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Abstract: High-fat diet (HFD) is demonstrated to disturb the bile acid metabolism. The rhythm of bile acid metabolism

can also be affected by uridine, whose metabolism exhibits a daily rhythm. However, the mechanism of dynamic uridine

administration affecting bile acid during HFD remains unclear. In this study, C57BL/6J mice were fed HFD (the control

group; CON) or HFD with oral administration of uridine in the daytime (DUR) and nighttime (NUR) to investigate the

mechanism of the effect of uridine on the bile acid. This study showed that the mRNA expression of uridine transporters

and circadian clock genes in the jejunum was affected by zeitgeber time (ZT) (P < 0.001). Genes related to the metabolism

of pyrimidines in the liver showed a high dependence on daily rhythm (P < 0.01), and DUR remarkably up-regulated the

expression of ribonucleotide reductase regulatory subunit M2 (RRM2) (P < 0.05) compared to the CON group.

Importantly, the mRNA expression of bile acids nuclear receptors, bile acid synthesis, and transporters in the liver

showed significantly rhythmically changed (P < 0.05), and the expression of cholesterol 7-alpha-hydroxylase

(CYP7A1), fibroblast growth factor receptor 4 (FGFR4), Na+/taurocholate co transporting polypeptide (NTCP), and

bile salt export pump (BSEP) mRNAs of mice with uridine administration increased significantly (P < 0.05). The

mRNA expression of the transporters of cholesterol and bile acids in the ileum was also affected by ZT (P < 0.01) and

significantly dependent on uridine administration (P < 0.05). The expression of FXR and SHP was significantly

affected by ZT and uridine, respectively. In conclusion, dynamic administration of uridine could regulate the rhythm

of gene expression of pyrimidine and bile acid metabolism in the liver and ileum of HFD-fed mice, which contributed

to the further study of circadian rhythmic physiological and pathological changes of bile acids.

Introduction

Circadian rhythm is a rhythmic pattern of approximately 24 h
exhibited in most organisms (Chowdhury et al., 2019). The
circadian clock system resides in the suprachiasmatic
nucleus and peripheral tissues, which controls physiological
functions and behaviors in the body through a complex
program of circadian clock genes and proteins, which
present rhythmically in nearly all cell types and expressions
(Bass, 2012; Chen et al., 2019; Green et al., 2008). Daily
rhythms are typically measured as activity vs. rest in animals
and have environmental cues, such as light and temperature,
and are called zeitgebers (Merrow et al., 2005). Importantly,

the circadian machinery is frequently due to the variation in
nutrition mode, including feeding time or energy level of
diet (high-fat diet, HFD) (Asher and Sassone, 2015; Hatori
et al., 2012; Johnston et al., 2016; Kohsaka et al., 2007),
which leads to the disruption of rhythmic metabolism of
glucose and lipids (Appiakannan et al., 2019; Hatsumi et al.,
2018; Honma et al., 2016; Sun et al., 2015). Several studies
have demonstrated that in the HFD-induced obesity mice
model, the expression of core circadian clock genes such as
circadian locomotor output cycles kaput (CLOCK) and
brain and muscle Arnt-like protein-1 is altered and is
associated with lipid metabolic changes (Turek et al., 2005).

The expression of genes responsible for nucleotide
metabolism is under the control of the circadian clock (Fustin
et al., 2012). Uridine, as one of the nucleosides, can stimulate
nucleotide transport (Xie et al., 2019), maintain intestinal
development (Li et al., 2016), improve the growth performance
of suckling piglets and weaned piglets (Li et al., 2019;
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Wu et al., 2020), and suppress the function of intestinal stem cells
(Liu et al., 2020). Importantly, uridine can regulate lipid
metabolism (Le et al., 2014a, Le et al., 2014b); short-term
uridine administration could prevent drug-induced liver lipid
accumulation (Le et al., 2014a), while long-term uridine
administration induced severe liver lipid accumulation in mice
(Urasaki et al., 2016). Most interestingly, dynamic uridine
administration affected the diurnal variations in liver nucleotide,
cholesterol, and lipid metabolism (Liu et al., 2019; Zhang et al.,
2018b), indicating that dynamic uridine administration may
provide a reference for lipid metabolism disorders.

As a lipid emulsifier, bile acids are important for lipid
metabolism (Ye et al., 2018), and bile acid metabolism also
shows circadian rhythm (Eggink et al., 2017); the profile of bile
acid metabolism is regulated by a high-fat diet (Muhammad et
al., 2016; Yoshitsugu et al., 2019). Of note, there is a close
relationship between bile acid metabolism and uridine, and
bile might be involved in plasma uridine clearance (Deng et
al., 2017). Besides, bile acid and uridine may be rhythmically
linked, and the changes in uridine concentration due to meal
times could affect bile acid levels (Deng et al., 2017). However,
the mechanism of uridine supplementation affecting the bile
acid metabolism in HFD-fed mice is not very well-studied.
Therefore, this study was carried out to investigate the
influence of the dynamic administration of uridine on the
metabolism of bile acids in HFD-fed mice.

Materials and Methods

Animal and experimental design
This study was approved by the animal welfare committee of
the Institute of Subtropical Agriculture, Chinese Academy of
Sciences (China, Changsha).

A total of 72 male C57BL/6J mice (from SLAC Laboratory
Animal Central, Changsha, China) aged 7-weeks with similar
weight were randomly assigned into three groups (n = 24):
(1) the CON group included mice fed with HFD containing
60% kcal fat (D12492, Research Diet); (2) the DUR group
included mice fed with HFD and oral administration with
400 mg/kg uridine (Meiya Co., Ltd., Hangzhou, China)
during ZT0-ZT12; (3) the NUR group included mice fed
HFD and oral supplemented with 400 mg/kg uridine during
ZT12-ZT24. The dosage of uridine was as described in a
previous study (Le et al., 2014b). Mice were housed with ad
libitum access to food and water (temperature, 20°C ± 2°C;
relative humidity, 45% ± 5%); the “lights on” condition was
designated as ZT 0 (ZT0; 8:00 am of local time), and “lights
off” as ZT 12 (ZT12, 8:00 pm of local time). The duration of
the experiment was 14 days. Mice were sacrificed by cervical
dislocation, starting at ZT4 at 6-h intervals during the day
(ZT 4, 10, 16, and 22, six mice for each time point), and all
samples of liver, jejunum, and ileum were snap-frozen in
liquid nitrogen and stored at −80°C until analysis.

RNA extraction and real-time quantitative PCR (RT-qPCR)
assay
The RT-qPCR processing was consistent with our previous
study (Liu et al., 2019); all primers were designed using
Primer-BLAST on the National Center for Biotechnology
Information website and are presented in Table 1.

Statistical analysis
All statistical tests were performed using SPSS 22 software
(IBM SPSS Statistics 22, USA). Each ZT was analyzed by one-
way ANOVA, and time-course changes in gene expression
were analyzed by two-way ANOVA (Uridine × ZT), followed
by Tukey’s post-hoc tests. The difference was considered to
be significant when P < 0.05.

Results

Dynamic administration of uridine alters the expression of
mRNA related to pyrimidine metabolism in the liver of high
fat diet-fed mice
The liver is an essential organ for the de novo synthesis and
homeostasis of pyrimidine, and uridine significantly impacts
hepatic cellular function (Le et al., 2013). As presented in Fig. 1,
the expression of pyrimidine metabolism-related genes was
extremely significantly affected by ZT (P < 0.01). The
expression of uridine phosphorylase 1 (UPP1) mRNA decreased
significantly at ZT4 both in DUR and NUR groups (P < 0.05).
Besides, DUR and NUR groups had increased expression of
ribonucleotide reductase regulatory subunit M2 (RRM2) at
ZT22 and ZT4 (P < 0.05), respectively. Of note, uridine
administration had a significant influence on the expression of
UPP1 and RRM2 (P < 0.05) and on the expression of CMPK2
(0.05 < P < 0.1). In addition, mRNA expression of cytidine 5'-
triphosphate synthetase (CTPS) and cytidine 5'-triphosphate
synthetase2 (CTPS2) also showed rhythmic changes.

Dynamic administration of uridine alters the mRNA
expression of uridine transporters and the circadian clock in
the jejunum of high fat diet-fed mice
As shown in Fig. 2, the relative expression of sodium-coupled
nucleoside transporter 1 (SLC28A1), sodium-coupled nucleoside
transporter 3 (SLC28A3), and equilibrative nucleoside
transporter 1 (SLC29A1) showed time dependence (P < 0.001).
Relative to the CON group, the DUR group exhibited
significantly down-regulated expression of SLC28A1 at ZT4,
ZT10, and ZT22, while the NUR group exhibited decreased
expression of SLC28A1 at ZT22; the DUR group, compared to
the CON group, showed lower expression of SLC28A3 at ZT4.
Meanwhile, the expression of SLC29A1 at ZT22 was higher in
the DUR group tin han the CON group. Concurrently, the
expression of SLC28A1 mRNA in the jejunum was highly
significantly affected by uridine administration (P < 0.01). ZT
significantly affected the expression of CLOCK and period
circadian regulator 2 (PER2) (P < 0.001) mRNAs, and DUR
treatment decreased the expression of CLOCK mRNA at ZT16
while the NUR group had a down-regulated expression of
CLOCK at ZT10 (P < 0.05). The mRNA expression of CLOCK
mRNA in the jejunum was significantly affected by uridine
administration (P = 0.0027).

Dynamic administration of uridine alters the mRNA
expression of proteins associated with bile acid metabolism in
the liver of HFD mice
As shown in Fig. 3, ZT significantly affected mRNA
expressions of farnesoid X receptor (FXR), small
heterodimer partner (SHP), cholesterol 7-alpha-hydroxylase
(CYP7A1), fibroblast growth factor receptor 4 (FGFR4),
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TABLE 1

Primers used for the real-time quantitative polymerase chain reaction assay

Target gene Accession No. Nucleotide sequence of primers (5’–3’) Size (bp)

CTPS NM_001355491.1 F: GGAAGACTGTCCAGGTTGTCCC 140

R: AATGTCTCCCACTGTGCCACC

CTPS2 NM_001168568.1 F: AGCCAGTCACCAAAGCCGAGGA 140

R: CCTTGCCCACGAAATTGCCTG

UPP1 NM_001159401.1 F: CCTCAGCACTAGCACACACGA 144

R: GGATATTCCTTCCCTGGATGG

CMPK2 NM_020557.4 F: CTGCTTAACTCTGCGGTGTTC 130

R: CTTTCTGGACCTCCTTTGGGC

RRM2 NM_009104.2 F: CTGTTTCTATGGCTTCCAAAT 141

R: TTCTTCTTCACACAAGGCATT

FXR XM_021173869.1 F: TGGGCTCCGAATCCTCTTAGA 72

R: TGGTCCTCAAATAAGATCCTTGG

SHP XM_021160631.1 F: CAGCGCTGCCTGGAGTCT 74

R: AGGATCGTGCCCTTCAGGTA

CYP7A1 NM_007824.3 F: ACTAGGGAAGTTTCGACATGC 162

R: ATGGTGTGGTTCTTGGAGGTG

FGFR4 XM_021179886.1 F: ACCAACACTGGAGCCTGGT 106

R: AGGAGATAGCTGTAGCGAATGC

BSEP XM_021182286.1 F: TCTGGACAAAGCCAGAGAGG 259

R: AGAGCTATGACAACCCGCAG

NTCP NM_001177561.1 F: GAAGTCCAAAAGGCCACACTATGT 341

R: ACAGCCACAGAGAGGGAGAAAG

SLC28A1 XM_021166872.1 F: AAGGTCGTTGCCAACATTGC 136

R: GGACGTAGGAGCAGATGAGC

SLC28A3 NM_022317.3 F: TACCACACGTCACCAAGTCG 81

R: ATGCGCCCAATACACTTCCA

SLC29A1 NM_00135777.1 F: CGGACGGAATTCTATCGCCA 194

R: AGAGCCGGGACACAGATACT

CLOCK NM_001289826.1 F: CCTAACGGGGAAAGTCGCAT 169

R: TTTCCTCTCTCCAGCCGGTA

PER2 NM_011066.3 F: CCATCCACAAGAAGATCCTAC 128

R: GCTCCACGGGTTGATGAAGC

MTTP NM_001163457.2 F: GACCACCCTGGATCTCCATA 89

R: AGCGTGGTGAAAGGGCTTAT

NPC1L1 NM_207242.2 F: TCACACCCTGCAATGAGTCC 114

R: TGTAGAAAGAAGGGCGCAGG

ABCG5 XM_021149107.1 F: CCCTGTCCTGAACATTCCAA 63

R: TTGGGTGTCCACCGATGTCA

ABCA1 XM_021159924.1 F: CAGAAGTTGGATGGATTAGATTGG 133

R: TTGCCTGGTTGGTCTCATTG

ASBT XM_021170946.1 F: TGGGTTTCTTCCTGGCTAGACT 81

R: TGTTCTGCATTCCAGTTTCCAA

IBABP XM_021178431.1 F: CAAGGCTACCGTGAAGATGGA 78

R: CCCACGACCTCCGAAGTCT
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Na+/taurocholate co transporting polypeptide (NTCP), and
bile salt export pump (BSEP) in the liver (P < 0.05).
Importantly, the expression of CYP7A1, FGFR4, NTCP, and

BSEP mRNAs showed a strong dependence on uridine
administration (P < 0.05). The expression of FXR was
significantly up-regulated at ZT4 in NUR vs. the DUR
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FIGURE 2. Dynamic administration of uridine alters the mRNA expression of uridine transporters, including circadian locomotor output cycles
kaput (CLOCK) and period circadian regulator 2 (PER2) in the jejunum in HFD-fed mice. (A–E) Changes in expression of genes, which were
normalized to β-actin gene expression at ZT4 in the high fat diet-fed (HFD) group. (Values are presented as mean ± SEM; *P < 0.05 between
CON and DUR groups; ^P < 0.05 between CON and NUR groups; #P < 0.05 between DUR and NUR groups). (SLC28A1: sodium-coupled
nucleoside transporter 1, SLC28A3: sodium-coupled nucleoside transporter 3, SLC29A1: equilibrative nucleoside transporter 1).
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FIGURE 1. Dynamic administration of uridine alters the mRNA expression of proteins associated with pyrimidines metabolism in the liver of
high-fat-diet (HFD)-fed mice. (A–E) Changes in expression of genes, which were normalized to β-actin gene expression at ZT4 in the HFD
group. UPP1 encodes the enzyme that converts uridine and uracil, CMPK2 encodes a protein that converts UMP to UTP, CTPS, and CTPS2
encode enzymes to convert UTP to CTP, and the protein encoded by RRM2 converts UDP to dUDP. Values are presented as mean ± SEM;
*P < 0.05 indicates a significant difference between CON and DUR groups; ^P < 0.05 indicates a significant difference between CON and NUR
groups; #P < 0.05 indicates a significant difference between DUR and NUR groups.
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group (P < 0.05). The expression of SHP was significantly
up-regulated at ZT4 and ZT10 in NUR vs. the CON group
(P < 0.05); this mRNA was down-regulated at ZT4 while
up-regulated at ZT10 in DUR vs. the CON group (P < 0.05).
Compared to the CON group, the expression of CYP7A1
was significantly up-regulated at ZT22 in NUR and down-
regulated at ZT16 in DUR groups (P < 0.05). The
expression of FGFR4 was up-regulated at ZT4 and ZT10 in
NUR compared to DUR and CON groups, and significantly
up-regulated at ZT22 in both DUR and NUR groups
compared to the CON group (P < 0.05). The expression of
NTCP was significantly up-regulated at ZT4 and ZT22 in
the NUR group when compared with DUR and CON
groups and the CON group, respectively (P < 0.05). The
expression of BSEP was significantly up-regulated at ZT4

and ZT16 in the NUR groups compared to DUR and CON
groups and significantly up-regulated at ZT22 both in NUR
and DUR groups vs. the CON group (P < 0.05).

Dynamic administration of uridine alters the mRNA expression
of cholesterol and bile acid metabolism in the ileum of HFD mice
As presented in Fig. 4, the mRNA expression of microsomal
triglyceride transfer protein (MTTP), NPC1 like intracellular
cholesterol transporter 1 (NPC1L1), ATP binding cassette
subfamily G member 5 (ABCG5), apical sodium-dependent
bile acid transporter (ASBT), ileum bile acid-binding protein
(IBABP), and FXR were significantly affected by ZT (P < 0.05).
At the same time, the expression of NPC1L1, ABCG5, ATP
binding cassette subfamily A member 1 (ABCA1), ASBT, and
SHP were also affected by uridine administration (P < 0.05).
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FIGURE 3. Dynamic administration of uridine alters the mRNA expression of bile acid metabolism in liver. mRNA expression of 1) bile acids nuclear
receptors, 2) proteins related to bile acid synthesis, 3) bile acid transporters. Values are presented as mean ± SEM; *P < 0.05 between CON and DUR
groups; ^P < 0.05 between CON and NUR groups; #P < 0.05 between DUR and NUR groups. (BSEP: bile salt export pump; CYP7A1: cholesterol
7-alpha-hydroxylase; FXR: farnesoid X receptor; FGFR4: fibroblast growth factor receptor 4; NTCP: Na+/taurocholate co transporting
polypeptide; SHP: small heterodimer partner).
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Discussion

Uridine contributes to systemic metabolism, which could
influence the bile acid metabolism, although how dynamic

administration of uridine affects bile acid during HFD
remains to be unraveled. The present study investigated the
influence of uridine dynamic administration on bile acid
metabolism in HFD-fed mice by analyzing the expression
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FIGURE 4. Dynamic administration of uridine alters the expression of proteins associated with cholesterol and bile acid metabolism in the
ileum of HFD mice. mRNA expression of proteins related to 1) cholesterol absorption, 2) cholesterol excretion, 3) bile acid transport and
reabsorption, 4) bile acid nuclear receptors. Values are presented as mean ± SEM; *P < 0.05 between CON and DUR groups; ^P < 0.05
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level of genes related to pyrimidines metabolism, uridine
transporters, circadian clock, and bile acid metabolism.

The circadian expression of genes involved in pyrimidine
nucleotide metabolism in mice has been reported earlier
(Fustin et al., 2012). Solute carrier families 28 and 29
(SLC28 and SLC29) are essential participants in the
pyrimidine nucleotides transport (Gray et al., 2004; Young,
2016). The relative expression of SLC28A1, SLC28A3, and
SLC29A1 was time-dependent, and the results of our study
suggest that pyrimidine transporters may be regulated by a
biological clock, concurrent with a previous study of the
possible role of uridine in rhythmically regulating the
expression of gene related to the nucleotide metabolism
(Zhang et al., 2018b). Furthermore, the expression of
SLC28A1 mRNA in the jejunum was significantly affected
by uridine supplementation, different from that reported in
a previous study that uridine supplementation increased the
expression of SLC28A1 in the duodenum mucosa of weaned
piglets (Xie et al., 2019), which might be due to differences
in physiology between weaned piglets and adult mice or
between duodenum mucosa and jejunum.

Per2 and CLOCK are key circadian clock genes (Wallace
et al., 2018; Xiang et al., 2018); results of this study showed
that ZT has a significant effect on the expression of these
genes, consistent with that reported in a previous study
(Wallace et al., 2018). However, the interaction between
uridine administration and circadian rhythm still needs
further investigation (Liu et al., 2019).

Pyrimidine nucleotide metabolism shows rhythmicity at
the mRNA level (Ferrell and Chiang, 2015; Osborne et al.,
1983). In the current study, the expression of UPP1 mRNA
was significantly decreased at ZT4 while that of RRM2 at
ZT22 and ZT4 increased significantly both in DUR and
NUR groups. Our results also showed that the mRNA
expression of pyrimidines (in this study, uridine)
metabolism-related genes was significantly affected by ZT.
These results suggest that the gene regulation related to
pyrimidine metabolism possibly arises from an intertwined
relationship between feeding rhythms and the circadian
clock. However, the trend of mRNA expression between
uridine transporter in the jejunum and pyrimidine
metabolism-related genes in the liver were different, which
may be due to a time lag between intestinal transport and
metabolism in the liver (Frazer et al., 2004).

Bile acid and uridine metabolism have circadian
rhythmicity, and HFD is thought to impair bile acid synthesis
and excretion (Duane et al., 1984; Fustin et al., 2012). Our
previous studies revealed that uridine administration affects
lipid metabolism in high fat diet-fed mice and early-weaned
piglets (Liu et al., 2019; Zhang et al., 2019; Liu et al., 2021).
Bile acids play an important role in lipid metabolism and
promote the digestion and absorption of lipid substances
(Joyce et al., 2014; Qi et al., 2015; Ye et al., 2018). FXR,
having a potential significance in the regulation of the diurnal
rhythm of bile acid, is involved in cholesterol biosynthesis
and homeostasis of bile acids by regulating the expression of
CYP7A1 (Cariello et al., 2017; Denson et al., 2001; Zhong et
al., 2019) and the participation of FXR and FGF19. FGFR4 is
also important in bile acids homeostasis, and mice lacking
FGFR4 exhibited an elevated expression of liver CYP7A1

(Yu et al., 2005; Yu et al., 2000). The current study results
showed that ZT has a significant effect on the expression of
FXR, SHP, CYP7A1, and FGFR4 in the liver, indicating that
the regulation of bile acid synthesis has a circadian rhythm
similar to that reported in the previous study (GaLman et al.,
2005; Gilberstadt et al., 1991). NTCP, as the primary uptake
transporter of conjugated bile acids in the liver, plays a
pivotal role in bile acid metabolism (Donkers et al., 2017),
and BSEP is an efflux transporter and also of importance in
the secretion of bile salts (Fukuda et al., 2014). We also
observed that the expression of NTCP and BSEP was affected
by ZT, indicating the regulation of bile acid transporters has
a circadian rhythm, in agreement with previous reports
(Janecke et al., 2011; Ma et al., 2009; Zhang et al., 2018a).
Importantly, the expression of CYP7A1, FGFR4, NTCP, and
BSEP showed a strong dependence on uridine administration,
similar to that observed in our former study, which showed
that uridine supplementation affects the synthesis and
transport of bile acids (Zhang et al., 2018b).

Bile acids are recycled through the enterohepatic
circulation (Meng et al., 2017; Roberts et al., 2002);
cholesterol is required for bile acid synthesis, and the ileum
is an important site for bile acid transport and absorption
(Sklan et al., 1976). In this study, the expression of MTTP,
NPC1L1, and ABCG5 mRNAs was significantly affected by
ZT, and the results showed the rhythmicity of cholesterol
absorption and excretion, consistent with that reported in
previous studies (Akashi et al., 2017; Pan et al., 2013).
Furthermore, ASBT participates in the active reabsorption of
bile acids jointly with IBABP (Dawson, 2017). A bile acid-
binding protein in the cytoplasm of ileal epithelial cells,
IBABP is important to the reabsorption of bile salts
(Shneider et al., 1995). The relative expression of ASBT and
IBABP was also affected by ZT. The analysis of mRNA
expression in the gut further validated the rhythmicity of
bile acid enterohepatic circulation, consistent with that
reported previously (Ho, 1976). Excess bile acids can be
highly toxic to mammalian cells; thus, the pool size of bile
acid is tightly regulated (Zhou and Hylemon, 2014).
Therefore, bile acid biosynthesis in the intestine is
controlled through changes in the expression of FXR and
SHP, which are important for bile acid regulation.
Importantly, the expression of NPC1L1, ABCG5, ABCA1,
ASBT, and SHP was affected by uridine administration. Our
results indicate that uridine administration affects the
absorption and excretion of cholesterol and bile acids, and
uridine may be indirectly involved in the regulation of bile
acid synthesis, and the mechanism needs further examination.

Conclusion

To conclude, dynamic uridine administration affected
circadian variation in the mRNA expression of bile acid
metabolism in HFD-fed mice, showing that dynamic uridine
administration may provide a reference to improve lipid
metabolism disorders.
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