immune infiltration ratio of 22 immune cells in TCGA. (C) Correlation among 22 immune cells in GEO. (D) 22
immune cells in TCGA. (E) The difference in the infiltration of 22 immune cells in the high- and low-risk groups of the GEO cohort. (F) The
difference in the infiltration of 22 immune cells in the high- and low-risk groups of the TCGA cohort.
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VAV3 leads to a poor prognosis of BC patients, consistent with
our results.

We used the deconvolution algorithm to infer the
proportion of 22 immune cell subgroups from the tumor
transcriptome. And we found that macrophages M0,
macrophages M2, T gamma delta cells, T CD4 memory
resting cells, and T CD8 cell infiltration are highly correlated.
The interaction between tumor and immune cells affects
tumor development, and also serves as a prognostic feature of
immunotherapy. The study shows that M0 macrophages, M2
macrophages, Tγδ cells, T CD4 memory resting cells, and T
CD8 cell infiltration are highly correlated. They are also the
five most abundant immune cell types in the patient’s immune
system. Macrophage-related cells inhibit T cell proliferation
through the interaction of PD-1/PD-L1 cells to eliminate
CD8+ T cells, one of the critical suppressors of tumor cells.
Suppressing the immune activity of CD8+ T cells causes the
tumor cells in TME to escape (Fang et al., 2021). As the main
component of the immune microenvironment, macrophages
are a very heterogeneous cell population. Macrophages M0 are
mainly derived from the extravasation of monocytes in the

blood circulatory system. Noy and Pollard (2014) found that
the M2 macrophage with a prominent immunomodulatory
function and demonstrated a poor prognosis. A higher
proportion of M2 macrophages in breast cancer is associated
with insufficient chemotherapy response, suggesting a potential
drug resistance (Denardo et al., 2011). In the previous
literature, T cells CD8 is mainly involved in adaptive immune
defense, the most common is a prognostic association, and kill
cancer cells through multiple mechanisms. There is also this
discussion about FOXP3+ regulatory T cells CD4 memory
resting in some malignant tumors. The results demonstrated
the potential of tumor-related T cells and macrophages as
breast cancer biomarkers and may provide a guide for future
immunotherapy.

Immune-related gene features involve six signaling
pathways, namely the immunomodulatory interaction between
lymphocytes and non-lymphocytes, interleukin-4 and
interleukin-13 signaling pathways, protein phosphorylation after
translation; hematopoietic cell lineage, tumor necrosis factor
signaling pathway, the interaction of viral proteins with
cytokines and cytokine receptors. The tumor necrosis factor

FIGURE 8. TIMER analysis. The prognostic marker-mediated immune infiltration changes were obtained through TIMER to prove the
intuitive gene regulation.
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signaling pathway (TNF-α) is one of the essential pro-
inflammatory cytokines found in the TME of breast cancer
patients and promotes tumor progression and metastasis. Thus,
TNF-α affects the development of breast cancer tumors,
including primary tumor development, metastasis, and disease
recurrence (Cruceriu et al., 2020).

Breast cancer is heterogeneous, and the gene signature of
the study is immune-related genes. In the study, different
immune infiltrating cells were calculated based on the risk
scores of 5 immune gene signatures. And the high-risk

group was associated with a poor prognosis. Therefore,
identifying relevant immune genes and differential immune
cells is beneficial to breast cancer immunotherapy. Breast
tumor cells with defective DNA damage response activate
the STING/TBK1/IF3 pathway, recruiting pro-inflammatory
cytokines and T cells. Therefore, a combination of drugs
and immunotherapy is more effective in treating breast
cancer (Brown et al., 2021). PLCG1 and VAV3 are key
molecules of TCR signal transduction. TCR initiates a
complex cascade of signal events, leading to cytoskeletal

FIGURE 9. GSEA analysis revealed 6 pathways that there are significant differences between high-risk and low-risk patients.
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reorganization and transcription upregulation required for
T cell activation (Kogure and Kataoka, 2017). VAV3
regulates a variety of cell signaling pathways by mediating
the activities of Rho family members, including the signaling
pathways of T cell and B cell receptors in vertebrates (Shen
et al., 2017). Therefore, the gene signature provided may
guide breast cancer immunotherapy.

Conclusion

We use an integrative bioinformatics method to investigate
breast cancer IRGs. The prognostic 5-IRGs signatures
effectively improve the prognostic prediction and immune
infiltration of breast cancer patients and are expected to
provide more effective immunotherapy targets for the
prognosis assessment of breast cancer.
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