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Abstract: Neuronal migration is a fundamental process of mammalian brain development. In migrating neurons, the

nuclear membrane protein Nesprin-2 has been shown to serve as an adaptor to pull the nucleus along microtubule

tracks. Current evidence has shown that Nesprin-2 binds to both the minus-end-directed motor dynein as well as the

plus-end-directed motor kinesin. However, translocation of neuronal nucleus has long been thought to be primarily

driven by dynein motors. Intriguing questions could be raised about the role of kinesin in nuclear transport and how

the activities of opposing motors are coordinated through interactions with Nesprin. Combining evidence from recent

studies, we propose that Nesprin-2 serves as a switchboard in mediating bidirectional neuronal nuclear movements.

Main Text

The positioning of cell nucleus is essential in many developmental
events, including the multinucleated arrangement in myoblast
syncytium, apicobasal polarization of epithelial cells in the
cochlea, and pronuclear migration in fertilized zygotes (Bone
and Starr, 2016; Gundersen and Worman, 2013). Especially in
highly polarized cells like neurons, nuclear movements and
positioning are tightly aligned with developmental stages and
cellular functions. One important example is the interkinetic
nuclear migration of neuroepithelial progenitor cells, where the
apicobasal movements of the nucleus is coupled with the cell
division cycle to produce neurons and glia in the brain
(Bertipaglia et al., 2018; Taverna and Huttner, 2010).
Following neurogenesis, the migration of post-mitotic
neurons during the formation of the laminated cortex also
requires active nuclear movements (Nakazawa and Kengaku,
2020; Tsai et al., 2007). Here we focus our discussion on how
nuclear movements are regulated in mammalian neuronal
migration, which would hopefully provide new insights into
nucleocytoskeletal interactions under normal and pathological
conditions in different tissue types.

The forward translocation of the cell nucleus is a critical
step of neuronal migration, which was first described in detail
by Rakic (1972) in the developing cerebral cortex. Pioneering

studies using the cerebellar granule cells identified perinuclear
microtubule network which connects to microtubule bundles
in the leading process, and proposed the preliminary
hypothesis that the polarized microtubules may create forces
for nuclear displacement (Fig. 1) (Rivas and Hatten, 1995;
Rakic et al., 1996). Breakthrough was made by the discovery
of the causal genes for type I lissencephaly, a heterogeneous
group of disorders of cortical formation caused by abnormal
neuronal migration. LIS1 (official symbol PAFAH1B1, for
platelet-activating factor acetylhydrolase isoform 1b
regulatory subunit 1) was identified as a causal gene
product, which binds to the motor domain of cytoplasmic
dynein and regulates dynein-dependent transport of the
nucleus along intracellular microtubule tracks (Hirotsune et
al., 1998; Tanaka et al., 2004; Shu et al., 2004). Later, more
dynein-related mutations that lead to neuronal migration
defects were identified, contributing to the common view
that the cytoplasmic dynein complex (dynein hereafter)
drives forward nuclear translocation in neurons (Ayala et
al., 2007; Tsai and Gleeson, 2005). Since dynein transports
cargoes towards microtubule minus ends, it is in line with
the observation that most peri-nuclear microtubules have
their minus ends pointing forward (Fig. 1) (Tsai et al.,
2007). Nonetheless, recent studies further revealed that
perinuclear microtubules are of mixed polarity and that
KIF5, the microtubule plus-end-driven kinesin-1 motor, is
also involved in facilitating neuronal nuclear translocation
during cerebellar granule cell migration (Umeshima et al.,
2007; Wu et al., 2018). Due to the opposite nature of dynein
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and kinesin motilities on microtubules, a consensus has not
been reached on the role of kinesin in driving nuclear
movements (Kengaku, 2018). In the case of bidirectional
interkinetic nuclear migration of neuroepithelial cells,
kinesin-3 motor KIF1A and dynein are responsible for basal
(away from centrosome) and apical (towards centrosome)
nuclear movements, respectively, at distinct cell cycle stages
(Tsai et al., 2010). However, in the case of one-way nuclear
translocation of migrating neurons, novel mechanisms need
to be proposed to explain the biological significance of
kinesin involvement.

Meanwhile, increasing evidence suggests that the LINC
complex (Linker of Nucleoskeleton and Cytoskeleton) acts as
a key mediator in nuclear transport driven by microtubule
motors. The LINC complex is composed of SUN proteins
located on the inner nuclear membrane which interact
with Lamin A/C of the nuclear lamina and KASH
(Klarsicht/ANC-1/Syne Homology) family proteins traversing
the outer nuclear membrane (Fig. 1). The binding between
SUN and KASH domains anchors the C-terminus of KASH
protein to the nuclear envelope while its gigantic N-terminus
extends out to the cytoplasm, providing a scaffold for
interactions with cytoskeletons (Starr and Fridolfsson, 2010;
Friedl et al., 2011; Rajgor and Shanahan, 2013). KASH
proteins in vertebrates are known as nesprins, for nuclear
envelope spectrin repeat protein (Zhang et al., 2001). Human
nesprin mutations defective in nucleus-cytoskeleton coupling
are associated with muscular, neurological, pre-mature aging
diseases and cancer in human (Zhang et al., 2007; Attali et
al., 2009; Young et al., 2021; Gros-Louis et al., 2007; Kandert
et al., 2007; Dawe et al., 2009; Doherty et al., 2010; Östlund et
al., 2019; Bone and Starr, 2016). Among the nesprin family,
Nesprin-2 has been shown to recruit both dynein and KIF5
motors onto the nucleus during neuronal migration in the
developing mouse brain (Zhang et al., 2009). While the
kinesin-binding motif has been identified to be the LEWD
sequence near the C-terminus of the cytoplasmic stretch, the
dynein-binding regions are still unclear (Wilson and
Holzbaur, 2015). Zhu et al. (2017) have presented the initial
evidence that the dynein and/or dynactin-binding sites are
within a region in close proximity to the LEWD motif,
followed by another study reporting that the same region also
recruits BICD2, a key component of dynein/dynactin
complex (Gonçalves et al., 2020).

Although the recruitment of both dynein and kinesin by
Nesprin-2 is evident, the mechanism of motor activation
remains unknown. In addition to serving merely as a docking
site for motor recruitment, spectrin repeats in the
cytoplasmic stretch of Nesprin-2 might also play regulatory
roles by adopting conformational transformations or post-
translational modifications upon interactions with cytoskeletal
or signaling molecules (Djinovic-Carugo et al., 2002). One
possibility is that Nesprin-2 acts as a molecular switch to
selectively turn on/off the activities of dynein and kinesin in
response to spatiotemporal cues. Another possibility is that
Nesprin-2 mediates new modes of cooperation between
dynein and kinesin while both motors are simultaneously
attached and active. In fact, continuous progress has been
made to characterize the coordinating roles of adaptor or
scaffolding proteins which link dynein and kinesin
simultaneously to specific intracellular organelles or vesicles
(Olenick and Holzbaur, 2019; Fu and Holzbaur, 2014). For
instance, phosphorylation/dephosphorylation of HAP-1
(Huntingtin-associated protein 1, a motor-adaptor protein for
neuronal intracellular vesicles) can enhance or lessen
recruitment of the kinesin-1 light chain in competition with
dynein, which determines the direction of cargo transport
(Colin et al., 2008). Likewise, TRAK1/2 proteins (the adaptors
responsible for mitochondria trafficking) are capable of
recruiting both dynactin p150 and KIF5 to generate
bidirectional cargo movements along microtubules, but their
association with KIF5 can be downregulated when TRAK
proteins adopt a head-to-tail folded structure (van Spronsen
et al., 2013). Another bidirectional adaptor protein HOOK3
forms a complex with dynein/dynactin and KIF1C, which can
adjust the frequency of plus-end-directed runs depending on
the local concentration of KIF1C motors (Kendrick et al.,
2019). Although the large size and complexity of Nesprin-2
make it challenging to fully understand its functional
interactions with motors, Nesprin-2 shares some similarities
with those characterized bidirectional adaptors, including the
extended coiled-coil structures and physical proximity
between kinesin and dynein binding motifs. Therefore, it is
tempting to speculate that Nesprin-2 might function not only
as a physical linker, but also a coordinating moderator
between opposing microtubule motors.

By forming an integrated complex with motors and
motor accessory proteins, cargo adaptors may also acquire

FIGURE 1. The forward translocation of nucleus during neuronal migration is driven by microtubule motors via LINC complex. In migrating
neurons, the cell nucleus is transported along migration direction towards the minus ends of perinuclear microtubules which are embedded in
the centrosome in front (left). The LINC complex of INM (inner nuclear membrane)-locating SUN proteins and ONM (outer nuclear
membrane)-locating Nesprin-2 mediates recruitment of kinesin and dynein motors onto nuclear envelope (right).
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new motility properties rather than a simple stochastic
combination of motor activities (Elshenawy et al., 2019;
Mckenney et al., 2014). It is particularly interesting to find
out whether kinesin plays an inhibitory, subsidiary, or
assistive role with dynein in neuronal nuclear translocation.
There are different theories about the function of kinesin in
dynein-dominating cargo transport (Fig. 2):

1. Brake control: by interfering kinesin function in migrating
cerebral neurons, Gonçalves et al. (2020) showed that nuclear
translocation and neuronal migration were accelerated,
implying that kinesin restrains forward nuclear movements
while dynein moves it forward.

2. Increase flexibility: studies in myotubes demonstrated that
kinesin generates dynamic nuclear rotation and backward
stepping of the nucleus, which may help to untangle the
nucleus from roadblock and to enable smooth transport
through crowded cytoplasm and to finetune its correct
positioning (Wilson and Holzbaur, 2012). In migrating
cerebellar granule cells, downregulation of kinesin activities

has been shown to decrease nuclear rotation and impede
cell migration (Wu et al., 2018).

3. Microtubule tethering: kinesin may also help with cargo
attachment onto microtubules to facilitate dynein-mediated
transport. The mitochondria adaptor protein TRAK2 has
been shown to have a higher affinity to microtubule tracks
when kinesin is also present, which, in turn, enables a
higher frequency of active dynein-driven movements
(Fenton et al., 2021).

4. Mechanical activation: some evidence from in vitro studies
suggested that the presence of opposite pulling force by
kinesin enhances dynein stalling force, which resembles a
catch-bond mechanism (reviwed in Hancock, 2014).

5. Steric disinhibition or hinderance: conformational changes
could occur when kinesin and dynein bind to cargo adaptors
(Hancock, 2014). It should be noted that these hypothesized
models are not mutually exclusive and multiple mechanisms
might be applied to dictate how nuclear transport is
achieved coordinately by opposing motors.

FIGURE 2. The hypothesized roles of kinesin in dynein-dominating nuclear transport. (1) When functioning as brake control, kinesin
competes with dynein. Under kinesin inhibition, nucleus moves faster towards microtubule minus ends due to the absence of opposite
forces. (2) When functioning to increase flexibility of transport, kinesin generates nuclear rotation and backward stepping to overcome
roadblocks or to switch to another microtubule track. Under kinesin inhibition, nuclear movement is impeded by roadblocks or crowded
intracellular environment. (3) When functioning to tether nucleus to microtubule tracks, kinesin enhances attachment between dynein-
bound nucleus to microtubules. Under kinesin inhibition, nucleus detaches from tracks and fails to be transported. (4) When functioning
as mechanical activator, the opposite stalling forces generated by kinesin activates dynein activities. Under kinesin inhibition, dynein motor is
not activated, and nuclear transport is suppressed. (5) When functioning as steric disinhibition or hinderance effector, the presence of kinesin
either relieves auto-inhibition or suppress super-activation of dynein. Under kinesin inhibition, dynein remains at auto-inhibited state or
resumes to super-activated conformation (Adapted from Hancock, 2014).
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To test the hypothesized mechanisms of nesprin-mediated
nuclear transport, complex intracellular environment and
multiple players should be considered. Kinetics of neuronal
migration show great diversity depending on neuronal types
and trajectories. This may be caused by diverse roles of
kinesin in different cell types and stages with different
microtubule arrangement, types of microtubule-associated
proteins, and post-translational modifications of tubulin. In
addition, depending on the distinct properties of dynein and
kinesin, including processivity, detachment rate and stalling
force, they probably behave differently under intracellular
environment with highly polarized parallel microtubule
assemblies, or a more mixed-oriented microtubule tracks with
frequent intersections. Moreover, the availability of dynein
regulators, including LIS1, NDE1/NDEL1 and BICD2 also
affects transport. Combinatorial approach with molecular
biophysics, high temporospatial imaging, and structural
analysis of macromolecular protein complex will be required
to reveal detailed motor dynamics regulated by nesprins in
various neuronal migration, including radial migration of
excitatory neurons and tangential migration of interneurons
in the telencephalon.

In summary, we think that Nesprin-2 acts as the core
adaptor protein of a complex with kinesin and dynein
motors to facilitate nuclear translocation during neuronal
migration. Understanding the mediator function of Nesprin-
2 could be a promising direction leading to mechanistic
understanding of neuronal migration.
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