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Abstract: Breast cancer, also recognized as the principal cause of cancer-related deaths among women, is the second most

familiar and prevalent form of cancer. New diagnostic and prognostic biomarkers that are highly specific are urgently

needed for its early prognosis. MicroRNAs (miRNAs), a class of non-coding RNAs, are known to control the

biological processes involving transcription, post-transcriptional and covalent modifications, splicing, translation, cell

differentiation, proliferation, apoptosis, cancer progression, and invasion. Any dysregulation in miRNA expression,

demonstrating their oncogenic and tumor-suppressive functions, contributes to cancer progression. MicroRNA-21

(miR-21), an ‘onco-miR’ in breast cancer, is involved in tumor progression and metastasis by suppressing the activity

of the target gene via its interaction with the 3’UTR of the target gene. The upregulation of miR-21 is observed in

many instances of breast cancer. Our review aims to summarize the current understanding of miR-21 in the

regulation of important cellular functions via regulation of its target genes. We discuss its biosynthesis, oncogenic

function in breast cancer, and different methods used for its detection. This will increase the current understanding of

the role of miR-21 in breast cancer tumorigenesis, which will offer a perception of using miR-21 as an early detection

molecular prognostic and diagnostic biomarker and as a therapeutic target in breast cancer care.
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Introduction

The second most complex and heterogeneous cancer which
brings mortality in 45–55 years older women across the world
is breast cancer (Hemmatzadeh et al., 2016; Wang et al., 2017;
Becker, 2015; Quan et al., 2020; Ataollahi et al., 2015). Aging is
one of the most significant recognized risk factors associated
with breast cancer. However, other risk factors such as
deficiency of iodine, high estrogen level, obesity, intake of
alcohol, menopause, family history, physically inactive and
chest radiation exposure are also involved in breast cancer
(Yager and Davidson, 2006; Steiner et al., 2008; Stoddard et
al., 2008; Ataollahi et al., 2015). Breast cancer occurs in
tissues that include mammary glands and ducts, resulting in
lumps, swelling, redness, irritation in breast skin and nipples
discharge (Ataollahi et al., 2015). The breast cancer cells are
categorized into six major subtypes based on their phenotype
and gene expression profile, including i) luminal A,
ii) luminal B, iii) tumor enriched with human epidermal
growth factor receptor 2 (also known as Her2), iv) basal-like
(triple-negative), v) normal-like, and vi) claudin-low subtype
(Singh and Mo, 2013; Sørlie et al., 2003; Eroles et al., 2012).

It is believed that the mortality rate due to breast cancer
can be reduced through the early diagnosis and detection of
these six subtypes (Imani et al., 2017). The mammographic
screening tool is the most operative tool used for the early
diagnosis of tissue-based tumors in the breast (Taplin et al.,
2008; Imani et al., 2017). But this tool has certain
limitations such as high false-positive results, low reactivity,
and low preciseness and, not adequate to diagnose the
subtypes, so there is a need for new diagnostic and
prognostic biomarkers that are highly specific (Adhami et
al., 2018; Imani et al., 2017). Various non-coding RNAs
(ncRNAs) that involve microRNAs (miRNAs), PIWI-
interacting RNAs (piRNA), circular RNAs (circRNAs), and
long non-coding RNAs (lncRNAs) are found to regulate
biological processes like transcription, post-transcriptional
modifications, covalent modifications, splicing, and
translation in the metastasis phase of breast cancer cells
(Klinge, 2018). Of all the ncRNAs studied in breast cancer,
miRNAs are the most thoroughly studied and have
diagnostic potential (Lo et al., 2016).

miRNA in breast cancer
miRNAs perform a crucial function in cancer research as
predictive, diagnostic and, prognostic biomarkers because of
their regulatory roles in vital processes of life like cell

differentiation, proliferation, apoptosis, cancer progression
and invasion (Kim, 2005; O’Day and Lal, 2010; Yu and
Cheah, 2017). miRNAs are 15-27 nucleotides, short
endogenous ncRNA molecules that are well known for post-
transcriptionally regulating gene expression in eukaryotes by
base pairing with protein-coding mRNA genes 3’-UTR
(Feng and Tsao, 2016; Han et al., 2016; Wilczynska and
Bushell, 2015; Adhami et al., 2018). Around half of the
human miRNAs are placed on human cancer-related
chromosomal regions (fragile sites), enabling them to alter
the tumor suppressor or oncogenic pathways (Calin et al.,
2004; Hemmatzadeh et al., 2016; Tang et al., 2012; Casalini
and Iorio, 2009; Croce, 2009). Various studies have shown
the miRNAs involvement as oncogenic/tumor suppressor in
the pathogenesis of breast cancer as defined in Tab. 1 (Zhu
et al., 2008; Si et al., 2007; Yan et al., 2008; Kong et al.,
2012; Hassan et al., 2012; Fabian and Sonenberg, 2012).

In breast cancer, microRNA-21 (miR-21) is the key
miRNA used in the invasion process and facilitates tumor
progression and metastasis (Han et al., 2012a; Han et al.,
2012b). miR-21, also identified as MIR21, hsa-mir-21,
miRNA21, MIRN21, is located on chromosome 17q21.3
encoding 72-nt long precursor miR-21 (pre-miR-21)
(Abdel-hamid et al., 2015; Hemmatzadeh et al., 2016). By
targeting multiple tumor/metastasis suppressor genes, miR-
21 functions as an oncogene (Abdel-hamid et al., 2015;
Hemmatzadeh et al., 2016; Selcuklu et al., 2009). The
upregulated expression of miRNA-21 has been correlated
with lymph node metastasis, advanced tumor levels and
poor prognosis; therefore, it can act as a prognostic marker
in breast cancer (Yan et al., 2008; Hemmatzadeh et al.,
2016; Lee et al., 2011; Li et al., 2016; Shen et al., 2015).

Biosynthesis of miRNA
In the nucleus, the RNA polymerase II transcribes non-coding
miRNA gene into 100-120 nt long hair pin structured
primary-miRNA (pri-miRNA) (Petri and Klinge, 2020; Lee
et al., 2004; Yu and Cheah, 2017) (as shown in Fig. 1). The
enzymes DROSHA (a class 2 ribonuclease III) and DGCR8
(dsRNA-binding protein) cleave the hair pin structure of
pri-miRNA to produce 70 nt pre-miRNA (Filippov et al.,
2000; Gregory et al., 2004; Denli et al., 2004). DROSHA
(encoded by miRNA machinery gene) is responsible for
processing miRNA in the initial phase (Khan et al., 2014).
The pri-miRNA is further modified by the N(6)-
methyladenosine (m6A) post-transcriptionally, stimulating
the beginning of the miRNA biosynthesis process (Alarcón
et al., 2015a). The heterogeneous nuclear ribonucleoprotein
A2/B1 (HNRNPA2/B1) attaches to m6A in pri-miRNA,
assisting DROSHA’s transformation of pri-miRNA into
pre-miRNA (Alarcón et al., 2015b). After trimming of
pri-miRNA, Exportin 5 (encoded by XPO5) or
Exportin 1 (encoded by XPO1) exports pre-miRNA to
the cytoplasm for further processing by the Dicer
enzyme (Sheng et al., 2018). DROSHA plays a very
significant role. The single nucleotide polymorphism
(SNP) located in the 3’UTR of DROSHA rs10719 has
been linked to breast cancer risk because it abrogates the
hsa-miR-1298 binding site in DROSHA, thus affecting its
expression (Khan et al., 2014).
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TABLE 1

Oncogenic and tumor suppressor miRNAs target genes in breast cancer

miRNA Target Genes Role References

Oncogenic miRNAs

miR-21 Bcl-2, PDCD4, TPM1, PTEN,
MASPIN, LZTFL1

Apoptosis; cell proliferation; β-catenin
nuclear signaling; EMT process
regulator

Si et al., 2007; Zhu et al., 2007; Frankel
et al., 2008; Qi et al., 2009; Zhu et al.,
2008; Gong et al., 2014; Wang et al.,
2019

miR-155 RHOA, SOX1, SOCS1,
MMP16, PTEN, DUSP14,
PIK3R1, FOXO3a, ZEB2,
TSPAN5

TGF-β/Smad pathway; cell
proliferation and migration; PIK3R1-
FOXO3a-cMYC pathway; cell
invasiveness; miR-155/TSPAN5
signaling axis

Kong et al., 2008; Zhang et al., 2018;
Kia et al., 2019; Kim et al., 2018;
Brown et al., 2018; Yang et al., 2020

miR-373/520c CD44, IL-8, ESR1, TXNIP,
RABEP1, RELA, TGFBR2

Oncogene-induced p53 pathway;
metastasis; EMT process; pro-
metastatic

Tang et al., 2017; Eichelser et al., 2014;
Huang et al., 2008; Yan et al., 2011;
Keklikoglou et al., 2012

miR-9 LIFR, E-cadherin, PTEN,
DUSP14, FOXO1, AR, ESR1,
STARD13, SOCS3, PIAS3,
ONECUT2

Cellular differentiation; Metastasis;
cell proliferation, migration, and
invasion; oestrogen regulated pathway;
JAK/STAT signaling pathway;
androgen receptor pathway; blockhe
EV miRNA–ONECUT2 axis

Ma et al., 2010; Chen et al., 2012; Kia
et al., 2019; Liu et al., 2017; Moazzeni
et al., 2017; Barbano et al., 2017; Li
et al., 2020; Jiang et al., 2020; Bandini
et al., 2020; Shen et al., 2019

miR-10b RHOC, HOXD10, MAPRE1,
PIEZO1, SRSF1, TP53,
CDKN2A, TRA2B, FUT8,
NR4A3, TBX5, PTEN, NF1,
KLF4

Metastasis; cell proliferation and
invasion; AKT signaling pathway;
transcriptional misregulation; pro-
metastatic; EMT process; adhesion
and migration

Ma et al., 2007; Ma et al., 2010;
Meerson et al., 2019; Guo et al., 2018;
M’hamed et al., 2017; Kim et al., 2018;
Kim et al., 2016; Negrini and Calin,
2008

miR-196a ANXA1, SPRED1, annexin-A1 Cell proliferation; estrogen signaling Luthra et al., 2008; Jiang et al., 2018;
Rahim et al., 2019

miR-221/222 ERa, p27kip1, p57, PTPµ, PTEN,
Bim, TIMP3, SOCS3, Notch3,
A20 (TNFAIP3), c-Rel, CTGF,
GAS5

Signaling pathways (Wnt, TGF-β, p53,
MAPK, Notch, Erb B and Jak-STAT);
focal adhesion; Wnt/β-catenin
signaling; A20/c-Rel/CTGF signaling;
Akt/NF-κB/COX-2 pathway;
promotes EMT process; anti-
apoptosis; cell proliferation

Rao et al., 2011; Garofalo et al., 2012;
Liang et al., 2018; Li et al., 2017; Liu et
al., 2018; Santolla et al., 2018; Zong et
al., 2019; Chen et al., 2020; Tang et al.,
2019

Cluster 17/20 (miR-17-
3p, miR-17-5p, miR-18,
miR-19a, miR-19b,
miR-20, and miR-92)

AIB1, cyclin D1, STAT3, FOSL
(Fra-1), IMPDH1, NPEPL1,
PTEN, BRCA2, VEZF1

Cell proliferation by Wnt, β-Catenin;
LEF1 pathway; apoptosis; pro-
metastatic; pro-angiogenesis

Hossain et al., 2006; He et al., 2005;
Mu et al., 2019; Liao et al., 2017; Yang
et al., 2013

Tumor Suppressor miRNAs

miR-206 ESR1, NAMPT, MKL1, IL11,
TWF1, SRF, WDR1, MRTF-A,
neurokinin-1, WBP2

ER signaling; inhibition of stemness
and metastasis; cell migration and
progression; modulation of tamoxifen
sensitivity

Iorio et al., 2005; Adams et al., 2007;
Samaeekia et al., 2017; Xiang et al.,
2017; Zhou et al., 2019; Hesari et al.,
2018; Ren et al., 2017

miR-125a, b HER2, HER3, KIAA1522,
BAP1

Anchorage-dependent growth;
differentiation; cell proliferation,
migration and invasion

Mattie et al., 2006; Scott et al., 2007;
Iorio et al., 2005; Li et al., 2018; Yan et
al., 2018

miR-34a Bcl-2, SIRT1, CCND1, CDK6,
E2F3, MYC, ErbB2, Notch1,
C22ORF28

DNA damage; cell proliferation; drug
resistance; FOXM1/eEF2K signaling
axis

Li et al., 2013; Christoffersen et al.,
2010; Welch et al., 2007; Sun et al.,
2008; Wang et al., 2017; Li et al., 2017;
Bayraktar et al., 2018; Lin et al., 2017;
Rui et al., 2018

miR-200 BMI-1, ZEB1, ZEB2, QKI,
MYB

TGF-β signaling; EMT process;
tamoxifen resistance

Uhlmann et al., 2010; Cochrane et al.,
2010; Gregory et al., 2008; Dykxhoorn
et al., 2009; Shimono et al., 2009; Kim
et al., 2019; Gao et al., 2019

(Continued)
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Dicer is a RNase III class of enzyme that cleaves the hair
pin region of pre-miRNA to produce 20–30 nts of duplex
miRNA composed of two single guide (5’ to 3’) and
passenger (3’ to 5’) strands (Kobayashi and Tomari, 2016;
Höck and Meister, 2008; Petri and Klinge, 2020). This guide
strand joins the PAZ domain of RNA-induced silencing
complex (RISC) to mediate post-transcriptional gene
silencing of the target mRNA through Argonaute 2 (AGO2,
RNase, catalytic part of RISC having “slicer” activity) which
cleaves the target mRNA and the PIWI domain of RISC is
responsible for the degradation of passenger strand (Höck
and Meister, 2008; MacFarlane and Murphy, 2010; Yu and
Cheah, 2017).

miRNA-induced silencing complex (miRISC, composed
of AGO2 and guide strand) mediate the degradation of
target mRNA. miRISC follows Ago-catalyzed, decapping,
deadenylation, and exonucleolytic mechanisms (Eulalio et
al., 2008; Behm-Ansmant et al., 2006; Wahid et al., 2010).
Once miRNA and target mRNA complement each other,
AGO2’s endonuclease activity is activated, cleaving the
target mRNA (MacFarlane and Murphy, 2010). The miRISC
inhibits the translation by obstructing the eIF4F complex,
and mRNA circularization process of the target mRNA
(Wahid et al., 2010). The GW182 family proteins bind to
AGO2 are recruited by miRISC and act as a scaffold for the
complex poly(A)-deadenylase PAN2-PAN-3 and CCR4-
NOT proteins (MacFarlane and Murphy, 2010; O’Brien
et al., 2018). The poly(A)-deadenylation process is initiated
by the PAN2-PAN3 complex and completed by the CCR4-
NOT protein complex. This process is further enhanced
through the interaction of poly(A)-binding protein
(PABPC) and GW182 tryptophan (W)-repeats (MacFarlane
and Murphy, 2010; O’Brien et al., 2018). The exosome (with
3’-5’ exonuclease activity) mediates the degradation process
and the enzymes, decapping protein 1 (Dcp 1) and

decapping protein 2 (Dcp 2) facilitate the process by
inducing exoribonuclease 1 (XRN1), which target 5’-3’
mRNA degradation (MacFarlane and Murphy, 2010;
O’Brien et al., 2018).

Identifying miRNA in breast cancer cells
miRNAs have crucial role in gene regulation, so it is becoming
imperative to develop and improve methods that can detect
miRNAs because their detection in breast cancer is difficult
due to their small size, low abundance, high level of
sequence similarities (Chandrasekaran et al., 2019; Ye et al.,
2019). The most well-known traditional methods for the
detection of miRNA are microarray, in situ hybridization,
bead-based flow cytometry, next-generation sequencing
(NGS), northern blotting, and quantitative reverse
transcription polymerase chain reaction (qRT-PCR) (Ye et
al., 2019; van Schooneveld et al., 2015). Out of these
methods, northern blotting and in situ hybridization are low
throughput methods, whereas microarray, bead-based flow
cytometry, qRT-PCR and NGS are high throughput
methods (van Schooneveld et al., 2015).

Northern blotting is the most standardized and highly
specific method that can detect mature miRNA and their
precursors (Ye et al., 2019; Várallyay et al., 2008). Besides
these, the northern blotting method has a poor sensitivity
and cannot detect the RNAs present in low amounts in few
cells (Ye et al., 2019). qRT-PCR method is a highly sensitive
and specific method used for evaluating miRNA and for the
authentication of data prevailed from other detection
platforms (Balcells et al., 2011; Yu and Cheah, 2017). The
bead-based flow cytometry method is moderate in sensitivity
and strong in specificity, whereas the in situ hybridization
method is low in sensitivity and specificity (van Schooneveld
et al., 2015). Microarray is a rapid method that can examine
plenty of miRNAs from vast numbers of samples, with low

Table 1 (continued).

miRNA Target Genes Role References

miR-17-5p AIB1, CCND1, E2F1, STAT3 Proliferation; apoptosis Hossain et al., 2006; Yu et al., 2008;
Liao et al., 2017

miR-31 FZD3, ITGA5, M-RIP,
MMP16, RDX, RHOA, Dkk1

Metastasis; Wnt/β-catenin Valastyan et al., 2009; Lv et al., 2017

let-7 RAS, HMGA-2, H-RAS, LIN28,
PEBP1, MCY, CCND1,
CYP19A1, MAGE-A1, ADRB2,
HIFIAN, CLDN12, MZF1

Proliferation, differentiation; EMT
pathway; EMC receptor interaction;
pro-metastatic; angiogenesis;
migration and invasion

Yu et al., 2007; Mayr et al., 2007; Wu et
al., 2006; Johnson et al., 2005; Song et
al., 2020; Qattan et al., 2017; Shibahara
et al., 2012; Mi et al., 2019; Du et al.,
2019; Tvingsholm et al., 2018

miR-205 HER3, RunX2, HMGB1-
RAGE, S1PR1

P13K/Akt pathway; regulates the
activity of CD44+/CD24- breast cancer
stem cells; EMT process and cell
invasion

Iorio et al., 2009; Wang et al., 2019;
Fang et al., 2020

miR-7 PaK-1, FAK, PAK1, EGFR,
KLF4, HoxB3, SET8, BRCA1,
LASP1, RELA, MRP1, BCL2

Anchorage independence;
invasiveness; motility; inhibition of
ESAM expression; reverses
chemotherapy resistance

Reddy et al., 2008; Zhao et al., 2015;
Moazzeni et al., 2017; Li et al., 2020;
Hong et al., 2019

miR-30a SNAI1, Vimentin, Notch1,
Snail, ROR1, Slug, TWIF1,
vimentin, UBE3C

Motility and invasiveness; EMT and
metastasis; inhibition of cell viability
and migration; apoptosis

Cheng et al., 2012; Wang et al., 2018;
Kawaguchi et al., 2017; Zhang et al.,
2017; Xiao et al., 2019
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sensitivity and specificity (Li and Ruan, 2009; Cissell and Deo,
2009). All these methods recognize only known miRNA
structures, but NGS is the latest high sensitivity and
specificity approach that enables new miRNAs to be
recognized (van Schooneveld et al., 2015; Creighton et al.,
2009). In the case of breast cancer, the upregulated levels of
miR-21 can also be detected from tissues, blood, and serum
(Yu and Cheah, 2017; Savad et al., 2012).

Oncogenic role of miR-21 in breast cancer cell proliferation and
metastasis
The “oncomiR” miR-21 is believed to be involved in tumor
proliferation and metastasis in breast tissues by controlling
the expression of tumor suppressor genes such as
programmed cell death 4 (PDCD4), tropomyosin-1 (TPM1),
phosphatase and tensin homolog (PTEN), mammary serine
protease inhibitor (MASPIN); an apoptosis suppressor gene,
B-cell lymphoma 2 (Bcl-2), and leucine zipper transcription
factor-like 1 gene [(LZTFL1), a tumor suppressor] (Si et al.,
2007; Zhu et al., 2007; Frankel et al., 2008; Qi et al., 2009;
Zhu et al., 2008; Wei et al., 2010; Wang et al., 2019)
(illustrated in Fig. 2). These genes play a critical role in
breast cancer and are targeted by miR-21.

Programmed Cell Death 4 (PDCD4)
In both immune/non-immune cells, the programmed cell death
4 gene is a tumour suppressor (Jiang et al., 2017). The PDCD4
protein contains three domains (two MA-3 domains and the
N-terminal domain) that play a role in transcription and
translation inhibition (Jiang et al., 2017). Owing to the binding
of its MA-3 domains to eIF4A, PDCD4 prevents the
translation of mRNAs having structured 5’UTRs, hindering
eIF4A binding to eIF4G, even blocking eIF4A’s helicase
activity, thus repressing the translation initiation mechanism
of many genes, such as p53, Atg5, pro-caspase 3, and LXR-α
(Kroczynska et al., 2012; Yang et al., 2004). By interacting with
its N-terminal domain with A-myb & c-myb (RNA secondary
structures), PDCD4 represses the elongation mechanism of
translation (Singh et al., 2011). PDCD4 prevents tumor cell
proliferation and invasion via inducing their apoptosis, leading
to its upregulation in various tumors like breast, ovarian,
gastric, esophageal, lung, hepatocellular, colon and glioma
tumors (Powers et al., 2011; Wei et al., 2012; Jiang et al.,
2017). The protein arginine methyltransferase 5 (PRMT5)
deregulates the activity of the PDCD4 gene, resulting in breast
cancer cell proliferation and invasiveness (Powers et al., 2011).
miR-21 has been shown to target PDCD4 in tumour cells,
thereby downregulating its expression (Sheedy et al., 2010).

PDCD4 is a target of miR-21 for breast cancer (Frankel
et al., 2008). The miR-21 binding sites in the PDCD4 3’UTR
are shown in Fig. 3A, which shows how miR-21 interacts
with the PDCD4 3’UTR. To assess the fact that miR-21
specifically targets PDCD4, the firefly luciferase reporter
assay was carried out. Frankel and his colleagues first cloned
PDCD4’s 400–500 bp of 3’UTR into the pGL3 vector and
then developed single (pGL3-PDCD4MUT1) and double
(pGL3-PDCD4MUT2) mutations in the pGL3-PDCD4 seed
region. PGL3-PDCD4, pGL3-PDCD4MUT1 & pGL3-
PDCD4MUT2 were transfected into HEK293 cells and
luciferase activity was tested after 24 h.

Results showed that miR-21 had no effect on pGL3-
PDCD4MUT2 regulation but had little effect on pGL3-
PDCD4MUT1 regulation (as shown in Fig. 3B), leading to
the inference that there is a clear association between miR-
21 and PDCD4 seed region 3’UTR. To verify the effects of
miR-21 inhibition, they knocked down PDCD4 in MCF-7
cells via siRNA and found that PDCD4 siRNA mediated the
antiproliferative effect on MCF-7 cells (see Figs. 3C, D).
Thus, revealing the significance of PDCD4 by miR-21 as a
putative target for breast cancer (Frankel et al., 2008).

Another research by Zhu et al. (2008) showed that miR-
21 interacted with PDCD4’s 3’UTR, resulting in its reduced
expression in MDA-MB-231 cells. Anti-miR-21 also led to
increased PDCD4 expression, indicating the role of miR-21
in breast cancer cell invasion by directly interacting with the
PDCD4 target gene (Zhu et al., 2008).

Tropomyosin-1 (TPM1)
Tropomyosin-1, also known as TM1 and the actin-binding
cytoskeletal protein, is a TPM family isoform that functions
as a tumour suppressor gene by preventing cancer cell
invasion by persuading apoptosis (Wang et al., 2015; Pan et
al., 2017; Qi et al., 2009; Wang et al., 2019). Downregulation
of TPM1 has been observed in breast cancer, glioma cancer,
renal cell carcinoma, human oral squamous cell carcinoma
(OSCC), and cholangiocarcinoma (Wang et al., 2015; Dube et
al., 2015; Pan et al., 2017; Bharadwaj and Prasad, 2002; Yang
et al., 2013; Ku et al., 2010). The expression of TPM1 in the
OSCC is regulated by miR-21 (Pan et al., 2017). In addition,
Zhu et al. (2007) in their report, showed that TPM1 is
targeted by miR-21 in breast cancer to inhibit the TPM1
mediated apoptosis of cancer cells. They conducted two-
dimensional differentiation in-gel electrophoresis, where they
found the upregulated TPM1 expression in tumors procured
from MCF-7 cells by antisense miR-21 oligonucleotides (anti-
miR-21). miR-21 controls TPM1 expression by base-pairing
with the V1 variant 3’UTR of TPM1, including miR-21’s
putative binding sites. For further evidence, the V1-3’UTR
was cloned into a luciferase reporter. Luciferase assay results
suggested that anti-miR-21 increased Luc-TPM1-V1-UTR
activity, while miR-21 decreased its activity. Moreover, the
effect of miR-21 inhibition on TPM1 was also tested at the
level of translation. MTT assay revealed that TPM1-V1
repressed the growth of MCF-7 cells in vitro, and soft agar
assay results also showed that TPM1-V1 reduced colony
formation leading to anchorage-independent growth
repression. Altogether, we can conclude that miR-21 uses
TPM1 to control its expression inMCF-7 cells as a novel target.

Phosphatase and tensin homolog (PTEN)
PTEN on chromosome 10 is recognized as a tumor suppressor
gene coding 403 amino acids protein, which functions as a
metabolic regulator of a number of cellular processes like
glycogen synthesis, lipid and mitochondrial metabolism,
glycolysis, and gluconeogenesis (Chen et al., 2018). It has
dephosphorylation activities for both proteins and lipids due
to which it is known as dual phosphatase enzyme (Chu and
Tarnawski, 2004). PTEN has five domains: 1) N-terminal
domain, responsible for the binding of phosphatidylinositol
phosphate (PIP) substrates; 2) Phosphatase domain, carries
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acetylation sites and CX5R signature motif for the enzymatic
actions; 3) C2 domain, a regulatory domain which contains a
phospholipid-binding site and known for PTEN cell
localization; 4) C-tail, which preserves phospho-sites and is
responsible for the stability of protein; 5) PDZ domain,
which is not well known (as shown in Fig. 4) (Chu and
Tarnawski, 2004; Jerde, 2015; Chen et al., 2018). PTEN has
regulatory functions in several processes, including cell

migration, cell cycle arrest, MAP kinase signaling and
angiogenesis (Chu and Tarnawski, 2004). Any mutations in
PTEN gene lead to the progression of sporadic breast
cancer, renal cell carcinoma, ovarian cancer, lung cancer,
thyroid cancer, lymphoma cancer, hepatocellular carcinoma,
lymphoma, head & neck cancer, prostate cancer, and
glioblastoma (Chu and Tarnawski, 2004; Meng et al., 2007;
Halachmi et al., 1998; Shao et al., 1998; Forgacs et al., 1998;

FIGURE 1. Biosynthesis of miRNA. RNA polymerase II is responsible for the transcription of 100–120 nts pri-miRNA in the nucleus. The pri-
miRNA is trimmed into 70 nts pre-miRNA by DROSHA and DGCR8, which is then exported by exportin 5/1 into the cytoplasm, where it is
further processed by Dicer enzyme forming 20–30 nts duplex miRNA with the guide (5’ to 3’) and passenger (3’ to 5’) strands. The guide strand
interacts with the PAZ domain of the RISC, causing Argonaute 2 (AGO2) to cause post-transcriptional gene silencing and cleavage of the target
mRNA, while the RISC’s PIWI domain degrades the passenger strand.
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FIGURE 2. Depicts miR-21’s target genes and their functions in tumorigenesis.

FIGURE 3. Represents that PDCD4 is a putative target of miR-21. A) shows the interaction of miR-21 with the 3’UTR of PDCD4. B) shows
firefly luciferase reporter assay results, where co-transfection of HEK cells was done with pGL3-PDCD4, pGL3-PDCD4MUT1, pGL3-
PDCD4MUT2 along with a Renilla luciferase transfection control plasmid, either alone or together with miR-21/lin-4 precursor miRNAs.
Shown are relative luciferase values normalized to transfections without miRNA. Data are shown as the mean S.D. of four replicates and
are representative of two independent experiments. ***, p_0.001 using a two-tailed t test. C) shows western blotting results where siRNA
mediated knockdown of PDCD4 was shown in MCF-7 cells. D) shows the growth assay of PDCD4/control siRNA treated 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide in MCF-7 cells and transfection with inhibitors against miR-21/a scrambled
control. Quantification of cell number was done after 5 days of transfection. Data are shown as the mean _ S.D. of three replicates and are
representative of three independent experiments. The p value was calculated using a two-tailed t test (Frankel et al., 2008).
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Saito et al., 2000). In human hepatocellular cancer, miR-21 is
known to regulate the PTEN expression and pathways which
are mediated by PTEN (Meng et al., 2007).

A research conducted by Gong et al. (2014) showed that
miR-21 decreases PTEN expression in tumors of breast
phyllodes. Like PDCD4 and TPM1, PTEN also has miR-21
binding sequences at 3’UTR (Zhu et al., 2007; Frankel et al.,
2008; Gong et al., 2014). PTEN protein levels were increased
via miR-21 antisense oligonucleotides while, decreased via
miR-21 mimics in stromal fibroblasts, demonstrating the
role of miR-21 in targeting PTEN to increase the
proliferation of phyllodes tumors cells (Gong et al., 2014).
PTEN is known for the regulation of fibroblast activation
protein (FAP) function (FAP is familiar as a serine protease
and myofibroblast marker to increase the proliferation of
phyllodes tumors) (Liu et al., 2012; Gong et al., 2014). The
PTEN knockdown raised the protein expression levels of FAP
during the myofibroblast differentiation process, suggesting
the role of PTEN in proliferation. Moreover, reintroduction
of PTEN resulted in a decrease in both PTEN mRNA and
protein levels in benign tumors, thus inhibiting the
proliferation of tumor cells by miR-21. Together, these
findings concluded that miR-21 downregulates the PTEN
expression to induce cell proliferation by increasing FAP
expression in breast phyllodes tumor (Gong et al., 2014).

Mammary Serine Protease Inhibitor (MASPIN)
Mammary serine protease inhibitor is related to the serpin
family (serine protease inhibitor family) (Zhang, 2002). Due

to its ability to prevent tumor invasion by inducing
apoptosis in tumor cells found on the 18q21.3-q23
chromosome, it is also recognized as a tumor suppressor
gene (Berardi et al., 2013; Zhang, 2002). It is also known to
prevent the process of angiogenesis (Zhang, 2002). Owing to
its nuclear/cytoplasmic location in cancer cells, its
expression is downregulated in various cancers like breast,
gastric, prostate, melanoma and upregulated in gallbladder,
thyroid, colorectal, pancreatic cancers (Berardi et al., 2013).

Maspin decreased MDA-MB-231 tumour cell invasion in
the case of breast cancer (Zhu et al., 2008). With Flag-tagged
maspin, they transfected MDA-MB-231 cells and confirmed
the invasiveness of tumour cells through western blotting.
However, by targeting it, the oncomir miR-21
downregulated maspin expression in MDA-MB-231 cells.
Maspin also has 3’UTR binding sites for miR-21, so they
cloned 3’UTR of maspin into pGL3 vector (luciferase gene)
to check the Luc-Maspin-3’UTR luciferase activity. They
found that miR-21 repression of luciferase activity was
greater than 40%. Furthermore, anti-miR-21 increased the
maspin expression, leading to the conclusion that by
targeting its 3’UTR, miR-21 inhibits the maspin expression
in MDA-MB-231 cells (Zhu et al., 2008).

B-cell Lymphoma 2 gene (Bcl-2)
B-cell lymphoma 2 is a 26 kDa protein present on human
chromosome 18q21 with a hydrophobic carboxyl terminus
positioned on the outer mitochondrial membrane and an
anti-apoptotic gene as well (Lu et al., 1996). It suppresses

FIGURE 4. Protein domains of
PTEN (Jerde, 2015).

FIGURE 5. The levels of miR-21 in breast cancer patient plasma and cell lines. (A) Plasma miR-21 levels in 252 breast cancer patients, 127
healthy controls, and 82 benign breast cancer patients (p < 0.0001). (B) Plasma miR-21 levels in luminal A, luminal B, Her-2+ and basal-like
types of breast cancer patients (p < 0.05). (C) The mRNA levels of miR-21 in HBL-100, Hs578T, MDA-MB-231, SK-BR3, and MCF-7 cell lines
(*p < 0.05, **p < 0.01, ***p < 0.001) (Wang et al., 2019).

316 PRIYANKA THAKUR et al.



the caspase-mediated cell death and stimulates cell proliferation
by restricting the function of pro-apoptotic proteins, Bak and
Bax (Lu et al., 1996; Wickramasinghe et al., 2009).
Upregulated levels of bcl-2 gene are found in many cancers
like lymphoma, breast, colorectal, thyroid, and cervical
(Flangea et al., 2008; Manne et al., 2000; Zhou and Wang,
2015). Research on human glioblastoma U87MG cells
revealed that miR-21 overexpression resulted in decreased
Bax expression and increased bcl-2 gene expression along
with reduced caspase-3 activity (Shi et al., 2010). Similarly,
miR-21 controls tumorigenesis by upregulating the expression
of the bcl-2 gene in breast cancer as miR-21 was highly
overexpressed in breast tumors compared to the matched
normal breast tissues 157 human miRNAs analysed. (Si et al.,
2007). To investigate the function of miR-21, MCF-7 cells
were transfected with anti-miR-21 oligonucleotide.

They showed that anti-miR-21 inhibits in vitro cell growth
and tumor growth in the xenograft mouse model. Furthermore,
to assess anti-miR-21 induced apoptosis, transfected cells were
given Z-VAD-fmk, a caspase inhibitor, to counteract growth
inhibition mediated by anti-miR-21. Apoptosis was caused by
reduced Bcl-2 protein expression in anti-miR-21 transfected
MCF-7 cells. These findings concluded that miR-21 should be
used as a therapeutic target for breast cancer because of its
essential function in controlling the Bcl-2 gene (Si et al.,
2007). In another study, breast cancer cell lines were
developed, which are paclitaxel-resistant, and it was shown
that down regulation of miR-21 via its mimic enhance the
sensitivity against paclitaxel in the developed cell lines and
increase the expression of Bcl-2 (Zhao et al., 2015).

Leucine Zipper Transcription Factor-like 1 (LZTFL1)
The 3p21.3 region of the chromosome contains the leucine zipper
transcription factor-like 1 (LZTFL-1) gene expressed in epithelial
cells of a diversity of normal cells (Wei et al., 2010). LZTFL-1, a
cytoplasmic protein, regulates β-catenin nuclear signaling, ciliary
protein trafficking, and the epithelial-mesenchymal transition
(EMT) process (Wei et al., 2016). It represses EMT by
inhibiting the mitogen-activated protein kinase (MAPK)
signaling pathway, which is especially important in lung cancer
(Wei et al., 2010; Wei et al., 2019). It functions as a tumor
suppressor by stabilizing E-cadherin-mediated adherens
junctions and inhibiting β-catenin relocation into the nucleus,
preventing cell invasion and EMT-mediated breast cancer
metastasis (Wang et al., 2014; Wang et al., 2019). Wang et al.
(2019) discovered that LZTFL1 could be used as a new target in
breast cancer cells via miR-21, facilitating cell invasion and
metastasis. miR-21 was found to be upregulated in the plasma
of three patient groups and various cell lines.

The level of plasma miR-21 was significantly higher in the
breast cancer patient group than the benign breast cancer patient

group and healthy control group (see Fig. 5A), suggesting that
plasma miR-21 level may be used as a potential diagnostic
biomarker for breast cancer. The histopathological examination
showed an upregulated level of miR-21 in breast cancer types
Her-2+ and luminal B (as shown in Fig. 5B), and in vitro
analysis results showed miR-21 upregulate in all cell lines of
breast cancer (MDA-MB-231, Hs578T, MCF-7, and SK-BR3)
compared to immortalized mammary epithelial (HBL-100) cell
line (see Fig. 5C). As demonstrated by luciferase reporter assay,
miR-21 directly targets LZTFL1, where miR-21 overexpression
resulted in decreased luciferase activity in HEK293T cells
transfected with luciferase gene containing either wild-type or
mutant 3’UTR of LZTFL1 (see Fig. 6).

The miR-21/LZTFL1/-catenin axis induces the EMT process.
The effect of miR-21 inhibition and LZTFL1 knockdown on
various EMT markers such as N-cadherin, vimentin, E-cadherin
and claudin-1. miR-21 inhibition decreased N-cadherin and
vimentin expression while increasing E-cadherin and claudin-1
expression, whereas LZTFL1 knockdown reversed the expression
of these markers (as shown in Fig. 7). Immunofluorescence assay

FIGURE 6. The predicted binding
site of miR-21 in the 3’-UTR of wild
type and mutant LZTFL1 (Wang et
al., 2019).

FIGURE 7. miR-21/LZTFL1 regulates β-catenin nuclear
translocation and EMT process. The protein levels of EMT
markers in Hs578T cells treated with miR-21 inhibitor, LZTFL1
siRNA alone, or combined for 48 h (Wang et al., 2019).
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revealed that translocation of β-catenin in the nucleus was
increased by miR-21 which contributed to the transcription
of snail and slug transcription factors (EMT markers) (as
shown in Fig. 7), while LZTFL1 repressed it. Therefore, miR-
21 controls EMT by suppressing the LZTFL1, which increases
β-catenin nuclear translocation, resulting in breast cancer
proliferation and metastasis. This was also proved in BALB/c
nude mice inoculated with Hs578T (human breast cancer)
cells. miR-21 overexpression increased tumor size, weight,
and volume (see Figs. 8A–8C) as well as lymph node
invasion (see Figs. 8D and 8E). Furthermore, overexpression
of miR-21 increased metastasis in liver and lung tissues (as
shown in Figs. 8F and 8G) (Wang et al., 2019).

Summary
There is an extensive role of ‘oncomiR’ miR-21 in various
stages breast cancer viz invasion, development, and
metastasis. Different studies have demonstrated miR-21
upregulation in breast cancer cells by targeting multiple
genes involved in breast cancer tumorigenesis. As
mentioned above, miR-21 overexpression, through the

downregulation of tumour suppressor genes, increases cell
proliferation (Frankel et al., 2008; Zhu et al., 2007; Gong et
al., 2014). miR-21 specifically interacts with PDCD4, TPM1,
PTEN, and maspin 3’UTR, contributing to the suppression
of apoptotic activities (Frankel et al., 2008; Zhu et al., 2007;
Zhu et al., 2008; Gong et al., 2014). It also promotes breast
cancer cell proliferation by increasing the bcl-2 gene
expression. These studies indicate that alteration in the
expression of miR-21 can be a beneficial intervention in the
treatment of breast cancer. Various molecular biology-based
techniques have been developed to detect the alteration in
the expression of miR-21. Besides this, biosensor-based
detection of miR-21 is a new area of research that could be
more accessible and can help in point-of-care testing (Wang
et al., 2020; Meng et al., 2020; Sun et al., 2018). Another
sensitive tool to detect miR-21 in breast cancer is DNA–
Peptide dendrimer and mass spectrometric method. It
would also be essential to understand the role of miRNA in
connection with the changing microbiome, which will help
in early diagnosis and be used as a therapeutic biomarker
(Allegra et al., 2020; Rastogi et al., 2020; Kashyap et al., 2021).

FIGURE 8. miR-21 promotes breast cancer proliferation and metastasis in vivo. (A) Xenografted tumors were obtained from miR-21-treated
Hs578T and control Hs578T cells in situ. (B and C) Tumor weight and volume were observed and recorded in the groups indicated above.
(D and E) The number of lymph nodes invaded was determined. (F and G) Liver and lung tissues were obtained, and the metastatic cells
were visualized (Wang et al., 2019).
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