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Abstract: Bisphenol A (BPA) is a xenoestrogen known for its implications for the endocrine systems and several other

organs, including the kidneys. Recent renal studies have shown that BPA can induce alterations of the cytoskeleton and

cell adhesion mechanisms such as a podocytopathy with proteinuria and hypertension, alterations involved in the

progression of renal diseases. These data and the fact that BPA is known to be present in the urine of almost the

entire population strongly suggest the critical need to reevaluate BPA exposures considered safe.

Introduction

Bisphenol A (BPA) is a xenobiotic molecule classified within
the category of endocrine disruptors, and thanks to its
properties as an estrogen modulator, it is also called
xenoestrogen (Taylor et al., 2011). BPA is found in
countless everyday utensils, such as food containers, bottles,
cans, toys, and is even found in clothing (Vandenberg et al.,
2007; Dursun et al., 2016; EFSA, 2016; Li and Kannan,
2018; Freire et al., 2019). Its use is not restricted to the
domestic sphere, as its ability to improve the qualities of
plastics has made it an essential element in other industries,
as it is used in the manufacture of cars, LED lights, and
even medical-surgical material (Duty et al., 2013; Olabisi
and Adewale, 2016; Testai et al., 2016).

Presentation of the Viewpoint

BPA is a molecule whose properties as an estrogen modulator
were discovered in the 1930s by Dodds and Lawson (Dodds
and Lawson, 1936). For this reason, numerous works study
its possible relationship with reproductive or genitourinary
disorders (Rochester, 2013; Ziv-Gal and Flaws, 2016;
Pergialiotis et al., 2018; Tomza-Marciniak et al., 2018).
However, in the last two decades, it has been shown that
BPA can exert other types of actions on other organs or

systems, favoring the accumulation of fatty tissue, the
appearance of diabetes, cancer, and even cognitive and
behavioral disorders (Provvisiero et al., 2016; Akash et al.,
2020; Wu et al., 2020; Nesan et al., 2021). In recent years,
our team has made interesting advances on the possible
implications of BPA on the renal and vascular system.

Using experimental animals models we observed that
BPA is capable to promote hypertension and renal damage
(podocytopathy) as well as to participate in the mechanism
of progression of chronic kidney disease (CKD) (Olea-
Herrero et al., 2014; Saura et al., 2014; Moreno-Gómez-
Toledano et al., 2020; Reventun et al., 2020), reviewed by
Bosch et al. (2016).

Our first work with podocytes (cells that are part of the
glomerular filtration barrier) were carried out with
immortalized mouse cultures. Podocytes cell lines (mice and
human) have a particular condition: at 33°C, they remain
undifferentiated, allowing their replication, and at 37°C, they
become quiescent, lose their mitotic capacity, and begin to
differentiate for 11–15 days. After that time, the podocyte in
culture is considered a differentiated, mature, and fully
functional podocyte.

The administration of BPA to this cell line demonstrated
that low exposure to this molecule (10 and 100 nM) could
induce death mechanisms in cultured mouse podocytes
(Olea-Herrero et al., 2014) (Fig. 1). Similarly, the
intraperitoneal administration of BPA in mice demonstrated
that BPA could induce cellular sampling mechanisms in the
podocytes of the glomerulus of the animal (Olea-Herrero
et al., 2014). These animals developed podocitopathy with
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proteinuria, similar to those seen in diabetic nephropathy.
Although there are limitations when using mouse models
for assessing renal failure or long-term histomorphological
changes (Breyer et al., 2005), our findings may have
pathophysiological implications since the amount of
proteinuria and podocytes number are reliable predictors of
the progression of renal disease (Meyer et al., 1999;
D’Amico and Bazzi, 2003).

Subsequently, we observed that in human podocytes in
culture (generously provided by Dr. M Saleem, University of
Bristol), 100 nM BPA promotes a novel type of podocytopathy
characterized by an impairment of cell adhesion.
Transcriptomic and proteomic studies demonstrated that BPA
promotes alterations in the expression of structural and
adhesion proteins (and messengers). Subsequent western blot
and immunofluorescence assays demonstrated alterations in
the relative expression of structural proteins such as actin,
tubulin, vimentin, and podocin, as well as alterations in
proteins related to adhesion mechanisms, such as cofilin-1,
vinculin, E-cadherin, nephrin, VCAM-1, tenascin-C, and
β-catenin (Moreno-Gómez-Toledano et al., 2020) (Fig. 1). In
this way, it was possible to observe solid evidence that the
cellular microenvironment and the elements that make it up,
including xenobiotic compounds, can substantially affect the
cellular structure.

Adamakis et al. (2018) observed that BPA in the aquatic
environment, at environmentally relevant BPA concentration,
was capable of promoting alterations in the cytoskeleton of the
seagrass Cymodocea nodosa, even stating that the integrity of
the actin filament is the most sensitive biomarker to exposure
to BPA. Stavropoulou et al. (2018) also observed BPA-
mediated alterations in the actin filaments of the Zea mays

(corn) plant. In cell cultures, Yin et al. (2020) described
BPA-mediated cytoskeletal alterations in a mouse
neuroblastoma cell line (neuro-2a cells). When using BPA
doses in the micromolar range, they observed a reduction in
the number of dendrites and a lower signal intensity when
performing phalloidin (F-actin) immunofluorescence.
Similarly, Rameshrad et al. (2018) observed that BPA is
capable of inducing alterations in the expression of VCAM
(adhesion protein) in human umbilical vein endothelial
cells, also in the micromolar range.

Analysis of the Impact of the Viewpoint

It is evident that BPA can affect cell structure, not only in
human cell cultures but also in murine cell cultures and
even aquatic and terrestrial plants. This effect in the
podocyte is especially interesting since its inability to
regenerate makes it a cell of particular relevance in CKD
(Glassock and Rule, 2016). Technically, BPA-induced
podocyte loss could be as damaging to kidney function as
cell death. The loss of podocytes induces an increase in the
compensatory mesangial matrix, progressively reducing the
renal filtration capacity. However, new studies have
observed that although the podocyte does not have
replicative capacity per se, the surrounding glomerular
parietal epithelial cells could play a decisive role in podocyte
regeneration, differentiating towards this cell type
(Shankland et al., 2017). In any case, when the regenerative
capacity cannot compensate for the loss, the kidney will
progress to CKD. Since BPA is a possible environmental
factor involved in this type of pathology, the degree of
exposure to which the susceptible population is exposed,
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FIGURE 1. Interspecies differences in the effects promoted by BPA in the podocyte. A) Exposure to BPA induces a reduction in the adhesion
capacity of the human podocyte (x40) (scale bar: 60 µm). B) Reduction in the relative expression of structural proteins after treatment with
BPA, analyzed by immunofluorescence (scale bar: 50 µm) and immunohistochemistry (scale bar: 20 µm). C) In the mouse podocyte, the
administration of BPA induces an increase in the mechanisms of cell death (x300). D) Treatment with BPA significantly reduces cell
viability (MTT). Figure made with our own results published in the Journal of Cellular Physiology (Olea-Herrero et al., 2014), and
Scientific Reports (Moreno-Gómez-Toledano et al., 2020).
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such as patients in intensive care or patients undergoing
dialysis techniques, is of particular importance.

As we previously described, mean urinary BPA values
have been observed in patients undergoing conventional
dialysis between 52.73-155.84 ng/ml (1.11-3.28 μg/kg BW/day,
230.98-682.64 nM) (Moreno-Gómez-Toledano et al., 2021).
These values are lower than those considered safe by the
European Food Safety Authority, 4 μg/kg BW/day (TDI,
Tolerable Daily Intake) (EFSA, 2016). However, this dose has
been calculated using animal models as reference (Tyl et al.,
2008), to which several correction factors were applied. As
shown in Fig. 1, our cellular models show considerable
evidence of the effects produced by BPA at the same doses,
which should be a critical element to take into account when
extrapolating animal studies to humans. Furthermore, the
doses observed in CKD patients in dialysis treatment are
lower than the proposed TDI but between 2 and 6 times
higher than the concentrations used in the cell models.

However, it must be mentioned that BPA is among other
chemicals that can be found circulating in the body. In recent
years, various compounds have been identified, such as
phthalates (Wang et al., 2019), as well as other phenolic
derivatives, such as bisphenol S, F, or AF (BPS, BPF, or
BPAF, respectively) (Chen et al., 2016). It has been observed
that the combination of these elements could enhance the
damage that they can already exert individually. Thus, it has
been observed that the combination of BPA and dibutyl
phthalate (DBP) increases cytotoxicity, oxidative stress, and
genotoxicity in liver cell cultures (Li et al., 2017). In animal
models, it has been determined that co-exposure of BPA with
Di-(2-Ethylhexyl) -phthalate (DEHP) appears to increase
susceptibility to tumor development (Zhang et al., 2021).

Furthermore, computer models that have recently been
published showed synergy or antagonism as a function of
the combination of phenolic derivatives (Jatkowska et al.,
2021). According to Kataria et al. (2015), oxidative stress
might represent a common pathway that mediates renal
injury associated with exposure to environmental chemicals
such as BPA, phthalates, polycyclic aromatic hydrocarbon,
polychlorinated biphenyl, perfluoroalkyl acid as well as
dioxins. This mechanism has biological plausibility and
justifies further investigation when examining the adverse
effects of these chemicals. Interestingly, these authors also
suggest that other functional disturbances contribute to the
adverse cardiorenal effects elicited by the described
compounds, including effects on modifiable patient-
associated factors, such as obesity.

Conclusion

The latest advances in BPA study have determined that it is a
molecule with the potential to induce alterations in the
cytoskeleton and the capacity for cell adhesion. The
concentrations to which the susceptible population is
exposed could worsen their pathologies, particularly in
patients with CKD. The widespread usage of BPA, especially
in the composition of the surgical medical material, should
be evaluated and act accordingly, as it could be a crucial
factor in the evolution of specific pathologies. Future
translational studies need to evaluate the impact of BPA in

the human population and reevaluate BPA exposures
considered safe.
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