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Abstract: Cell extrusion is an active mechanism to eliminate non-viable or supernumerary cells in healthy epithelia. It

also plays a role in carcinogenesis, both in tumor growth (apical extrusion) and metastasis (basal extrusion).

Embryonic tissues like the neuroepithelium, on the other hand, present rates of proliferation comparable to that of

carcinomas, without the occurrence of cell extrusion. However, the downregulation or phosphorylation of actin-

modulating proteins like MARCKS, causes extensive neuroepithelial apical cell extrusion. As changes in MARCKS

proteins phosphorylation and expression have also been correlated to carcinogenesis, we propose here an integrated

model for their functions in epithelial integrity.

Introduction: Cell Extrusion as an Active Mechanism

The function of epithelia as barriers is achieved by the tight
mechanical coupling of their participating cells. This poses a
major challenge: tissue integrity must be preserved despite
the constant cell turnover caused by proliferation and cell
death, or the eventual occurrence of aberrant cell behavior,
such as in cancerous transformation (Villars and Levayer,
2020; Eisenhoffer et al., 2012). One active mechanism for
maintaining epithelial density and integrity is cell extrusion,
a set of processes involving biochemical and mechanical
signaling concerted to achieve the expulsion of a cell from
the epithelial layer, either through its apical or basal side
(Nanavati et al., 2020; Eisenhoffer and Rosenblatt, 2013). In
this section we will introduce the mechanisms seen in
physiological conditions, and in the next, those in
pathological or experimental situations.

Apical extrusion can expel apoptotic or live cells, with
each having its own particular mechanisms. Extrusion of
apoptotic cells is accompanied by medium-scale epithelial
modifications, such as topological irregularities, pulsatile
contractions and loss of tissue tension (Atieh et al., 2021;
Saw et al., 2017). Individual apoptotic cells seem to become
hypercontractile prior to extrusion (Nanavati et al., 2020)

and secrete sphingosine-1-phosphate (S1P) to activate RhoA
in neighboring cells (Villars and Levayer, 2020; Eisenhoffer
et al., 2012), eliciting active lamellipodial protrusion and the
assembly of a basally-localized contractile actomyosin ring,
in a cadherin-dependent manner (Duszyc et al., 2021;
Lubkov and Bar-Sagi, 2014; Rosenblatt et al., 2001).

Conversely, “live apical cell extrusion” appears as the
main counterbalancing mechanism to maintain constant cell
densities against epithelial proliferation, and it occurs
regularly in many homeostatic epithelia, like the tips of
intestinal microvilli, where it was first identified (Madara,
1990). In this type of extrusion, “live” means that the cell
will remain alive and playing an active part in the process,
to eventually die by anoikis after the extrusion has been
completed (Slattum and Rosenblatt, 2014). It requires
stretch-activated ion channels (Piezo), S1P and the Rho-
myosin pathway, and also produces regular topological
changes in the organization of the epithelium, based on the
collective action of surrounding cells (Nanavati et al., 2020;
Eisenhoffer et al., 2012).

Basal extrusion is not a common phenomenon in
physiological conditions, except during embryogenesis. For
example, in vertebrates, neural crest cells acquire the ability
to traverse the basal lamina and migrate away from the
ectoderm during neurulation, through a process of epithelial-
mesenchymal transition (EMT), modulated by an increase in
cell density and stiffness in the surrounding tissues (Nanavati
et al., 2020; Barriga et al., 2018; Acloque et al., 2009).
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Epithelial-mesenchymal transition is now considered part of a
bidirectional process, highly involved in both development
and cancer, known as epithelial-mesenchymal plasticity
(EMP; Yang et al., 2020).

Cell Proliferation vs. Cell Extrusion in Carcinogenesis

Responsible for nearly 90% of all cancer cases worldwide (http://
www.iarc.fr), carcinomas (malignant cancers originated in
epithelia) present an extreme case of proliferative activity. Cell
extrusion appears as a pivotal cellular process, both in their
control and pathogenesis. For example, a proposed cell
competition mechanism termed Epithelial Defense Against
Cancer (EDAC; Tanimura and Fujita, 2020), implies the live
apical extrusion, followed by anoikis, of transformed cells. This
mechanism has been extensively studied in mammalian
epithelial (MDCK) cultures and zebrafish embryo epidermis, by
experimentally transforming a subset of cells through the mosaic
expression of oncogenic proteins, like H-RasV12 or v-Src. The
extrusion mechanism involves the activity of the complexes
paxillin/plectin/EPLIN and myosin-II/spectrin in these
oncogenic-transformed cells (Kasai et al., 2018; Takagi et al.,
2018) and polarized changes in tensile forces involving RhoA,
filamin and vimentin in the surrounding cells (Kajita et al., 2014).

Excessive or maintained tension in the epithelium,
however, can prevent apical detachment of the extruded
cells, leading to the formation of multilayered cell
accumulations. This phenomenon has been observed when
depleting caveolae in non-transformed cells surrounding
transformed ones, in a process involving the membrane
phospholipid phosphatidylinositol(4,5)bisphosphate (PIP2)
and the formin FML2 (Teo et al., 2020). Transformed cells
resistant to anoikis can thus generate protrusive tumors,
such as the polyps seen in the premalignant stages of
colorectal adenocarcinoma. Furthermore, if cells from a
growing tumor undergo EMT and basal extrusion, they
would eventually cause metastasis (Ortiz et al., 2021;
Slattum and Rosenblatt, 2014). Adenomatous Polyposis Coli
(APC) was indicated as a switch in the decision between
apical and basal extrusion. Normally, APC acts by favoring
a basal accumulation of contractile F-actin, leading to apical
extrusion, but either gene disruption or the expression of an
oncogenic mutant APC, causes cells to extrude basally
(Marshall et al., 2011). Basal cell extrusion was also
promoted upon the expression of a different Ras protein,
the more commonly found in cancers K-RasV12 (Slattum et
al., 2014), as well as after down-regulation of E-cadherin in
H-RasV12-expressing cells (Hogan et al., 2009). An
interesting recent report linked autophagy, which has been
associated with bad prognosis in carcinomas, to the
downregulation of E-cadherin in breast cancer cells
(Damiano et al., 2020).

Cell Proliferation and Morphogenesis vs. Cell Extrusion in
Development

In embryonic development, epithelia must maintain their
integrity while simultaneously enduring high proliferation
rates and morphogenetic forces. An extreme case is
represented by the neuroepithelium, from which the millions

of neurons and glial cells in the central nervous system
originate. In this naturally-overcrowded epithelium, cells
accommodate by means of a pseudostratified organization
maintained by interkinetic nuclear migration, a cell-cycle
synchronic, cytoskeleton-driven movement of nuclei between
the apical and basal poles of cells (Strzyz et al., 2016; Sauer,
1935). In addition, neuroepithelial cells have to confront the
forces generated by the morphogenetic movements of
neurulation, which include cell shape changes (elongation
and apical constriction) and convergent extension cell
rearrangements (Nikolopoulou et al., 2017; Wallingford,
2012). Despite all this, apical cell extrusion is not normally
seen in the neuroepithelium, and the reason might again lie
in tissue tension generated by the cytoskeleton.

The flexion of the neural folds has been shown to partly
depend on the modulation of two properties of the
neuroepithelium: cell density, associated to cell proliferation,
and tissue stiffness, associated to actomyosin-based cell
contractility (Zhang et al., 2019; McShane et al., 2015).
For example, an experimental upregulation of the Hippo-
YAP/TAZ pathway, which modulates cell proliferation in
response to mechanical stress (Aragona et al., 2013), caused
hyperproliferation in the chick neuroepithelium, eventually
leading to the generation of apical cell protrusions (Cao et
al., 2008). Conversely, YAP (Yes-Associated Protein)
deletion in neural crest prospective cells, bordering the
neural and non-neural ectoderm, resulted in neurulation
defects (Wang et al., 2015). On the other hand, the apical
constriction in primary neurulation relies on the association
of actomyosin and Rho GTPases with the cadherin-based
adhesion complexes of neuroepithelial cells (Escuin et al.,
2015; Kinoshita et al., 2008). Severe neurulation defects,
accompanied by massive apical cell extrusion, were evident
upon the perturbation of Rho (Kinoshita et al., 2008) and
another protein that is normally localized around the apical
actomyosin ring: the Myristoylated Alanine Rich C-Kinase
Substrate (MARCKS; Aparicio et al., 2018).

MARCKS Proteins: Bidirectional Modulators of Epithelial-
Mesenchymal Plasticity and Cell Extrusion?

The nervous system-enriched, naturally-unfolded MARCKS
proteins comprise a small family encoded by two genes in
most vertebrates (MARCKS and MARCKS-Like 1),
duplicated in teleosts (Prieto and Zolessi, 2017; Brudvig and
Weimer, 2015; Wu et al., 1982). Three domains characterize
these proteins: the N-terminal myristoylation domain, the
MH2 domain, and the central effector domain, or ED
(Toledo et al., 2013; Tapp et al., 2005). Through the 25
residue-long ED, they selectively bind and sequester PIP2 at
the plasma membrane, bind Ca-calmodulin, and crosslink
actin filaments. Their multiple cellular roles are usually
related to cell shape changes or membrane dynamics, which
they regulate through the modulation of actin cytoskeleton
dynamics and/or PIP2 availability (El Amri et al., 2018;
Iioka et al., 2004; Laux et al., 2000).

Normally, MARCKS accumulates apically in chick
neural plate cells (Zolessi and Arruti, 2001) and the
functional inactivation of both genes caused severe defects
in neurulation and neural tube morphogenesis in mice
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(Chen et al., 1996; Stumpo et al., 1995) and zebrafish (Prieto
and Zolessi, 2017). In the chick, either MARCKS
knockdown or its protein kinase C (PKC)-induced
phosphorylation (leading to a loss in membrane attachment
and apical localization), caused a failure in neural tube
closure, with the neural plate remaining flat and wider than
normal (Aparicio et al., 2018). The most remarkable effect
at the cellular level was a general reduction in apicobasal
polarity, accompanied by massive apical cell extrusion.
Supra-apically localized cells did not detach immediately
and remained viable for some time, even dividing in
that ectopic position. These observations indicated a live
apical cell extrusion mechanism, as described above for
oncogenic cells (Fig. 1).

On the other hand, PKC activity is usually deregulated in
cancer (Newton, 2018), and different studies have indicated
that MARCKS expression is downregulated in transformed
and cancerous cells (Bickeböller et al., 2015; Rohrbach et al.,
2015; Jarboe et al., 2012; Michel et al., 2009; Brooks et al.,
1996; Joseph et al., 1992; Wolfman et al., 1987). In in vitro-
transformed cells, this downregulation was at the
transcriptional level, and was related to either v-Src tyrosine
kinase activity or to an initially increased PKC activity,
while deleterious mutations in the MARCKS-encoding gene
were detected in human colorectal cancer cells displaying
microsatellite instability (Michel et al., 2009). Some studies,
however, have indicated a correlation between an increase in
MARCKS expression and bad prognosis in different cancers
(Chen et al., 2017; Browne et al., 2013; Micallef et al., 2009).
This apparently paradoxical observation might have a very

simple explanation on the observation of a higher-than-
normal MARCKS ED phosphorylation in several highly-
expressing cancers (Chen et al., 2017; Chen and Rotenberg,
2010). In lung cancer cells, the overexpression of a non-
phosphorylatable MARCKS or the competitive inhibition of
endogenous MARCKS phosphorylation with an ED-mimetic
peptide, reduced EMT and cell invasiveness, and increased
radiation sensitivity (Rohrbach et al., 2017, 2015; Chen et
al., 2014). Altogether, these observations have led to the idea
that MARCKS is a bonafide tumor suppressor, whose
membrane-binding and actin crosslinking activities are
necessary to prevent cells from acquiring a malignant
phenotype, keeping at least three processes at bay: cell
proliferation, cell invasiveness and resistance to apoptosis.

Concluding Remarks

We can consider the epithelial phenotype as one endpoint of a
continuous line that leads to the mesenchymal phenotype in
the other, with several intermediate stages along the line,
dynamically connected by EMP. We propose that
MARCKS-family proteins act as dynamic switches
continuously influencing the cell’s position along this line
(Fig. 2). A well-regulated proportion of unphosphorylated
MARCKS, enough to simultaneously bind most of the free
PIP2 while anchoring crosslinked actin filaments to the
membrane, will make cells firmly attach to each other and
acquire an epithelial phenotype, getting closer to an
endpoint. Any physiological, pathological or experimental
changes in this balance (lower or too high MARCKS

FIGURE 1.MARCKS hyper-phosphorylation at the ED causes apical extrusion in the neuroepithelium. Partly speculative model to explain the
role of MARCKS in neurulation. In the normal chick neural plate cells (A–C), MARCKS is largely present in a non-phosphorylated form,
hence attached to PIP2 at the plasma membrane, while simultaneously binding two actin filaments (A and B). This configuration would
promote apico-basal cell polarity and cell adhesion, strengthening the epithelial phenotype of the neural plate cells, which is necessary for
neurulation (C). If MARCKS is extensively phosphorylated upon experimental PKC activation (or if it is down-regulated, not shown in the
figure), it detaches from the plasma membrane, releasing PIP2 and one actin filament, with an effect on cortical F-actin stability (D–E).
This would cause a reduction in apico-basal cell polarity and adhesion, accompanied by apical cell extrusion and a failure to close the
neural tube (F) (Aparicio et al., 2018).
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expression; higher PKC-type phosphorylation), would drive
cells towards the mesenchymal endpoint of the EMP line.
One of the resulting events in this epithelial-mesenchymal
transition would be cell extrusion, either apical or basal,
with different outcomes regarding the fate of the extruded
cells depending on both cell-intrinsic and cell-extrinsic
factors.
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