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Abstract: Single-cell sequencing technologies have rapidly progressed in recent years, and been applied to characterize

stem cells in a number of organs. Somatic (postnatal) stem cells are generally identified using combinations of cell

surface markers and transcription factors. However, it has been challenging to define micro-heterogeneity within

“stem cell” populations, each of which stands at a different level of differentiation. As stem cells become defined at a

single-cell level, their differentiation path becomes clearly defined. Here, this viewpoint discusses the potential synergy

of single-cell sequencing analyses with in vivo lineage-tracing approaches, with an emphasis on practical

considerations in stem cell biology.

Introduction

Somatic stem cells play essential roles in tissue development and
regeneration of postnatal animals. There are a variety of somatic
stem cells in the body, such as in the blood, intestine, central
nervous system, skin, hair follicle and bone (Gehart and
Clevers, 2019; Gonzales and Fuchs, 2017; Matsushita et al.,
2020b; Mendelson and Frenette, 2014; Metcalf, 2007;
Mizuhashi et al., 2018; Méndez-Ferrer et al., 2010; Notta et al.,
2016; Santos et al., 2018; Wei and Frenette, 2018). These cells
are defined as cells capable of self-renewal, which is the ability
to continue reproducing themselves, and multipotency, which
is the ability to generate multiple types of differentiated cells
(Blanpain et al., 2004). In vivo lineage-tracing approaches
using a tamoxifen-inducible creER-loxP system, which is a
reproducible method to track the whole life of a cell in vivo,
have substantially contributed to the somatic stem cell
research with the unparalleled capability to reveal stem cells’
dynamics within their native environment (Kretzschmar and
Watt, 2012).

Here, we present our view on the utility of incorporating
in vivo lineage-tracing approaches into single-cell sequencing
omics studies. Single-cell sequencing analyses have rapidly
progressed in the last five years, with incredible potential
not only to unveil cellular diversity and distinct molecular
signature of individual cells, but also to help place years of
the previous research in an overall context within the tissue.

Various approaches have been developed and become
available to researchers, including single-cell RNA-seq, assay
for transposase-accessible chromatin (ATAC)-seq, and their
combined multiome seq (Liu et al., 2020; Stuart and Satija,
2019). These sequencing techniques have been applied to a
diversity of research fields, including stem cell biology,
developmental biology and cancer biology. One area that
has lagged behind is the integration of a temporal factor,
which typically relies on computational methods to infer
dynamic lineage relationships within static samples. While
some studies have attempted to resolve this issue by
collecting samples at various time points, the differentiation
pathway is largely inferred from computational predictions.

Here, we discuss the potential synergistic effect of in vivo
lineage-tracing approaches and single-cell sequencing analyses
in stem cell biology.

Viewpoint

It is hypothesized that stem cells stand at the top of the
hierarchy of a given cell lineage within a given tissue. A small
number of stem cells are considered to provide the origin of
many differentiated cell types downstream. In the field of
skeletal stem cells, single-cell sequencing analyses have
revealed the fundamental heterogeneity of bone marrow
stromal cells; these analyses have computationally inferred
the existence of stem cells within the lineage (Baryawno et al.,
2019; Tikhonova et al., 2019; Wolock et al., 2019; Zhong
et al., 2020). Practically, the key to success to interrogate stem
cells by single-cell analyses is how efficiently the target stem
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cell populations can be enriched prior to loading on to the single-
cell sequencing platforms. The bone marrow is predominantly
composed of non-skeletal/mesenchymal cells including blood
cells and vascular cells; therefore, bone marrow stromal cells
and their subset skeletal stem cells represent only an extremely
small fraction –0.001~0.01%–of all bone marrow cells
(Pittenger et al., 1999). In order to selectively harvest this
small amount of “stem cell populations”, target cells need to
be isolated by a panel of cell surface markers or fluorescent
proteins such as GFP for fluorescence-activated cell sorting
(FACS) (Chan et al., 2015; Chan et al., 2018; Matsushita et al.,
2021c; Morikawa et al., 2009). This step can be used
to remove the “contaminants”–hematopoietic and vascular
cells–so that we can sufficiently enrich stem cells for
downstream analyses (Matsushita et al., 2021a).

There are two distinct ways to remove contaminant cells
and enrich putative stem cell populations. A positive selection
method uses a combination of markers that are expressed by
target cell populations to capture stem cells, while a negative
selection method uses a combination of markers that are not
expressed by target cell populations to exclude contaminant
cells. For example, mouse SSCs are negatively selected at first
as CD45-CD31-Ter119-, and then purified using both positive
and negative markers, as CD51+CD90-CD105-CD200+ (Chan
et al., 2015). There are certain advantages and disadvantages
of positive and negative selection. Positive selection with
“stem cell markers” allows to capture only a small and
limited group of cells for downstream analyses. It is therefore
possible that other important stem cell populations can be
excluded from the analyses. In contrast, negative selection
aiming to remove contaminant cells allows to capture a wide
breadth of relevant cell types. However, it is possible that the
important stem cell populations become underrepresented
due to an exceeding number of non-stem cell populations.
Although cell sorting with negative selection is generally
associated with a greater level of contamination of wanted
cell types, cell sorting with positive selection also inevitably
involves with at least to some degrees of contamination. It is
therefore important to combine these two selection methods
to enrich the intended cell population.

The enriched populations of “stem cells” can be subjected
to single-cell sequencing analyses, although such analyses will
almost always discover substantial heterogeneity within the
given populations. The putative trajectories of stem cell
differentiation can be inferred from single-cell sequencing
data; however, the inherent limitation of this approach is that
cell surface markers or fluorescent proteins used to enrich
these cells can only capture a snapshot of the cell population
involved in the dynamic process of tissue remodeling.

How can we add a temporal factor to this analysis to
account for the dynamic change of the cell populations over
time? In vivo lineage-tracing approach using a tamoxifen-
inducible creER-loxP system with a fluorescent reporter such
as a Rosa26-loxp-stop-loxp-tdTomato allele (Madisen et al.,
2010) can be used to track the fate of a cell through the
entire life. The fluorescent protein is permanently expressed
by the cell that has undergone recombination, which can be
temporarily induced in the presence of tamoxifen specifically
within the cells in which creER proteins are present. Because
the recombination is irreversible and occurs in the genome,

the targeted cells undergoing the removal of the stop cassette
continue to express the fluorescent protein even after
subsequent replication and differentiation of daughter cells.
This enables selective marking of cells expressing the “driver”
gene, as well as their descendant cells, which differentiated
from the originally targeted cells.

To successfully define the differentiation pathway of
stem cells using in vivo lineage-tracing approaches, it is
extremely important to select the right creER line with the
right “driver” gene. Ideally, the “driver” gene should target
only stem cells, but not their downstream populations. This
would allow to visualize the in vivo lineage progression of
stem cells over time. For example, parathyroid hormone-
related protein (PTHrP) is an ideal marker for skeletal stem
cells in the growth plate. Pthrp-creER line specifically marks
slow-cycling chondrocytes in the resting zone of the growth
plate (Mizuhashi et al., 2018), and only a small subset of
these cells undergo asymmetric cell divisions and
differentiate into columnar chondrocytes, making it an ideal
model to track the fate of somatic stem cells at single-cell
levels. In contrast, the Rosa26 locus is ubiquitously active.
When Rosa26 is used as the driver (Ventura et al., 2007),
essentially all the cells, including stem cells and their
descendants, are simultaneously labelled, making it
impossible to define the precursor-product relationship.
These two extreme scenarios give us the examples how
important it is to select the right “driver” gene for in vivo
lineage-tracing experiments.

We need to keep in mind that, despite the substantial
utility, in vivo lineage-tracing approaches have several
caveats. First, due to inherent ineffectiveness, the tamoxifen-
inducible creER-loxP system induces recombination only in
a small subset of target cell populations. It is important to
verify the recombination efficiency in a target cell
population, and its correlation with endogenous gene
expression using immunohistochemistry or more reliable
knock-in fluorescent reporter lines on the short-chase
samples. Second, it is possible that tamoxifen-induced
recombination can artificially select a certain stem cell
population. Third, tamoxifen may have its own adverse
effects on a variety of tissues, such as brains (Lee et al., 2020).

In contrast, constitutively active cre lines that do not
require tamoxifen injection to label stem cells and their
descendants. Constitutively active cre lines with “driver”
genes active in putative stem cell populations, such as Prrx1-
cre (Logan et al., 2002), Lepr-cre (Zhou et al., 2014) and Ctsk-
cre (Debnath et al., 2018) in the skeletal stem cell field, have
been utilized to define the stem cell function in a variety of
contexts. However, the inherent limitation of this system is
that there is no “temporal” control in recombination, making
it impossible to determine when differentiation from stem
cells to differentiated cells have occurred. Therefore, it
requires extreme caution to make conclusions on the lineage
relationship among diverse groups of cells.

By applying single-cell sequencing analyses to lineage-
marked cells, particularly those marked by the tamoxifen-
inducible creER-loxP system, we can add a temporal factor
and capture the snapshots of cells at various stages of
differentiation at a single cell level (Kester and van
Oudenaarden, 2018; Wagner and Klein, 2020). These
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combinatory methods are useful in unraveling dynamic
cellular events, such as stem cell differentiation in normal
tissue growth and regeneration.

Generally speaking, cell surface markers or fluorescent
reporter proteins are expressed by a given specific cell type at
the time of analysis. In contrast, in vivo lineage-tracing
approaches can mark the entire lineage including stem cells
and all of their descendant cells, at least theoretically (Fig. 1).
By taking advantage of a combinatory lineage-tracing and
single-cell RNA-seq approaches, we recently demonstrated a
new concept in bone regeneration (Matsushita et al., 2020a)
using a Cxcl12-creER transgenic line that is specifically active
in quiescent pre-adipocyte-like marrow stromal cells. This
combinatory approach allowed us to identify a previously
uncharacterized “intermediate” cell populations (Fig. 2).
Although a small number of skeletal stem cells had been
thought to be solely responsible for bone regeneration, our
new findings shed light on the possibility that their
downstream terminally differentiated cells are also involved
in bone regeneration through the mechanism involving
cellular plasticity (Matsushita et al., 2021b).

Pseudo-time analyses predict the differentiation trajectory of
the single cells based on the single-cell sequencing data, in which a
longer trajectory is indicative of a more difficult differentiation
pathway. However, pseudo-time analyses sometimes may
conflict with the actual known lineage dynamics. It might be
possible in the future through innovative computational
methods to determine how the actual rate of cell differentiation
observed by lineage-tracing differs from pseudo-time-based
computational predictions, and facilitate the development of
more accurate computational modalities. Moreover, single-cell
seq analyses can be performed in multiple time points before
and after the event, and then multiple single-cell seq data can
be computationally combined. The trajectory of cell
differentiation can be estimated by Pseudo-time analysis in a
“static” single-cell sequencing dataset; however, the relevance of
the results can be greatly improved by combining these with
“real-time” data from biological samples from several time
points. In the referenced case, “real-time” single-cell seq

analyses in multiple sequential time points lead to the
assumption that the intermediate state cells that “de-
differentiated” from Cxcl12+ reticular cells can “re-differentiate”
into Col1a1+ osteoblasts (Fig. 2). The combination of lineage-
tracing and single-cell sequencing analyses has been used in
various fields, including in neuron, bone marrow, heart and
brain (Figueres-Oñate et al., 2021; Magnusson et al., 2020; Su et
al., 2018; Tikhonova et al., 2019). Although the existing
computational trajectory analysis tools could resolve lineage
differentiation at least to some extent in these studies, there still
remains substantial room for improvement in order to
accurately predict in vivo lineage progression of individual cells
over multiple time points.

The advantage of the in vivo lineage-tracing approach
based on the tamoxifen-inducible creER-loxP system is its
versatility. The differentiation stage of lineage-marked cells
can be further stratified by standard immunofluorescent
staining or other cell type-specific transgenic marker genes.
In other instances, the Rosa26 reporter gene for creER-loxP
recombination can be altered to a multicolor format such as
to the Rosa26-Confetti (Livet et al., 2007) allele that permits
in vivo clonal analysis. These additional modalities could be
further combined with single-cell sequencing approaches to
facilitate the understanding of stem cell behaviors in vivo.

“Drop-out”, in which a gene is observed at a moderate
or high expression level in one cell but is not detected in
another cell, is the inherent weakness of single-cell
sequencing analyses, especially those utilizing drop-seq
based approaches (Kharchenko et al., 2014). It occurs due to
the low abundance of mRNAs in individual cells and the
inefficient capture of the transcriptome, as well as the
stochasticity of mRNA expression (Qiu, 2020). Importantly,
the drop-out rate is potentially higher on “stem cells”
because of low mRNA levels and small numbers of
expressed genes, compared to differentiated cells (Islam et
al., 2011). It remains to be determined whether in vivo
lineage-tracing approaches can help to resolve this issue by
knowing which progenitor cell subpopulation preferentially
differentiates down different lineages.

FIGURE 1. Single-cell sequencing analysis of the target cells enriched by fluorescence-activated cell sorting (FACS). (a) Cell surface markers or
fluorescent reporter proteins can mark a group of cells expressing the marker genes at a given time (“Snapshot”). (b) In vivo lineage-tracing system
can mark a specific group of cells descended from a specific type of cell, therefore including a “temporal factor”. Single-cell sequencing analyses can
reveal the heterogeneity of the lineage-marked cells with inference to precursor-product relationships.
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Vision of the Future

A variety of methods for single-cell sequencing analyses have been
developed in recent years, making it possible to infer cellular
dynamics in a more detailed manner. Multiome analyses,
including those measuring both RNA and chromatin accessibility
simultaneously, facilitate more detailed characterization of
individual cells. A number of innovative algorithms facilitating
single-cell computational analyses have been developed (Liu et al.,
2020; Stuart and Satija, 2019). With a myriad of single-cell
computational approaches available, what is needed in the future
is a strategy for high-dimensional integrative analyses. Because
single-cell sequencing analysis alone can only provide an
estimated landscape of diverse cell populations, validation is the
key step to sustain the authenticity of the computational findings.
Using identified cell type-specific markers, we can analyze specific
cell populations. Subsequently in combination with in vivo
lineage-tracing approaches, we can dissect cellular dynamics of a
given cell population in time and space. This combinatory
approach can be applied to multiple scenarios, to understand
fundamental biological phenomena or evaluate therapeutic
responses. Furthermore, the combination of single-cell sequencing
and in vivo cell lineage approaches can facilitate deeper
understanding of native stem cells, not only in the context of
tissue growth and homeostasis, but also in the context of more
dynamic situations involving stem cell mobilization, such as
tissue regeneration, tumor growth and drug response; these
interventions are likely to induce drastic changes to somatic stem
cells. Single-cell sequencing analyses can also potentially unravel
multicellular dynamics. By applying in vivo lineage-tracing
approaches to disease models, the impact of genetic diseases on
cell lineages can be investigated. We expect that the in-depth

biological information obtained from in vivo cell-lineage analyses
will synergize well with single-cell sequencing analyses and
improve their accuracy.

Currently, more refined techniques for in vivo lineage-
tracing approaches have been developed, including those
using the barcode technology in which the clonal information
is encoded by DNA sequence barcodes. This barcode-based
cell marking can theoretically allow unlimited numbers of
clonal labeling, unlike fluorescence-based cell marking with a
limited number. It is anticipated that barcode-based lineage-
tracing approaches using the CRISPR/Cas9 system will
become an important modality in the field in stem cell
biology (Wagner and Klein, 2020).

Taken together, we conclude that the combination of single-
cell analyses and in vivo lineage-tracing approaches produce a
substantial synergistic effect in advancing stem cell biology.
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