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Abstract: NLRP3 inflammasome-mediated cell pyroptosis aggravates the development of cerebral ischemia/reperfusion

(I/R) injury, and the aim of this study is to investigate the potential utilization of the Chinese medicine, Puerarin, in

treating this disease. Through conducting in vitro and in vivo experiments, the present study illustrated that Puerarin

regulated LncRNA double homeobox A pseudogene 8 (DUXAP8)/miR-223-3p axis to inactivate NLRP3-mediated

pyroptotic cell death, resulting in the attenuation of I/R injury. Specifically, the cerebral I/R injury in rat models and

hypoxia/reoxygenation (H/R) in primary hippocampus neuron (PHN) cells were inducted, which were subsequently

exposed to Puerarin treatment. As expected, we validated that Puerarin suppressed cell pyroptosis and rescued cell

viability in I/R rat hippocampus tissues and H/R PHN cells. Next, through bioinformatics analysis, we noticed that

miR-223-3p targeted both LncRNA DUXAP8 and NLRP3 mRNA, and both LncRNA DUXAP8 ablation and miR-

223-3p overexpression inactivate NLRP3-mediated cell pyroptosis to rescue cell viability in H/R PHN cells.

Interestingly, we evidenced that Puerarin restrained LncRNA DUXAP8 expressions, but upregulated miR-223-3p in

I/R rat tissues and H/R PHN cells, and the protective effects of Puerarin on H/R PHN cells were abrogated by

overexpressing LncRNA DUXAP8 and silencing miR-223-3p. Collectively, we concluded that Puerarin regulated

LncRNA DUXAP8/miR-223-3p/NLRP3 signaling cascade to attenuate I/R injury.

Introduction

Ischemic stroke accounts for approximately 87% of all stroke
patients worldwide, and about 15 million people suffer from
stroke each year (Benjamin et al., 2018). Currently, the main
treatment therapies for cerebral ischemia includes
pharmacological and mechanical reperfusion strategies (Zhang
et al., 2016; Zhao et al., 2017), and researchers and clinicians
agreed that timely ischemia-reperfusion strategy is effective to
prevent neurological death and dysfunction (Zhang et al.,
2016; Zhao et al., 2017), however, the adverse effects caused
by this strategy, including intracerebral hemorrhage
(Kimiwada et al., 2019; Zhang et al., 2017a), brain edema
(King et al., 2018; Nakano et al., 2018), etc., still remains a
serious challenge in ischemic stroke treatment. In addition,
the pathogenesis mechanisms of cerebral ischemia/reperfusion
(I/R) injury are very complicated, which can be attributed to

metabolic energy failure (Galkin, 2019; Vannucci et al., 2004),
intracellular Ca2+ elevation (Sun et al., 2018; Zhang et al.,
2017b), mitochondrial injury (Gong et al., 2018; Zhang
et al., 2013), and cell pyroptosis-mediated inflammation (Guo
et al., 2016; Zhao et al., 2019). Among those mechanisms,
NLRP3 inflammasome-mediated pyroptotic cell death played
an important role to aggravate I/R injury development, and
pharmacological inactivation of NLRP3 inflammasome has
been proved as effective strategies to attenuate I/R injury in
multiple pre-clinical studies (An et al., 2019; He et al., 2019;
Ma et al., 2019; Qu et al., 2019; Ye et al., 2019).

As a well-known Chinese medicine, Puerarin (7,4-
dihydroxyisoflavone-8β-glucopyranoside) is one of the main
bioactive isoflavone extracted from the Puerariae Lobatae
Radix (Pueraria lobata (Willd.) Ohwi) root, and this drug
has been recorded in the Pharmacopoeia of the People’s
Republic of China (2020 edition, Part I) for the treatments
of cardio- and cerebrovascular diseases in China (Zhang
et al., 2019d; Zhang et al., 2019e). Of note, Puerarin exerted
its neuroprotective effects to alleviate cerebral I/R injury in
rat models (Ling et al., 2018; Liu et al., 2013; Wang et al.,
2018; Zhou et al., 2014), and the available clinical data
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hinted that Puerarin was effective for the treatment of
ischemic stroke in China (Liu et al., 2016). For example, Jin-
Feng Wang et al. (2018) found that Puerarin protected rat
brain against I/R injury by inactivating the AMPK-mTOR-
ULK1 pathway mediated autophagy, and Liu et al. (2013)
evidenced that Puerarin activated the cholinergic anti-
inflammatory pathway to alleviate cerebral I/R injury.
However, as the results of the complicated nature of Chinese
medicine, the underlying mechanisms are still largely
unknown. Interestingly, researchers noticed that Puerarin
inactivated NLRP3-meidated cell pyroptosis to regulate I/R
injury (Guan et al., 2020; Wang et al., 2020). Specifically,
the data provided by Zi-Kuang Wang indicated that
Puerarin regulated the SIRT1/NF-kB pathway to suppress
NLRP3 inflammasome in myocardial I/R injury (Wang
et al., 2020), and Guan et al. (2020) proved that Puerarin
ameliorated I/R-induced retinal ganglion cell damage
through regulating the TLR4/NLRP3 pathway, which
enlightened us that Puerarin might protect neurons from
cerebral I/R-induced death through inhibiting NLRP3-
mediated pyroptotic cell death.

Targeting the competing endogenous RNA (ceRNA)
networks has been reported as a feasible strategy to
attenuate cerebral I/R (Wan et al., 2020; Zeng et al., 2019;
Zhang et al., 2019b; Zhong et al., 2019). Interestingly, recent
data suggested that targeting the LncRNAs/miRNAs axis
was capable of suppressing cerebral I/R development (Wan
et al., 2020; Zeng et al., 2019; Zhang et al., 2019b; Zhong et
al., 2019) and NLRP3-mediated cell pyroptosis (Hu et al.,
2019; Yu et al., 2018). According to the previous
publications, the NLRP3 mRNA could be targeted and
degraded by miR-223-3p, resulting in the suppression of cell
pyroptosis (Dong et al., 2019; Wan et al., 2018; Zhang et al.,
2019c). In addition, upregulation of miR-223-3p suppressed
necroptosis (Qin et al., 2016) and microglial M1
polarization mediated inflammation (Zhao et al., 2020) in
I/R rats, hence we selected miR-223-3p for further analysis.
Moreover, LncRNA double homeobox A pseudogene 8
(DUXAP8) potentially acted as RNA sponges for miR-223-
3p, but no literatures reported the potential regulating
effects of LncRNA DUXAP8 in cerebral I/R injury or cell
pyroptosis. Furthermore, multiple miRNAs could be
regulated by Puerarin treatment (Zhao et al., 2020), but it
was still unclear whether Puerarin regulated the LncRNA
DUXAP8/miR-223-3p axis in hippocampus neural cells.

Hence, by establishing in vitro and in vivo models, the
present study managed to investigate whether Puerarin
attenuated the development of cerebral I/R injury through
modulating the LncRNA DUXAP8/miR-223-3p/NLRP3
signaling cascade, while protein designations should be in
regular capital letters.

Materials and Methods

In vivo I/R rat models establishment
We bought the Sprague-Dawley (SD) rats (males, N = 40, aged
10 weeks, weighed 240–290 g) from the SiPeiFu Biotech
(Beijing, China), and all the rats were fed under the specific-
pathogen-free (SPF) circumstances with 12-hour light–dark
cycle, standard humidified atmosphere (60 ± 5%) and were

freely accessible to water and food. The Puerarin was
bought from North China Pharmaceutical Co., Ltd.
(Shijiazhuang, China), and was diluted in the physiological
PBS buffer at the final concentration of 25 mg/mL for
further utilization at 100 mg/kg each rat according to our
preliminary data (data not shown) and previous literature
(Wang et al., 2018; Zhou et al., 2014). Then, the middle
cerebral artery occlusion (MCAO) method was used to
establish I/R rat models with the protocols as follows: the
rats were intraperitoneally injected with 10% chloral hydrate
at the concentration of 350 mg/kg for anesthetization, and a
monofilament nylon suture was inserted into the internal
carotid to generate MCAO for 90 min, which were then
removed and allowed reperfusion for 48 h. Finally, the rat
hippocampus tissues were separated and collected for
further analysis. We declared that all the animal
experiments were approved by the Ethics Committee of
Ningbo Rehabilitation Hospital (No. 2018NBR67362).

2,3,5-Tripthenyltetrazolum Chloride (TTC) staining for the
measurement of infarcted volume
TTC staining assay was performed to evaluate the infarcted
area volume in rat brain in keeping with the standard
experimental procedures (Zhang et al., 2019a). Briefly, the
rat brains were collected and prepared as sections with
2 mm thickness, which were further stained with 2% TTC
(Sigma, MO, USA) for 30 min at 37°C, and the tissues were
subsequently fixed with 4% formalin overnight at room
temperature. The infarcted area was observed, and the
volume was calculated.

Cell culture and induction of cellular H/R models
Based on the experimental protocols provided by the previous
work (Qin et al., 2020), the male newborn rat (N = 5) were
used for the isolation and purification of the primary
hippocampus neuron (PHN) cells, which were maintained
in the Neuro-basal Medium (Invitrogen, USA) containing
poly-D-lysine (Invitrogen, USA), 2% B27plus glucose (5 g/L)
and 0.25% Glumax, in the incubator with standard culture
conditions. At day 4 post-culture, the PHN cells were
subjected to hypoxic stimulation to induct H/R cellular
models as previously described (Qin et al., 2020), which
were further stimulated by Puerarin (80 μM) for 0, 24, and
48 h, respectively. Also, the HEK293T were obtained
(ATCC, USA) and cultured in the DMEM medium (Gibco,
USA) with 10% FBS (Gibco, USA).

Delivery of vectors into cells
A commercial third-party company GenePharma (Shanghai,
China) was employed to design and synthesize the LncRNA
DUXAP8 overexpression/downregulation vectors, and the
mimic and inhibitor for miR-223-3p were obtained from
GenePharma (Shanghai, China), we delivered the above vectors
into the PHN cells by using the Lipofectamine 2000 transfection
kit (Invitrogen, USA). At 24 h post-transfection, Real-Time
qPCR was conducted to examine the transfection efficiency.

Real-Time qPCR analysis
Total RNA was extracted from cells and tissues by using the
commercial TRIZOL reagent (Beyotime, Shanghai, China),
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which were further reversely transcribed into cDNA and
quantified by performing Real-Time qPCR analysis. The
detailed experimental procedures and primers could be
found from the previous work (Zhao et al., 2020).

Western Blot analysis
The RIPA lysis buffer (Beyotime Biotech, Shanghai, China) was
used for protein extraction and BCA kit (Beyotime Biotech,
Shanghai, China) was used for protein quantification. The
proteins were separated by 10% SDS-PAGE, and were transferred
onto PVDF membranes (Millipore, USA). The membranes were
blocked and were sequentially incubated with primary/secondary
antibodies. Finally, the Western Blot Hyper HRP Substrate
(TAKARA, USA) was used for protein bands visualization.

Examination of cell proliferation and viability
The primary hippocampus neuron (PHN) cells were cultured
in the 96-well plates and treated with 10 μL of MTT (3-[4,
5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide)
solution (5 mg/mL) for 4 h incubation at 37°C, and the
supernatants were carefully discarded and the 96-well plates
were added with dimethyl sulfoxide (DMSO). Then, the
plates were vortexed, and a microplate reader (ThermoFisher,
USA) was used to evaluate cell proliferation. Also, the cells
were stained with trypan blue staining buffer (Merck, USA)
to determine cell viability, and the cells stained with blue
were regarded as dead cells.

Cell apoptosis examination
In this study, we respectively used TUNEL apoptosis kit
(Beyotime, Shanghai, China) and the Annexin V-FITC/PI
staining reagent (Invitrogen, USA) followed by Flow
Cytometer (Becon Dickinson FACS Calibur, USA) detection
to evaluate cell apoptosis in PHN cells, and the protocols
were well-documented in the manufacturer’s instructions.

Validation of the binding sites among LncRNA DUXAP8, miR-
223-3p and NLRP3 mRNA
The targeting sites of miR-223-3p with LncRNA DUXAP8 and 3’
untranslated region (3’ UTR) of NLRP3 were predicted, and the
targeting sites in LncRNA DUXAP8 and NLRP3 were mutated
and named as Mut-LncRNA DUXAP8 and Mut-NLRP3. In
addition, their wild-type counterparts were shown as Wt-
LncRNA DUXAP8 and Wt-NLRP3. The above sequences were
cloned into the p-MIR-luciferase reporter plasmids (GenePharma,
Shanghai, China), and were co-transfected with miR-NC, miR-
223-3p mimic and inhibitor into the HEK293T cells. At 48 h
post-transfection, the relative luciferase activities were measured.

Enzyme linked immunosorbent assay (ELISA)
The supernatants of the PHN cells were collected, and the
expression levels of IL-1β and IL-18 were examined by using
their corresponding ELISA kit (RAPIDBIO, CA, USA) in
keeping with the producers’ instruction. The optical density
(OD) values were measured by using a microplate reader
(ThermoFisher Scientific, USA) with 450 nm wavelength.

Collection and analysis of the data
SPSS 18.0 software was used to analyze the data, which were
shown as mean ± SD. Specifically, the one-way ANOVA

analysis was used for the comparisons among different
groups. Individual experiment was repeated for at least 3
times, and *P < 0.05 was considered as statistical significance.

Results

Involvement of NLRP3-mediated cell pyroptosis in I/R rat
models and H/R cellular models
Initially, according to the previous publications (An et al.,
2019; He et al., 2019; Ma et al., 2019; Qu et al., 2019; Ye
et al., 2019), we established the in vivo I/R rat models. In
Fig. 1A, the results showed that the white unstained
infarcted area was lager in I/R rats but not their normal
counterparts (P < 0.01). Next, the hippocampus tissues were
collected from the brain of the rats for further analysis. The
hippocampus tissues were stained by TUNEL, and the
results in Fig. 1B showed that I/R treatment significantly
increased the TUNEL-positive apoptotic cell ratio in rat
tissues (P < 0.01), and the data in Suppl. Fig. S1A supported
that I/R significantly increased neurological deficit score in
rats, as determined by using the Longa scoring system.
Consistently, the expression levels of cleaved Caspase-3 and
Bax were increased (P < 0.05, Fig. 1C), while the Cyclin D1
and CDK2 were increased (P < 0.05, Fig. 1D) in rat tissues,
suggesting that I/R suppressed hippocampus viability in
vivo. Interestingly, as shown in Fig. 1E, we noticed that I/R
also upregulated NLRP3 and ASC to induce cell pyroptosis in
rat hippocampus tissues (P < 0.05). In addition, the H/R models
in the PHN cells were inducted to simulate the real conditions
of I/R injury in vitro. As expected, cell proliferation (Fig. 1F)
and viability (Fig. 1G) were significantly decreased in the PHN
cells treated with H/R, in contrast with the normal PHN cells
(P < 0.05). Also, the levels of NLRP3, ASC, IL-1β and IL-18 in
PHN cells (P < 0.05, Fig. 1H) and their supernatants (P < 0.05,
Figs. 1I and 1J) were also increased by H/R.

Puerarin inactivated NLRP3-mediated pyroptotic cell death to
attenuate I/R and H/R injury in vivo and in vitro
As previously described (Guan et al., 2020; Wang et al., 2020),
Puerarin exerted its neuroprotective effects during I/R injury,
which were validated by our following experiments in Figs.
2A–2I and Suppl. Fig. S1A and S1B. Specifically, the rats
were divided into four groups, including Sham, I/R group,
Puerarin (100 mg/kg) group, and I/R + Puerarin (100 mg/kg)
group, and the results in Suppl. Figs. S1A and S1B showed
that Puerarin decreased neurological deficit score and
infarcted area volume in I/R rats. Further Western Blot
analysis results showed that Puerarin downregulated cleaved
Caspase-3 and Bax (P < 0.05, Fig. 2A), and upregulated Cyclin
D1 and CDK2 (P < 0.05, Fig. 2B) in rat hippocampus tissues.
Besides, NLRP3 and ASC expressions were also downregulated
by Puerarin treatment (P < 0.05, Fig. 2C). In addition, our in
vivo results were supported by the following in vitro
experiments, and the results suggested that Puerarin rescued
cell proliferation (P < 0.05, Fig. 2D) and viability (P < 0.05,
Fig. 2E) in PHN cells treated with H/R. Also, we evidenced
that Puerarin attenuated cell apoptosis in H/R-treated PHN
cells (P < 0.05, Fig. 2F). Finally, the aggravating effects of H/R
on NLRP3, ASC, IL-1β and IL-18 in the PHN cells (Fig. 2G)
and their supernatants (Figs. 2H and 2I) were abrogated by
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co-treating cells with Puerarin (P < 0.05), indicating that
Puerarin attenuated I/R- and H/R-induced hippocampus
injury in vivo and in vitro.

Puerarin negatively regulated NLRP3 through upregulating
miR-223-3p
NLRP3 could be negatively modulated by its upstream
transcriptional regulators, including miRNAs (Hu et al.,
2019; Yu et al., 2018), which were closely associated with
I/R injury and could be modulated by Puerarin. Therefore,
we speculated that Puerarin might regulate NLRP3-mediated
cell pyroptosis through modulating miRNAs. To validate this
hypothesis, ten miRNAs that potentially regulated NLRP3
was selected, and we found that only miR-223-3p, but not
other types of miRNAs, could be downregulated by H/R, but
it was upregulated by Puerarin in PHN cells (P < 0.05,
Fig. 3A). Consistently, the results in Fig. 3B showed that I/R
treatment also decreased miR-223-3p levels in rat
hippocampus tissues, which could be significantly increased
by Puerarin (P < 0.05, Fig. 3B). Next, the targeting sites of
miR-223-3p with 3’ untranslated regions of NLRP3 mRNA
were predicted, and the targeting sites in NLRP3 mRNA were

subsequently mutated (Fig. 3C). As shown in Fig. 3D, the
dual-luciferase reporter gene system assay validated that miR-
223-3p bound to the 3’UTR of NLRP3 mRNA. Subsequently,
miR-223-3p was downregulated and upregulated in the H/R
PHN cells (Fig. 3E), and the following Real-Time qPCR and
Western Blot analysis results evidenced that miR-223-3p
negatively regulated NLRP3 expressions in H/R treated PHN
cells at both transcriptional (P < 0.05, Fig. 3F) and
translational (Fig. 3G) levels. In addition, the inhibiting
effects of Puerarin on H/R-induced cell pyroptosis in PHN
cells were partly reversed by silencing miR-223-3p (P < 0.05,
Figs. 3H and 3I).

The regulating mechanisms of LncRNA DUXAP8-miR-223-3p-
NLRP3 axis in vitro
Given that there existed LncRNAs-miRNAs-mRNAs ceRNA
networks, and LncRNAs had also been reported to
participate in the regulation of I/R injury (Wan et al., 2020;
Zeng et al., 2019; Zhang et al., 2019b; Zhong et al., 2019),
we next screened out that the miR-223-3p/NLRP3 pathway
could be modulated by LncRNA DUXAP8 in PHN cells in
Figs. 4A–4I. Specifically, seven LncRNAs containing the

FIGURE 1.NLRP3-mediated cell pyroptosis was closely associated with in vivo I/R injury in rat hippocampus tissues and in vitroH/R injury in
PHN cells. (A) The rat brain was obtained, and the white unstained infarcted area was observed and recorded. (B) Cell apoptosis in rat tissues
was determined by TUNEL staining assay. Western Blot was used to examine (C) apoptosis, (D) cell cycle, (E) pyroptosis associated
biomarkers. The cellular functions, including (F) cell proliferation and (G) viability were respectively examined. The expression status of
pyroptosis markers were examined in the (H) cells and (I–J) supernatants. Each experiment was repeated three times; *P < 0.05, **P < 0.01.
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binding sites with miR-223-3p were selected, and further Real-
Time qPCR results screened out that LncRNA DUXAP8 was
upregulated by H/R treatment in PHN cells, which could be
significantly downregulated by Puerarin (P < 0.05, Fig. 4A).
Consistently, we evidenced that LncRNA DUXAP8 was also
upregulated by I/R and downregulated by Puerarin in rat

hippocampus tissues (P < 0.05, Fig. 4B). Hence, the
LncRNA DUXAP8 was chosen for further analysis. The
targeting sites of miR-223-3p with LncRNA DUXAP8
(Fig. 4C) were predicted, which were validated by the
following experiments (Fig. 4D). Next, the overexpression
and silencing vectors for LncRNA DUXAP8 were delivered

FIGURE 2. Puerarin restrained I/R and H/R injury for potential protection. (A) Cell apoptosis, (B) cell cycle and (C) pyroptosis associated
proteins were examined. The cellular biological functions, such as (D) cell proliferation and (E) viability were determined. (F) Cell apoptosis
ratio was measured by flow cytometer. (G–I) The pyroptosis associated biomarkers were measured (“Pu” indicated Puerarin treatment). Each
experiment was repeated three times; *P < 0.05.

FIGURE 3. The regulatory mechanisms of miR-223-3p and NLRP3. The aberrant expressions of miRNAs were screened by Real-Time qPCR
in the (A) PHN cells and (B) rat hippocampus tissues. The targeting sites of miR-223-3p and NLRP3 mRNA were (C) predicted and (D)
validated. (E–G) NLRP3 could be negatively regulated by miR-223-3p. (H–I) The pro-pyroptosis cytokines in the supernatants were
measured by ELISA (“OE-miR” represented miR-223-3p overexpression). Each experiment was repeated three times; *P < 0.05.
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into the H/R PHN cells (Fig. 4E), by performing Real-Time
qPCR and Western Blot, we found that knock-down of
LncRNA DUXAP8 decreased the mRNA and protein levels of
NLRP3 in H/R-treated PHN cells, which were reversed by

silencing miR-223-3p (P < 0.05, Figs. 4F and 4G). In addition,
we found that Puerarin decreased the expression levels of
NLRP3 in H/R-treated PHN cells, which were increased by
upregulating LncRNA DUXAP8 (P < 0.05, Figs. 4H and 4I).

FIGURE 4. LncRNA DUXAP8 positively regulated NLRP3 in the PHN cells by sponging miR-223-3p. (A) Multiple LncRNAs were screened,
and (B) LncRNA DUXAP8 was significantly influenced by I/R treatment. (C) Prediction and (D) validation of miR-223-3p-LncRNA DUXAP8
binding sites. (E) LncRNA DUXAP8 was manipulated, and (F, G) the regulating effects of LncRNA DUXAP8 on NLRP3 expressions were
examined. (H–I) Puerarin suppressed NLRP3 in PHN cells by regulating the LncRNA DUXAP8/miR-223-3p axis (“Con” indicated
Control, “KD-L” suggested knockdown of LncRNA DUXAP8, and “L+M” represented knockdown of LncRNA DUXAP8 plus miR-223-3p
ablation). Each experiment was repeated three times; *P < 0.05.

FIGURE 5. Targeting the LncRNA DUXAP8/miR-223-3p axis rescued cell functions in PHN cells. (A) Cell proliferation and (B) viability were
respectively determined. (C–D) Flow cytometer was used to detect the Annexin V-FITC and PI-positive apoptotic cells. The pyroptosis
indicators were examined in both (E) PHN cells and (F–G) their supernatants (“Con” represented Control, “H/R” indicated H/R
treatment, “H+L” indicated H/R treatment plus LncRNA DUXAP8 knockdown, and “H+M” represented H/R treatment plus miR-223-3p
overexpression). Each experiment was repeated three times; *P < 0.05.
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Targeting the LncRNA DUXAP8/miR-223-3p axis rescued cell
viability in H/R PHN cells
The above data encouraged us to assure whether the LncRNA
DUXAP8/miR-223-3p axis involved in regulating the
development of I/R-induced injury in vitro. To achieve this,
LncRNA DUXAP8 was silenced (P < 0.05, Fig. 4E), while
miR-223-3p was overexpressed (P < 0.05, Fig. 3E) in H/R
PHN cells, and the results showed that both LncRNA
DUXAP8 ablation and miR-223-3p overexpression restored
cell proliferation (Fig. 5A) and viability (Fig. 5B) in H/R-
treated PHN cells (P < 0.05). In addition, the cell apoptosis
examination assay results indicated that H/R treatment
significantly promoted cell apoptosis in PHN cells, which
were reversed by ablating LncRNA DUXAP8 and
overexpressing miR-223-3p (P < 0.05, Figs. 5C and 5D).
Further results validated that silencing of LncRNA DUXAP8
and overexpression of miR-223-3p also downregulated
NLRP3, ASC, IL-1β and IL-18 to inactivate NLRP3-
mediated cell pyroptosis in H/R PHN cells (P < 0.05,
Fig. 5E) and the supernatants (P < 0.05, Figs. 5F and 5G).

Puerarin promoted cell survival in H/R PHN cells via the
LncRNA DUXAP8/miR-223-3p axis
Finally, we validated that Puerarin regulated the LncRNA
DUXAP8/miR-223-3p axis to exert its neuroprotective
effects on H/R PHN cells. Specifically, the H/R PHN cells
were pre-transfected with LncRNA DUXAP8 overexpression
vectors (P < 0.05, Fig. 4E) and miR-223-3p ablation vectors
(P < 0.05, Fig. 3E), and were divided into four groups,
including Control, Puerarin group, Puerarin + OE- LncRNA
DUXAP8 group, and Puerarin + KD-miR-223-3p group.
The results showed that Puerarin rescued cell proliferation
in H/R PHN cells, which were abrogated by overexpressing
LncRNA DUXAP8 and downregulating miR-223-3p (P <
0.05, Fig. 6A). Consistently, further data validated that both
LncRNA DUXAP8 overexpression and miR-223-3p ablation
abrogated the promoting effects of Puerarin on cell viability
in H/R PHN cells (P < 0.05, Fig. 6B). Furthermore, we
evidenced that Puerarin also suppress cell apoptosis in H/R
PHN cells by targeting the LncRNA DUXAP8/miR-223-3p
axis (P < 0.05, Fig. 6C). The above results suggested that

FIGURE 6. Puerarin regulated the LncRNA DUXAP8/miR-223-3p axis to attenuate H/R injury in the PHN cells in vitro. PHN cell (A)
proliferation and (B) viability were evaluated. (C) Examination of cell apoptosis by flow cytometer (“Pu” indicated Puerarin, OE-LncRNA
represented LncRNA DUXAP8 overexpression, and “KD-miRNA” suggested miR-223-3p ablation). Each experiment was repeated three
times; *P < 0.05.
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Puerarin regulated the LncRNA DUXAP8/miR-223-3p axis to
attenuate cell death in H/R PHN cells in vitro.

Discussion

Ischemic stroke seriously degrades the life quality of human
beings worldwide (Benjamin et al., 2018), and timely
pharmacological and mechanical reperfusion are proved as
effective strategies for its treatment (Zhang et al., 2016; Zhao
et al., 2017). However, recent data indicated that cerebral
ischemia/reperfusion (I/R) injury caused serious side effects,
such as hemorrhage (Kimiwada et al., 2019; Zhang et al.,
2017a), brain edema (King et al., 2018; Nakano et al., 2018),
etc., were still a great obstacle for this treatment therapy in
clinic, and uncovering the molecular mechanisms of cerebral
I/R injury pathogenesis and development of novel therapeutic
drugs to attenuate I/R injury might help to solve these
problems. This study found that Puerarin regulated a novel
LncRNA DUXAP8/miR-223-3p/NLRP3 inflammasome-
mediated cell pyroptosis to alleviate cerebral I/R injury. Also,
previous publications indicated that NLRP3-meidated cell
pyrotosis contributed to the development cerebral I/R injury
(An et al., 2019; He et al., 2019; Ma et al., 2019; Qu et al.,
2019; Ye et al., 2019), which were validated by our present
work. Specifically, the cerebral I/R rat models and H/R PHN
cell models were established, and we found that the
expression levels of pyroptosis associated signatures were
upregulated in both I/R rats and H/R PHN cells, in contrast
with their normal counterparts, suggesting that cell
pyroptosis occurred and contributed to cerebral I/R injury.

Puerarin a well-known Chinese medicine extracted from
the Kudzu (Pueraria montana var. lobata) root and has been
used as therapeutic drug for multiple cardio- and
cerebrovascular diseases in China (Zhang et al., 2019d;
Zhang et al., 2019e). Of note, recent publications evidenced
that Puerarin also exerted its neuroprotective effects to
alleviate cerebral I/R injury in rat models (Ling et al., 2018;
Liu et al., 2013; Wang et al., 2018; Zhou et al., 2014), and
our experiments supported that Puerarin treatment
increased cell survival and suppressed cell apoptosis in both
I/R rat hippocampus tissues and H/R PHN cells, implying
that Puerarin could be utilized as a therapeutic agent for
cerebral I/R injury. Interestingly, previous data suggested
that Puerarin inactivated NLRP3-meidated cell pyroptosis to
regulate I/R injury (Guan et al., 2020; Wang et al., 2020),
and our data showed that Puerarin restrained and
inactivated cell pyroptosis in I/R rat models and H/R PHN
cell models.

Targeting the LncRNAs-miRNAs-mRNAs ceRNA
networks is effective to treat cerebral I/R injury (Wan et al.,
2020; Zeng et al., 2019; Zhang et al., 2019b; Zhong et al., 2019)
and NLRP3-mediated pyroptotic cell death (Hu et al., 2019; Yu
et al., 2018), and we identified a novel LncRNA DUXAP8/miR-
223-3p axis that regulated NLRP3-mediated cell pyroptosis to
regulate H/R-induced PHN cell injury in vitro. Mechanistically,
miR-223-3p targeted both LncRNA DUXAP8 and NLRP3
mRNA, and LncRNA DUXAP8 positively regulated NLRP3
expressions by acting as RNA sponge for miR-223-3p,
which were partly supported by the previous studies (Dong
et al., 2019; Wan et al., 2018; Zhang et al., 2019c) and validated

that LncRNA DUXAP8-miR-223-3p-NLRP3 ceRNA networks
existed in the H/R PHN cell models. In addition, previous
data suggested that miR-223-3p attenuated cerebral I/R injury
(Qin et al., 2016; Zhao et al., 2020), and we evidenced
that both LncRNA DUXAP8 ablation and miR-223-3p
overexpression promoted cell survival in H/R PHN cells.
Furthermore, multiple miRNAs could be regulated by
Puerarin (Zhao et al., 2020), and we first identified that
Puerarin downregulated LncRNA DUXAP8 and upregulated
miR-223-3p in PHN cells. Also, our data showed that the
protective effects of Puerarin on H/R PHN cells were
abrogated by upregulating LncRNA DUXAP8 and silencing
miR-223-3p, implying that Puerarin regulated the LncRNA
DUXAP8/miR-223-3p axis to attenuate H/R-induced cell
death in PHN cells.

Conclusions

Taken together, the present study evidenced that Puerarin
regulated the LncRNA DUXAP8/miR-223-3p axis to
inactivate NLRP3 inflammasome-mediated pyroptotic cell
death, resulting in the alleviation of cerebral I/R injury.
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SUPPLEMENTARY FIGURE S1. The effects of Puerarin treatment on (A) the neurological deficit scores and (B) the volume of infarcted area
in rat brain respectively by using the Longa scoring system and TTC staining assay. Each experiment was repeated three times; *P < 0.05.
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