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Abstract: The outcomes of ovarian cancer are complicated and usually unfavorable due to their diagnoses at a late stage.

Identifying the efficient prognostic biomarkers to improve the survival of ovarian cancer is urgently warranted. The

survival-related pseudogenes retrieved from the Cancer Genome Atlas database were screened by univariate Cox

regression analysis and further assessed by least absolute shrinkage and selection operator (LASSO) method. A risk score

model based on the prognostic pseudogenes was also constructed. The pseudogene-mRNA regulatory networks were

established using correlation analysis, and their potent roles in the ovarian cancer progression were uncovered by

functional enrichment analysis. Lastly, ssGSEA and ESTIMATE algorithms was used to evaluate the levels of immune

cell infiltrations in cancer tissues and explore their relationship with risk signature. A prediction model of 10-

pseudogenes including RPL10P6, AC026688.1, FAR2P4, AL391840.2, AC068647.2, FAM35BP, GBP1P1, ARL4AP5,

RPS3AP2, and AMD1P1 was established. The 10-pseudogenes signature was demonstrated to be an independent

prognostic factor in patient with ovarian cancer in the random set (hazard ratio [HR] = 2.512, 95% confidence interval

[CI] = 2.03–3.11, P < 0.001) and total set (HR = 1.71, 95% CI = 1.472–1.988, P < 0.001). When models integrating with

age, grade, stage, and risk signature, the Area Under Curve (AUC) of the 1-year, 3-year, 5-year and 10-year Receiver

Operating Characteristic curve in the random set and total set were 0.854, 0.824, 0.855, 0.805 and 0.679, 0.697, 0.739,

0.790, respectively. The results of functional enrichment analysis indicated that the underlying mechanisms by which

these pseudogenes influence cancer prognosis may involve the immune-related biological processes and signaling

pathways. Correlation analysis showed that risk signature was significantly correlated with immune cell infiltration and

immune score. We identified a novel 10-pseudogenes signature to predict the survival of patients with ovarian cancer,

and that may serve as novel possible prognostic biomarkers and therapeutic targets for ovarian cancer.

Introduction

Ovarian cancer is one of the most common malignant tumors
in female genitals (Siegel et al., 2020). On account of the fact
that ovary is located in the deep pelvic cavity, it is not easily
detected at the early stage (Stewart et al., 2019; Vargas,
2014). As a result, substantial cases accounting for
approximately 70% of newly patients was diagnosed with
distant metastasis, and thus resulted in a high mortality rate

(Hudson et al., 2008; Lengyel, 2010). Although the
improved therapeutics such as the traditional radical surgery
combined with adjuvant chemotherapy were extensively
applied, the patients with ovarian cancer eventually show
easy relapse after surgery and become drug resistant, leading
to a low probability of overall five-year survival (Jayson et
al., 2014; Li et al., 2018). Therefore, identifying the
molecular markers in ovarian cancer prognosis is of
significance to guide appropriate treatment and improve
survival outcome of patients with ovarian cancer (Qazi and
Raza, 2021; Zhang et al., 2021).

Pseudogenes are genomic DNA sequences that are
similar to the corresponding functional genes, but they lose
their original function to code for proteins due to the
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accumulation of various mutations (Proudfoot, 1980).
Pseudogenes are evolutionally conserved, and are present in
diverse organisms (Stensmyr, 2016; Wen et al., 2011).
Although initially considered as non-functional fragments
(Proudfoot, 1980; Zhang et al., 2003b), in the past few years,
pseudogenes have been certified to be ubiquitous and crucial
in regulating a variety of cellular processes via acting as key
regulators at transcriptional and post-transcriptional levels
(An et al., 2017; Groen et al., 2014). Accumulating evidence
has extensively investigated and established that
dysregulation of pseudogenes plays critical roles in
development and human diseases progression, and these
deregulated pseudogenes may serve as promising therapeutic
targets for diseases, especially in cancers (Lou et al., 2019b;
Yue et al., 2019). For example, PTENP1, the first identified
pseudogene, was reported to be down-regulated in
numerous cancers including breast cancer, melanoma, and
endometrioid endometrial carcinoma (Chen et al., 2018;
Gao et al., 2019; Poliseno et al., 2011). Besides, methylation
of the PTENP1 as potential epigenetic marker was
associated with a more favorable prognosis for endometrial
cancer (Kovalenko et al., 2021). Epigenetic modifications
have been reported to be widely involved in the
development of ovarian cancer and can be used as a
potential biomarker as well as a therapeutic target for the
disease (Qazi et al., 2021; Rattanapan et al., 2018; Singh et
al., 2019). A study indicated that LDHAP5 was upregulated
and played an unfavorable role in overall survival of ovarian
serous cystadenocarcinoma by regulating the EGFR
expression (Lin et al., 2020). Another evidence shown that
MYC-regulated pseudogene HMGA1P6 was one of the
overexpressed pseudogenes in ovarian cancer, and its
expression was negatively correlated with patient survival.
Mechanistically, HMGA1P6 promoted ovarian cancer cell
malignancy by acting as a ceRNA to enhance HMGA1 and
HMGA2 expression (Tian et al., 2020). All these findings
suggest that abnormal alterations of pseudogenes occur
broadly in multifarious cancers, and they may serve as
fulfilling markers for accurately prognosticating clinical
outcome in patients with ovarian cancer.

In this study, we performed a comprehensive analysis of
pseudogene expression with disease prognosis in a total of 373
ovarian cancer patients from The Cancer Genome Atlas
(TCGA) project. Finally, we identified a relevant 10-
pseudogenes signature-based risk score with a distinguished
ability to predict the survival prognosis of patients with
ovarian cancer in the random cohort and validated its
prognostic value in the total cohort. Additionally, the
potential roles and molecular mechanisms of these survival-
related pseudogenes in the carcinogenesis and progressions
of ovarian cancer were further elucidated by functional
enrichment analysis.

Materials and Methods

Data source and pre-processing
Gene expression profiles and clinical information of serous
ovarian carcinoma were downloaded from the TCGA
data portal (https://portal.gdc.cancer.gov/). Pseudogenes
were annotated based on the Ensembl Genomes

(http://ensemblgenomes.org/). The raw data were normalized
with log2(x+1) transformation. After excluding cases without
complete survival information and genes whose missing rates
were more than 50% in total samples, a total of 373 patients
and 6113 pseudogenes were utilized in the current study.
Samples were randomly separated into a random set
(accounting for 60%) and a total set via the R caret package.
The random set was used to identify survival-related
pseudogenes and structure a pseudogenes risk signature, and
all samples were taken for internal validation.

Establishment of pseudogenes risk signature
Univariate Cox regression analysis was applied to screen
candidate prognostic pseudogenes, which was considered
statistically significant with a threshold value of P < 0.01.
The LASSO-Cox regression analysis was conducted to filter
the pool of survival-related pseudogenes. Subsequently, the
stepwise multivariate Cox regression analysis was used to
further select pseudogenes. A risk signature was established
according to the stepwise Cox regression coefficient
multiplied with its pseudogene expression. The risk score
formula was constructed as follows:

risk score =
PN

i¼1
ðExpi � CoeiÞ (N: the number of selected

pseudogenes; Expi: the expression value of each pseudogene;
Coei: stepwise Cox regression coefficient). The ovarian
cancer patients were assigned to the high-risk group and the
low-risk group according to the median risk scores from the
random set.

Construction of the pseudogene-mRNA regulatory network
As the previous evidence indicates that the Pearson
correlation coefficient is one of the mostly adopted and
moderate methods for measuring the interactions among
genes based on their expression levels (Song et al., 2012), we
then utilized this methodology to construct the regulatory
networks between the pseudogenes and mRNAs. The
coefficient values of Pearson correlation analysis can range
from +1 to −1, and if the coefficient value lies between
±0.50 and ±1, then it means to be a strong correlation
(Mukaka, 2012). So potential target mRNAs with |r|-value
≥0.5 was finally selected, and then Cytoscape 3.5.1 was
applied to construct pseudogene-mRNA regulatory networks.

Functional enrichment analysis
To investigate the biological roles of the 10-pseudogenes
signature in ovarian cancer, gene ontology (GO) and Kyoto
encyclopedia of genes and genomes (KEGG) pathway
enrichment analysis were performed for the identified genes
related to the candidate pseudogenes in the regulatory
networks by using the clusterProfiler package in R (Yu et
al., 2012). All three GO categories, i.e., biological process
(BP), cellular component (CC), and molecular function
(MF) were analyzed. GO terms and KEGG pathways with
BH-corrected P < 0.05 were considered as significant.

Correlation analysis of immune cell infiltration
The single-sample gene set enrichment analysis (ssGSEA) was
applied to calculate the infiltration data of multiple immune
cells in the samples. The immune score, tumor purity,
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estimate score and stromal score of each cancer sample were
calculated with the ESTIMATE algorithm (Yoshihara et al.,
2013). Pearson correlation analysis was used to analyze the
relationship between risk scores and immune infiltration
level, as well as immune scores.

Statistical analysis
The baseline characteristics of ovarian cancer patients were
described using summary statistics. Continuous variables were
shown as mean ± standard deviation and categorical variables
were expressed as counts (percentages). The differences
comparison of categorical variables and continuous variables
between the groups were analyzed using χ2 test and
independent Student’s t-test, respectively. The Kaplan–Meier
survival curves were adopted to evaluate the overall survival
time between high-risk group and low-risk group. Hazard
ratio (HR) and 95% confidence intervals (CI) were estimated
by Cox proportional hazards regression model. The area under
the curve (AUC) of the receiver-operator characteristic (ROC)
was calculated and compared to estimate the performance of
the prognostic classifier and factors in predicting survival
outcome of patients with ovarian cancer. The time-dependent
ROC curve analysis was performed by using survival ROC
package, and LASSO regression was conducted using glmnet R
package. ssGSEA analysis was performed with GSVA R
package. Nomogram plots and calibration curve were done
with the rms package. The prognostication value of the
nomogram was verified internally using 1,000 bootstrap
samples. Decision curve analysis (DCA) were performed to
verify the clinical role of the nomogram for the 10-
pseudogenes signature with ggDCA package. All statistical
analyses were performed using R software version 4.0.2 and
P < 0.05 was considered statistically significant.

Result

Patient characteristics
After removal of the samples with inadequate survival
information, a total of 373 patients with ovarian cancer were
analyzed in the present study. The clinicopathological
characteristics and survival status of the patients were
summarized in Table 1. Patients were randomly divided into
a random cohort (N = 224) and all patients served as an
internal validation cohort.

Prognosis-related pseudogenes selection
A total of 6113 pseudogenes were identified from the TCGA
database with the criterion that pseudogenes with a missing
rate ≥50% was excluded. 44 survival-associated pseudogenes
with P-value <0.01 were found according to the univariate
Cox regression analysis in the random cohort (Fig. 1A).
To select appropriate parameters for constructing a
predictive signature, LASSO regression with 10-fold cross
validation was executed, and 22 pseudogenes were chosen
(Figs. 1B and 1C). After filtration by stepwise Cox
regression analysis 10 pseudogenes including RPL10P6,
AC026688.1, FAR2P4, AL391840.2, AC068647.2, FAM35BP,
GBP1P1, ARL4AP5, RPS3AP2 and AMD1P1 were finally
determined in the signature. Information about the 10
pseudogenes was obtained through the GENCODE database

(https://www.gencodegenes.org/) and is presented in Table 2.
Among these survival relevant pseudogenes, as shown in
Fig. 1D, RPL10P6, AC026688.1, FAR2P4, FAM35BP, ARL4AP5
and AMD1P1 acted as risk factors for ovarian cancer prognosis
(HR > 1), and AL391840.2, AC068647.2, GBP1P1 and
RPS3AP2 were served as protective factors with HR < 1.

Pseudogenes-based risk score model construction and
assessment
A prognostic risk score formula for ovarian cancer was
established based on Cox stepwise regression model. Risk
score = (RPL10P6 × 0.138) + (AC026688.1 × 0.380) +
(FAR2P4 × 0.113) + (AL391840.2 × −0.267) + (AC068647.2
× −0.162) + (FAM35BP × 0.272) + (GBP1P1 × −0.186) +
(ARL4AP5 × 0.219) + (RPS3AP2 × −0.292) + (AMD1P1 ×
0.264). The risk score for each patient was then calculated
according to the formula. Univariate and multivariate Cox
regression analyses were performed to evaluate the
prognostic value of the risk score, and the results presented
in Fig. 2A proved that the risk score served as an
independent prognostic indicator for ovarian cancer (HR =
2.779, 95% confidence interval [CI] = 2.263–3.413,
P < 0.001; HR = 2.512, 95% CI = 2.03–3.11, P < 0.001;
respectively). The patients were separated into a high-risk
group and a low-risk group based on the median risk scores.
The Kaplan–Meier (KM) curve suggested that the patients
with high-risk scores exhibited worse overall survival (OS)
than those in the low-risk group (median survival time
[MST]: 31.6 months vs. 67.6 months, P < 0.001; Fig. 2B).
The ROC curve was used to evaluate the prediction efficacy
of the risk score in ovarian cancer survival. We found that
the AUCs (area under the ROC curve) of the risk signature
for the survival probability at 1-year, 3-year, 5-year, and
10-year OS were 0.854, 0.824, 0.855 and 0.805 (Fig. 2C),

TABLE 1

Clinicopathological characteristics and survival status of the
patients in the training cohort and the validation cohort

Characteristics Training
cohort
(N = 224)

Validation
cohort
(N = 373)

P-value

Age, years 60.2 ± 11.6 59.6 ± 11.4 0.531

Grade, n (%) 0.780

I/II 22(9.8) 43(11.5)

III/IV 195(87.1) 320(85.8)

Unknown 7(3.1) 10(2.7)

Stage, n (%) 0.523

I/II 14(6.2) 20(5.4)

III/IV 192(85.7) 331(88.7)

Unknown 18(8.0) 22(5.9)

Survival time, months 40.3 ± 32.2 39.5 ± 31.4 0.775

Survival status, n (%) 0.655

Death 134(59.8) 230(61.7)

Alive 90(40.2) 143(38.3)
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respectively. As presented in Fig. 2D, with the increase of risk
scores, the number of patient deaths ascended; the expression
level of AC026688.1, FAR2P4, FAM35BP, AMD1P1,
RPL10P6, and ARL4AP5 were upregulated, whereas the
expressions of AL391840.2, AC068647.2, GBP1P1 and
RPS3AP2 decreased. In addition, the 10-pseudogenes-based
prognostic signature were further to validate its prediction
performance in the total cohort. Similarly, as shown in
Fig. 3, the gene signature remained to be a valuable
prognostic factor for patients with ovarian cancer after
adjusting for other clinical characteristics (HR = 1.71, 95%
CI = 1.472–1.988, P < 0.001). The patients with high-risk
score have a shorter MST than those with low-risk score in
the validation set (36.1 vs. 60.0 months, P < 0.001). The
AUC value of survival at 1-year, 3-year, 5-year, and 10-year
was found to be 0.679, 0.697, 0.739 and 0.790, respectively.
Additionally, in agreement with the results in the random
cohort, the expression level of AL391840.2, AC068647.2,
GBP1P1 and RPS3AP2 were downregulated, and other

genes were upregulated with an increase in risk scores.
Correspondingly, the number of patient deaths increased.
These findings suggested that the risk signature based on
10-pseudogenes had outstanding ability to predict the
prognosis of ovarian cancer.

Construction of the nomogram and its effectiveness evaluation
To visualize the survival prediction application, a nomogram
integrating the risk score and clinical characteristics including
age, grade and stage was constructed for forecasting 1-, 3- , 5-
and 10-year OS rates. As assumed in Fig. 4A, the points of the
factors indicate their corresponding contribution to the
survival probability, and the total score could be calculated
according to the nomogram to estimate 1-year, 3-year, 5-
year, and 10-year OS for ovarian cancer patients. Compared
to the clinical properties, the risk signature exhibited
superior predictive performance in the nomogram. The
primary and internally validated C-indices for the
nomogram were 0.759 and 0.680, respectively. The AUCs of

FIGURE 1. Screening pseudogenes used for constructing the risk signature for ovarian cancer. (A) Univariate Cox regression analysis in the
random cohort, in which the pseudogenes were significantly associated with ovarian cancer prognosis (P < 0.05). The red circle indicates an
unfavorable role (HR > 1) of pseudogenes on ovarian cancer prognosis, and green circle represents a beneficial role (HR < 1) of pseudogenes on
cancer prognosis. (B) The most appropriate log (Lambda) value in the LASSO model. (C) The selected 22 pseudogenes in LASSO model. (D)
Multivariate Cox regression analysis was performed and 10 pseudogenes (RPL10P6, AC026688.1, FAR2P4, AL391840.2, AC068647.2,
FAM35BP, GBP1P1, ARL4AP5, RPS3AP2 and AMD1P1) were selected to construct the risk signature.
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TABLE 2

Information about the ten pseudogenes

Pseudogene Genome location Gene type Description

RPL10P6 Chromosome 2:
214,847,128-214,847,445

Processed pseudogene Ribosomal Protein L10 Pseudogene 6

AC026688.1 Chromosome 5: 154,493,576-
154,494,743

Processed pseudogene Vacuolar Protein Sorting-Associated Protein 37A
(VPS37A) Pseudogene

FAR2P4 Chromosome 2:
131,279,290-131,309,068

Transcribed unprocessed
pseudogene

Fatty Acyl-CoA Reductase 2 Pseudogene 4

AL391840.2 Chromosome 6:
79,552,794-79,553,160

Processed pseudogene Solute Carrier Family 19, Member 3 (SLC19A3)
Pseudogene

AC068647.2 Chromosome 3:
151,797,047-151,808,249

Transcribed unprocessed
pseudogene

Arylacetamide Deacetylase (Esterase) (AADAC)
Pseudogene

FAM35BP Chromosome 10:
46,610,474-46,652,025

Transcribed unprocessed
pseudogene

Family with Sequence Similarity 35Member B, Pseudogene

GBP1P1 Chromosome 1:
89,407,679-89,426,243

Transcribed unprocessed
pseudogene

Guanylate Binding Protein 1 Pseudogene 1

ARL4AP5 Chromosome 6:
150,934,968-150,935,566

Processed pseudogene ADP Ribosylation Factor Like GTPase 4A Pseudogene 5

RPS3AP2 Chromosome 16:
1,477,830-1,478,583

Processed pseudogene Ribosomal Protein S3A Pseudogene 2

AMD1P1 Chromosome 10:
20,350,049-20,351,100

Processed pseudogene Adenosylmethionine Decarboxylase 1 Pseudogene 1

FIGURE 2. The characteristics of the 10 pseudogenes-based signature and assessment in the random cohort. (A) Univariate and multivariate
analysis of the risk signature and clinical factors in the random cohort. (B) Survival curves for high-risk and low-risk groups classified by the
risk signature in the random cohort. (C) ROC curves for the 1-, 3-, 5- and 10-year survival according to the 10-pseudogene risk signature in the
random cohort. (D) The risk score distributions, patient survival and expression profiles of the 10 pseudogenes in the random cohort.
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the 1-year, 3-year, 5-year and 10-year OS of the nomogram in the
random set were 0.857, 0.819, 0.849 and 0.781, and in the internal
validation cohort were 0.731, 0.710, 0.719 and 0.741, respectively
(Fig. 4B). The calibration curve was applied to evaluate the
predictive power of the nomogram for cancer outcomes, and it
showed good agreements at 3-year and 5-year between the
predicted OS and actual OS of patients with ovarian cancer in
the random cohort, and in the total cohort (Fig. 4C). Finally,
DCA was applied to render the clinical validity to the
nomograms. As shown in Figs. 4C–4E, the 10-pseudogenes
signature-based nomogram dramatically outperformed the
default strategies of treat-all-patients scheme or the treat- none
scheme with the threshold probabilities ranging from 12 to 84%
at 3-year OS, 17 to 100% at 5-year OS in the random cohort
(Fig. 4D), and 20 to 90% at 3-year OS, 48 to 88% at 5-year OS
in the total cohort (Fig. 4E).

GO and KEGG pathway enrichment analysis of pseudogenes-
based risk signature
Considering that pseudogenes might plays biological actions
via regulating coding genes in the cancer progression, we
used the Pearson correlation analyses to establish the
pseudogene-mRNA regulatory networks under the criteria
that |r| ≥ 0.5 means effective associations among them.
Specifically, the networks between 5 pseudogenes and 533
mRNAs were ultimately constructed by using cancer

samples (Fig. 5). To investigate the biological function of
pseudogenes, GO and KEGG pathway enrichment analyses
of the targeted mRNAs were performed using the R
clusterProfiler package. Through GO analysis displayed in
Figs. 6A–6C, it was found that pseudogene-related protein-
coding genes were highly enriched in T cell activation,
response to interferon-gamma, regulation of lymphocyte
activation, MHC protein complex, immune receptor activity,
cytokine receptor activity and other immune-related
functions. Also, as shown in Fig. 6D, KEGG pathway
enrichment analysis revealed that downstream genes of
these enrolled pseudogenes were significantly enriched in
multiple pathways, including antigen processing and
presentation, allograft rejection, cell adhesion molecules,
graft-versus-host disease, type I diabetes mellitus,
autoimmune thyroid disease, virus infection and so on.
These results suggested that the selected pseudogenes may
be involved in cellular immune function.

The risk score was associated with immune cell infiltration
The immune destruction has been recognized as an emerging
hallmark of cancer and is closely related with the cancer
prognosis. Evidence indicates that there were abundant
inflammatory cells infiltrated in ovarian cancer, not only
around the tumor but also in the tumor matrix, and the
extraordinary tumor-immune microenvironment might

FIGURE 3. The characteristics of the 10 pseudogenes-based signature and assessment in the total cohort. (A) Univariate and multivariate
analysis of the risk signature and clinical factors in the total cohort. (B) Survival curves for high-risk and low-risk groups classified by the risk
signature in the total cohort. (C) ROC curves for the 1-, 3-, 5- and 10-year survival according to the 10-pseudogene risk signature in the total
cohort. (D) The risk score distributions, patient survival and expression profiles of the 10 pseudogenes in the total cohort.
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affect the efficiency of treatment with chemotherapy (Jimenez-
Sanchez et al., 2020). To further explored the associations of the
pseudogenes-based risk signature with cellular immune
function, ssGSEA algorithm and ESTIMATE method were
employed to assess the relative immune cell infiltration of
each cancer sample. As it can be seen from Fig. 7A, there was
a distinct difference in the infiltration of immune cells
between the high-risk group and the low-risk group.

Correlation analysis between 28 immune cells assessed
by the ssGSEA approach and risk scores prompted that 22
types of immune cells were significantly negatively

correlated with risk score (Fig. 7B). Additionally, after
ESTIMATE algorithm was processed, the risk score was
found to be negatively correlated with immune score and
ESTIMATE score, and it was positively correlated with
tumor purity (Fig. 7C). Compared with the low-risk group,
the high-risk group had lower tumor purity but higher
ESTIMATE scores and stromal scores (Fig. 7D). As the
evidence above indicates, the risk signature was observably
related to the immune status of ovarian cancer, and high-
risk scores were associated with decreased tumor purity and
enhancive stromal composition in ovarian cancer cell.

FIGURE 4. Construction of the nomogram and its effectiveness evaluation. (A) A nomogram was established based on the risk signature, age,
grade, and stage for predicting survival of patient with ovarian cancer. (B) ROC curves for evaluating the efficiency of the nomogram in the
random cohort and total cohort. (C) Calibration analysis of the 10 pseudogenes-based signature containing nomogram for 1-, 3-, 5- and 10-
year overall survival in the random cohort and total cohort, respectively. (D) Decision curve analysis of the nomogram for the 1-, 3-, 5- and 10-
year survival in the random cohort. (E) Decision curve analysis of the nomogram for the 1-, 3-, 5- and 10-year survival in the total cohort.
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Discussion

Ovarian cancer is a fatal gynecological malignancy with a high
mortality rate (Siegel et al., 2020). In recent years, with the
evidence accumulating, pseudogenes have been proved to
exert critical roles in diverse physiological and pathological
processes, which reflected that the pseudogenes may serve as
a promising biomarker to illuminate the underlying

mechanisms of oncogenesis and disease development (Lu et
al., 2015). In the present study, we found that a risk
signature including 10 pseudogenes (RPL10P6, AC026688.1,
FAR2P4, AL391840.2, AC068647.2, FAM35BP, GBP1P1,
ARL4AP5, RPS3AP2, and AMD1P1) was significantly
associated with the prognosis of ovarian cancer patients.
Among the survival-related pseudogenes, RPL10P6,
AC026688.1, FAR2P4, FAM35BP, ARL4AP5 and AMD1P1

FIGURE 5. Construction of
pseudogene-mRNA regulatory networks.
The coding-genes related to the five
pseudogenes with |r| ≥0.5 were used
to construct the pseudogene-mRNA
regulatory networks. Blue squares
represented pseudogenes, which are
located at the cores of the networks.

FIGURE 6. The functional roles of the 10-pseudogene risk signature. (A) Top 10 gene oncology terms in biological process. (B) Top 10 gene
oncology terms in cellular component. (C) Top 10 gene oncology terms in molecular function. (D) The volcano plot of KEGG pathway analysis.
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had detrimental effects on ovarian cancer prognosis.
Conversely, AL391840.2, AC068647.2, GBP1P1 and RPS3AP2
played profitable roles on cancer survival. When integrated

with clinical characteristics such as age, grade and stage, the
composite clinical and pseudogenes-based signature showed
improved prognostic accuracy in all data sets. Bioinformatic

FIGURE 7. The associations between the risk score and tumor immune cell infiltration. (A) the proportion difference of each immune cell
between the low-risk group and the high-risk group using the CIBERSORT method. (B) The correlations between the risk score and immune
cell infiltration. (C) Using ESTIMATE’s algorithm, the ESTIMATE Score, the Immune Score, Stromal Score and Tumor Purity of each sample
gene were quantified, and their associations with the risk signature. (D) The comparisons of the Immune Score, Stromal Score and Tumor
Purity among risk groups.
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analysis indicated that the pseudogenes-based risk score was
associated with the infiltration of immune cell subtypes and
might influences the progression and prognosis of ovarian cancer
though participating in immune-related signaling pathways.

With the widespread application of high-throughput
technologies in cancer research, unprecedented large-scale
tumor data have generated and accumulated in the
international public database such as TCGA, Gene
Expression Omnibus and Oncomine databases. Using the
multi-group sequencing data, researchers have built gene
expression profile-based signatures for prognostic prediction
in patients with ovarian cancer (An et al., 2018; Zheng et al.,
2020). Nevertheless, previous studies aiming to construct a
prognostic model have focused on mRNAs and ncRNAs,
neglecting pseudogenes as potential biomarkers in ovarian
cancer. Increasing evidence has demonstrated that
pseudogenes are key members of the noncoding transcripts
from the genome, and alteration of their expressions provides
clues for remarkable biomarkers in pathogenesis and
progression of multiple diseases, including malignancy
(Poliseno et al., 2015). For instance, pseudogene PTTG3P
promote breast cancer progression through modulation of
cell cycle-associated processes and induce a poor prognosis
(Lou et al., 2019a). The low expression of pseudogene
SLC6A10P was found to prolong the recurrence time of
ovarian cancer by qPCR validation (Ganapathi et al., 2016).
Six pseudogenes and eight lncRNAs were identified to
potentially inhibit hsa-miR-363-3p-SPOCK2 axis in ovarian
cancer, thereby promoting the occurrence of ovarian cancer
(Lou et al., 2019b). Pseudogenes may provide new directions
for prospective cancer diagnostics and treatment. In this
study, we established a novel 10-pseudogene signature that
could successfully classify patients with ovarian cancer into
two groups with different OS. The Kaplan–Meier curves were
applied to prove the prognostic role of the 10-pseudogenes
risk signature in ovarian cancer, and the results declared that
the patients with high-risk scores had a worse survival rate
than patients in the low-risk group. Multivariate analyses
demonstrated that the risk score may be a clinically
independent prognostic predictor for ovarian cancer.

Furthermore, the prognostic model integrating with risk
scores, age, grade, and stage presented excellent predictive
performance indicated by the AUC values and calibration
curve. These findings confirmed that the novel model could
offer an accurate survival prediction for patients with
ovarian cancer.

Recent progresses have confirmed that pseudogenes have
broad and multifaceted spectrum of activities in human
cancers (Cheetham et al., 2020). Among the 10 prognostic
related pseudogenes, GBP1P1 was reported to be
overexpressed in endometriosis and cervical cancer
(Roychowdhury et al., 2020; Wang et al., 2015). Another
evidence shown that GBP1P1 was found to be down-
expressed, and reduced GBP1P1 was significantly correlated
with poor overall survival of hepatocellular carcinoma (Sui
et al., 2018). In addition, GBP1P1 as an immune marker
was upregulated in the latent tuberculosis infection-
progression group (Perumal et al., 2020). However, for other
nine pseudogenes, their underlying functional role in
cancers remains unclear. Therefore, we tried to figure out

the mechanisms of the enrolled pseudogenes in the
tumorigenesis and progression of ovarian cancer via
bioinformatics analysis. A pseudogene-mRNA regulatory
network was structured via correlation analysis. With a high
correlation threshold value, the networks comprising only
five pseudogenes and hundreds their interactional mRNAs
were ultimately constructed. Especially deserves to be
mentioned, correlation analysis implied that GBP1P1 was
strongly associated with multiple immune-related and
cancer-related genes (TAP1, GBP1, CXCL10, CXCL11,
GBP4). GBP1P1 is the pseudogene for Guanylate-binding
protein 1 (GBP1), which is a guanosine-5’-triphosphate
(GTP)-binding protein. A strong relationship between GBP1
and immunity has been reported in previous study (Fisch et
al., 2019). High expression of GBP1 was associated with a
better overall survival rate and it may have an anti-tumor
effect in epithelial ovarian cancer (Carbotti et al., 2020).
Moreover, studies have found that GBP1 and GBP4 are
associated with CD8+ T cell infiltration and have conducive
roles in cancers prognosis (Wang et al., 2018; Xu et al.,
2020). Interestingly, it has been demonstrated that GBP1
can enhance the migration and invasion ability of tumor
cells and promote the proliferation (Ji et al., 2019). In
addition, TAP1 was a subunit of the transporter associated
with antigen processing (TAP), which was critical for
antigen presentation and related to CD8 + T cells infiltration
in tumor microenvironment (Cresswell et al., 1999; Maimela
et al., 2019; Zeng et al., 2019). Chemokines CXCL10 and
CXCL11 could shape the ability of the immune response by
driving the polarization and biological function of different T
cell subsets, including effector CD4+ T cells, CD8+ effector T
cells and regulatory T cells, and also make a critical impact
on the development and progression of cancer (Karin and
Razon, 2018; Tokunaga et al., 2018). Based on the above
evidence, we could speculate that GBP1P1 might affect the
occurrence and development of ovarian cancer through
immune regulation, especially the regulation of cytotoxic T
lymphocytes (CTL). Previous study has suggested that high
GBP1 expression improves the prognosis of ovarian cancer
(Carbotti et al., 2020). Meanwhile, our study revealed that
GBP1P1 showed significant positive correlation with GBP1.
We could deduce that GBP1P1 might be a protective factor
for ovarian cancer, which was consistent with the results of
our survival analysis. We had no reason to doubt that
GBP1P1 could be a prognostic biomarker for ovarian
cancer. Subsequently, functional enrichment analysis also
revealed that pseudogene-related genes are involved in
multiple immune functions and pathways, especially
enrichment in T cell activation, virus, and cytokine. These
findings further suggested that these pseudogenes may
regulate CTL during the immune process (Boon et al.,
2002), thus affecting the occurrence, development, and
prognosis of ovarian cancer.

The tumor microenvironment has been reported to play
a vital role in the ovarian tumorigenesis, cancer progression
and metastasis (Jiang et al., 2020; Jochems and Schlom,
2011). So, we conducted immune infiltration analysis to
further explore the characteristics of tumor-infiltrating
immune cells in ovarian cancer and their relationship with
pseudogenes-base risk signature. We found that risk scores
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were negatively correlated with immune scores, and patients
with high-risk scores had a low level of tumor immune
infiltration, which meant the risk signature we constructed
altered the level of immune infiltration and thus reflected
the cancer prognosis. Based on the results of this study, a
high-risk score was associated with a poor prognosis for
ovarian cancer. In particular, CTL immune cells such as
CD8+ T cells were negatively correlated with risk score,
suggesting that these immune cells contribute to an
advantageous prognosis of ovarian cancer. This was
identical with the previous research results (Sato et al., 2015;
Zhang et al., 2003a). However, how pseudogenes regulate
immune cells remains to be solved in the subsequent studies.

There may be some possible limitations in this study.
First, the number of patient samples that can be obtained
from the TCGA database was limited, and the most patients
were White or Asian. Extending our findings to other ethnic
patients should be with great caution. Furthermore, among
the 10 selected pseudogenes, only GBP1P1 could be found
to be related to cancer, and the remaining pseudogenes have
not been clearly studied at present. Eventually, the results
indicated that pseudogenes were likely to influence the
occurrence and development of ovarian cancer through
immunomodulatory mechanism, which was of great
significance for revealing the function of pseudogenes in
cancer. Due to all mechanical analysis in our study was
descriptive, further functional experiments are needed to
decipher the underlying mechanisms of the 10 pseudogenes.
In future studies, it is hoped that more ovarian cancer
samples and detailed clinical information could be obtained
to validate the roles of the 10-pseudogene signature in
cancer prognosis.

In conclusion, we constructed a 10 pseudogenes risk
signature to predict ovarian cancer survival. Patients with
high-risk scores showed significantly poorer prognosis.
Importantly, it was suggested that pseudogenes might play
pivotal roles in the immune regulation process, and thus
affecting the ovarian cancer progression and prognosis.
These findings provide a new understanding of
pseudogenes. The risk signature constituted by 10
pseudogenes has the potential to be employed as a novel
prognostic biomarker of ovarian cancer.
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