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Abstract: Pancreatic ductal adenocarcinoma (PDAC) is highly heterogeneous, making its prognosis prediction difficult.

The arachidonic acid (AA) cascade is involved in carcinogenesis. Therefore, the metabolic enzymes of the AA cascade

consist of lipoxygenases (LOXs), phospholipase A2s (PLA2s), and cyclooxygenases (COXs) along with their metabolic

products, including leukotrienes. Nevertheless, the prognostic potential of AA metabolism-associated PDAC has not

been explored. Herein, the mRNA expression patterns and the matching clinical information of individuals with

PDAC were abstracted from online data resources. We employed the LASSO Cox regression model to develop a

multigene clinical signature in the TCGA queue. The GEO queue and the ICGC queue were employed as the

validation queue. There was differential expression of a significant number of AA metabolism-associated genes

(56.8%) between PDAC and neighboring nonmalignant tissues in the TCGA queue. Univariate Cox regression

demonstrated that 13 of the differentially expressed genes (DEGs) were linked to overall survival (OS) (p < 0.05). A 6-

gene clinical signature was developed for stratifying the PDAC patients into two risk groups, with the high-risk group

patients exhibiting remarkably lower OS than the low-risk group patients (p < 0.001 in the TCGA data set and the

ICGC queue, and p = 0.001 in the GEO data set). The multivariate Cox data revealed the risk score as an independent

OS predictor (HR > 1, p < 0.01). The receiver operating characteristic (ROC) curve verified the predictive potential of

our signature. The expression and alteration of the six genes in PDAC were also validated using online databases.

Functional analyses demonstrated that immune-linked cascades were enriched, and the immune status was

remarkably different between the high- and low-risk groups. In summary, an AA metabolism-associated clinical gene

signature can be applied for prognostic estimation in PDAC.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is still a deadly
cancer and is estimated to become the 2nd leading cause of
cancer mortality in the USA in the next 20 to 30 years. The
five-year survival period at diagnosis is 10% in the USA, as
an estimated 80%–85% of patients manifest with either
metastatic or unresectable disease. (Nieves and Moreno,
2007; Xu et al., 2011; Esser-von Bieren, 2017; Siegel et al.,
2020). It is the 7th principle cause of cancer fatalities in
both women and men globally and is responsible for
approximately 459,000 new cases and 432,000 deaths, as per
the GLOBOCAN 2018 estimates (Bray et al., 2018). The
improvable risk factors linked to the onset of PDAC consist of
obesity, tobacco use, and type 2 diabetes (Mizrahi et al.,
2020a). The known tumor biomarkers CEA (carcinoembryonic
antigen) and CA199 (carbohydrate antigen 199) have low
sensitivity and specificity for the diagnosis of PDAC and can
only be used to evaluate the progression of patients with
confirmed disease (van Manen et al., 2020). Surgical treatment,
interventional treatment and adjuvant chemoradiotherapy are
the main treatment methods for PDAC patients at present
(Zhou et al., 2012; Mizrahi et al., 2020a). Among them,
surgical resection is the only way to cure PDAC at present
(Oba et al., 2020). However, due to the difficulties in the early
diagnosis of PDAC combined with the rapid progression and
metastasis of the disease, approximately 80% of patients with
PDAC initially diagnosed have metastasis, and only 15%–20%
of patients can undergo radical surgery (Hackert et al., 2015;
Oba et al., 2020). Therefore, even after decades of efforts, the
five-year rate of survival of PDAC patients is still less than 7%
(Mizrahi et al., 2020b; Siegel et al., 2020). In-depth exploration
of the potential mechanism of PDAC occurrence and
progression, discovery of specific prognostic and early
diagnostic markers, development of potential therapeutic targets,
prevention of recurrence and metastasis of PDAC, and selection
of different targeted drugs and treatment options according to
the molecular classification of PDAC are the keys to early
diagnosis of PDAC and to improving the prognosis of patients.

The metabolism of arachidonic acid (AA) proceeds via
three distinct cascades, namely, the COX (cyclooxygenases)
axis to generate prostaglandins along with thromboxanes,
the LOX (lipoxygenase) cascade generating leukotrienes and
HETEs (hydroxyeicosatetraenoic acid), and the cytochrome
P450 axis to generate EETs (epoxygenated fatty acids) and
HETEs. These arachidonic acid metabolites are collectively
referred to as eicosanoids (Smith, 1989). This family of
biomolecules has been documented to participate in almost
all biological processes constituting proliferation, migration,
differentiation, and infiltration (Baker, 1990). For many
years, the function of eicosanoids in cancer has been
investigated (Young, 1994; Wang and Dubois, 2010;
Johnson et al., 2020). HETEs ((Moreno, 2003; Nieves and
Moreno, 2007; Moreno, 2009) and EETs (Nieves and
Moreno, 2007) are involved in the control of cell growth/cell
cycle/apoptosis. PGE2 exhibits many biological effects that
can be involved in cancer development, such as effects on the
cell cycle/apoptosis (Wang and DuBois, 2018). Recent research
evidence suggests that PGE2 exhibits immunosuppressive
effects, which renewed research interest focused on targeting

this cascade. In PDAC, the activation of COX-2, mediated
through ephrin A receptor 2, results in tumors in which T
cells are primarily excluded (Devchand et al., 1996; Markosyan
et al., 2019). The overexpression of cytoplasmic phospholipase
A2 (PLA2), PGS2, PTGES, and PTGES-2 in most human
PDACs compared with matched normal pancreases. (Hasan et
al., 2008), many genes have similarly been identified as
regulators or biomarkers of AA metabolism. Previous
investigations have documented that AA metabolism has a
pivotal role in prostate cancer, and some genes, e.g., LTA4H
rs1978331, are inversely related to prostate cancer risk overall.
PTGES2 rs10987883 was linked to an elevated risk of prostate
cancer (Amirian et al., 2011). Nevertheless, whether these AA
metabolism-linked genes are associated with PDAC patient
prognosis has not been examined.

Herein, we first downloaded the PDAC mRNA data set
and clinical information from TCGA data. Then, we created
a multigene prognostic clinical signature of AA metabolism-
associated differentially expressed genes (DEGs) in the
TCGA data set and verified it in the GEO and ICGC data
sets. Furthermore, we conducted functional enrichment
analyses to elucidate the responsible mechanisms.

Materials and Methods

Data selection (GEO-PAAD, TCGA-PAAD, ICGC and AA
metabolism-related genes)
The mRNA data along with the clinical data of individuals with
PDAC were abstracted from the TCGA data resource up to
November 15, 2020 (https://portal.gdc.cancer.gov/repository).
There were 178 PDAC tumor specimens and 4 nonmalignant
tissue specimens. The standardized gene expression data of
the TCGA-PAAD data set were log2 transformed for
further analysis. On the other hand, the RNA-seq data sets
of 167 nonmalignant pancreas tissues were abstracted from
GTEx (Genotype-Tissue Expression). The TCGA biolinks
R package was used to normalize the RNA-seq data sets of
count values from both the TCGA and GTEx data
resources (Mounir et al., 2019).

Then, we downloaded GSE71729 and GSE62452 data
sets from the GEO database. The GSE71729 data set
consists of 17-cell lines, 145 primary as well as 61 metastatic
PDAC tumors, 46 pancreas and 88 distant site neighboring
nonmalignant samples. We only selected 145 primary
pancreatic tumors and 46 normal pancreases for further
study. The GSE62452 data sets consist of 69 primary
pancreatic tumors and 61 neighboring nonmalignant tissues
from individuals with pancreatic ductal adenocarcinoma.
First, all the samples from the two queues were integrated to
remarkably improve the number of samples (107
nonmalignant samples relative to 214 tumor samples) to
increase the reliability of our results.

We also downloaded the ICGC-PAAD-AU data set
(https://dcc.icgc.org/releases), including 242 samples. We
extracted only samples containing primary solid tumors and
clinical information for further analysis. Finally, we enrolled
91 PDAC patients.

Finally, we downloaded AA metabolism-related genes in the
KEGG pathway from GSEA (http://www.gseamsigdb.org/gsea/
msigdb/cards/KEGG_ARACHIDONIC_ACID_METABOLISM),
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and the overlapping arachidonic acid metabolism-linked
genes were determined from TCGA and GEO gene
expression profiles. Supplementary Table S1 shows the AA
metabolism-related genes.

Development and verification of the prognostic AA
metabolism-associated gene signature
The R “limma” package was employed to determine the DEGs
between the tumor variables. We performed Cox analyses of
OS (overall survival) to determine the AA metabolism-
associated genes with prognostic potential. Afterwards, the
STRING data resource V.11.0 was applied to develop an
interaction network of the prognostic DEGs (Szklarczyk et
al., 2011). To minimize the overfitting risk, LASSO-
penalized Cox regression assessment was conducted to
develop a clinical prediction model (Tibshirani, 1997; Simon
et al., 2011). The LASSO algorithm was employed to select
variables and shrink them using the “glmnet” R package.
The normalized expression matrix of candidate prognostic
DEGs was the independent variable for regression, while the
patients’ OS and status in the TCGA data set were the
response variables. Tenfold cross validation was performed
to determine the penalization parameter (λ) for clinical
prediction models based on the minimum criterion (i.e., the
value of λ matching the lowest partial probability deviation).
The patients’ risk scores were determined on the basis of the
normalized expression level of every gene and its matching
regression coefficients. We developed the formula as follows:
score = esum (each gene’s expression × matching
coefficient). According to the median value of the risk score,
patients were divided into high-risk and low-risk groups.
The ‘prcomp’ function of the ‘stats’ R package was used to
perform PCA based on the expression of genes in clinical
features. Moreover, the R “Rtsne” package was applied to
perform t-SNE to examine the scatters of different groups.
In the survival analysis of every gene, the “surv_cutpoint”
function of the R “survminer” package was employed to
establish the optimal cutoff expression value. The R
“survivalROC” package was applied to perform time-
dependent ROC curve assessment to explore the estimation
potential of our clinical gene signature (Yao et al., 2021).

Validation of six genes in pancreatic cancer using online
databases.

We further validated the signature genes using online
databases. The mRNA expression levels were validated using
GEPIA (http://gepia.cancer-pku.cn/)) and the Oncomine
database (http://www.oncomine.org/). The cBioPortal for
Cancer Genomics (http://www.cbioportal.org/) was used to
analyze the known genetic alterations of the signature genes. The
Human Protein Atlas database (http://www.proteinatlas.org/)
was used to validate the protein expression levels associated
with the signature genes.

Functional enrichment analysis
We used GSEA 2.0 to explore the potential mechanisms of the
AA-related gene signature. We separated the samples from the
TCGA data set into high- and low-risk groups. We then
applied Java GSEA v3.0 to the Molecular Signatures
Database v6.2 to identify enriched KEGG pathways related
to poor survival in the high-risk group. FDR < 0.05 with

|NES| > 1 was regarded as significantly enriched. ssGSEA
(single-sample gene set enrichment analysis) in the R “gsva”
package was employed to compute the infiltrating score of
16 immune cells, as well as the activity of 13 immune-
associated cascades (Rooney et al., 2015). Supplementary
Table S2 shows the annotated gene set file.

Statistical analysis
Student’s t test was used to compare gene expression between
tumor tissues and adjacent nonmalignant tissues. The chi
square test was used to compare the difference in proportions.
The ssgsea scores of immune cells or cascades between the
high- and low-risk groups were compared with the Mann–
Whitney test, and p values were corrected with the BH
method. Kaplan–Meier analysis and the log rank test were
used to compare OS between different groups. Univariate and
multivariate quantitative Cox regression analyses were
performed to identify independent predictors of OS. Statistical
analysis was performed with R software (v3.5.3) or SPSS
(v23.0). If not specified above, p < 0.05 indicated statistical
significance, and all P values were two tailed.

Results

Fig. 1 shows the flow chart of this study. Overall, 166 PDAC
patients from the TCGA-PAAD data set, 188 PDAC
patients from the GEO data set, and 91 PDAC patients
from the ICGC data set were finally recruited. The clinical
characteristics of these patients are summarized in detail
in Table 1.

TCGA data set filter differential AA metabolism-related genes
AA metabolism-related genes (n = 58) were identified from the
online website GSEA, and overlapping arachidonic acid
metabolism-related genes (n = 44, 75.9%) were identified
from the TCGA gene expression profile (Supplementary
Table S3). Most of the arachidonic acid metabolism-related
genes (33/58, 56.8%) were expressed differently between
tumor tissues and nonmalignant tissues (Fig. 2A), and 13 of
them were linked to OS according to the univariate Cox
regression assessment (Fig. 2B). Overall, 13 prognostic AA
metabolism-linked DEGs were preserved (all p < 0.05,
Fig. 2B). The interaction network among these genes revealed
PLA2G4A, ALOX5 and EPHX2 as the hub genes (Fig. 2C).
Fig. 2D indicates the relationship between these genes.

Development and validation of a clinical prediction model in
the TCGA data set
LASSO Cox regression assessment was employed to develop a
clinical prediction model on the basis of the expression
pattern of 13 genes identified above. The risk score was
computed using the formula (0.50 * expression level of
CYP2C18 + 0.220 * expression level of PTGS2 + 0.192 *
expression level of PLA2G2F + 0.350 * expression level of
PTGES + (–0.053) * expression level of GPX4 + (–0.987) *
expression level of LTC4S). On the basis of the median cutoff
value, the patients were clustered into either the high- (n =
84) or low-risk group (n = 82) (Fig. 3A). Patients with high
risk were highly likely to die earlier than those with low risk
(Fig. 3B). Consistently, PCA and t-SNE analysis indicated
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that the patients in different risk groups were distributed in two
directions (Figs. 3C and 3D). Kaplan–Meier curve analysis
showed that the high-risk group patients had a dramatically
worse OS than the low-risk group patients (Fig. 3E). The
AUCs of the five-gene clinical signature were 0.772, 0.683,
and 0.650 in the TCGA cohort (Fig. 3F).

Verification of the 6-gene clinical signature in the GEO queue
and ICGC queue
To verify the robustness of the created model using the TCGA
queue, the GEO queue and ICGC queue patients were
similarly clustered into the low- and high-risk groups
according to the median value computed using the same
formula utilized in the TCGA queue (Figs. 4A and 5A).
Similarly, the high-risk group patients were more likely to
die earlier than the low-risk group patients in both the GEO
queue and ICGC queue (Figs. 4B and 5B). Congruent with
the TCGA results, in the GEO queue and ICGC queue, the
PCA along with the t-SNE analyses verified that the patients

in the two subgroups were stratified into distinct directions
(Figs. 4C and 4D, Figs. 5C and 5D) and had a decreased
survival time in contrast with the low-risk group patients
(Figs. 4E and 5E) (p < 0.01). Moreover, the AUC of the five-
gene clinical signature was 0.680, 0.690, and 0.718 in the
GEO queue and 0.747, 0.710, and 0.747 in the ICGC queue
at one year, two years, and three years, respectively (Figs. 4F
and 5F).

Independent prognostic value of the 6-gene signature
The Kaplan–Meier data illustrated that the study risk model
has a stable estimation potential for the prognosis of PC
patients grouped by age (<62, 62–76, and >76), N-stage (N0
or N1) (Supplemental Fig. S1), pathological grade (G1/2, or
G3/4), sex (male and female), and T-stage (T1/2, or T3/4).
Using TCGA clinical data, we used TCGA clinical data to
perform subgroup analysis by age (62,62–76,76), sex (male
and female), pathological grade (G1/2, or G3/4), T-stage
(T1/2, or T3/4), and N-stage (N0 or N1). We found that the

FIGURE 1. Flow chart of data
collection and analysis.
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risk model significantly decreased the overall survival time
compared with the low-risk group in subgroups such as age
(62, 62–76), sex (male and female), G1/2, T3/4, and N0/N1
(p < 0.05) (Figs. 6A–6K). The high-risk PDAC patients
exhibited a remarkably worse OS than the patients in the
low-risk group when the patients were grouped into
different subgroups on the basis of age, T-stage, sex, N-
stage, and pathological grade (Figs. 6A–6K). The univariate
Cox regression data demonstrated that the risk score was
remarkably linked to OS in the TCGA data set (HR = 4.778,
95% CI = 2.644–8.633, p < 0.001) (Fig. 7A) and in the ICGC

queue (HR = 8.341, 95% CI = 3.995–17.413, p < 0.001)
(Fig. 7C). Following the adjustment for other confounding
factors, the multivariate Cox regression data still
demonstrated that the risk score was still an independent
predictor (HR = 4.232, 95% CI = 2.474–7.238, p < 0.001.
Fig. 7B) and in the ICGC queue (HR = 4.507, 95% CI =
2.657–7.654, p < 0.001) (Fig. 7D); thus, the gene signature
was an independent prognostic factor of other clinical
variables. On the basis of the multivariate Cox regression data
of OS in the TCGA queue, we created a nomogram to
estimate the one-, three- and five-year survival likelihood in
PDAC (Fig. 7E).

External validation using online databases
The mRNA expression levels of GPX4, PLA2G2F, PTGES,
and PTGS2 were evidently increased in PAAD tumor tissue.
Conversely, CYP2C18 and LTC4S were evidently decreased
in contrast with nontumor tissues (Figs. 8A and 8C). All the
results from the Oncomine and GEPIA databases were
consistent with our results for the TCGA, GEO and ICGC
data sets. The effect of these genes on the prognosis of
pancreatic cancer was verified by GEPIA (Fig. 8B). Of the
849 PAAD patients included, 67 (7.9%) had changes in 6
genes. Amplification is the most common mutation type in
upregulated genes (Fig. 8D). In the Human Protein Atlas
database, we found IHC staining for the GPX4, PTGES, and
PTGS2 genes in tumor and normal pancreatic tissues (Fig. 8E).

Functional analyses in the TCGA queue
To determine the biological roles and cascades that were
related to the risk score, GSEA was performed on the basis
of the DEGs between the high- and low-risk groups. In the
high-risk groups. DEGs were abundant in multiple cancer-
related molecular functions, including bladder cancer, the
P53 signaling pathway, the cell cycle and tight junctions, in
the TCGA data set (FDR < 0.05, Table 2, Figs. 9A–9C). A
total of 19 oncological signatures were also significantly
enriched. Full GSEA results are presented in Supplementary
Table S3. In the low-risk groups. DEGs were abundant in
multiple metabolism-related molecular functions (Table 2).

Furthermore, to investigate the association of the risk
score with immune status, quantification of the enrichment
scores of different immune cell subpopulations, associated
roles or cascades was performed using ssGSEA. As expected,
numerous contents of T-cell immunity, including the scores
of CD8+_T_cells, T_cell_costimulation, T_helper_cells, TIL,
and T_cell_coinhibition, were remarkably different between
the low- and high-risk groups in the TCGA data sets (all
corrected p < 0.05, Fig. 9D). Moreover, the scores of the
type II IFN response, cytolytic activity, checkpoint, mast
cells and NK cells were lower in the high-risk group
(adjusted p < 0.05, Fig. 9E).

Discussion

Herein, we systematically explored the expression of 58 AA
metabolism-linked genes in PDAC tumor tissues and their
relationship with OS. A new clinical prediction model
combining 6 AA metabolism-linked genes was first created

TABLE 1

Clinical features of the PDAC subjects enrolled in this study

TCGA
queue

Combined
GEO

ICGC
PAAD-AU queue

No. of patients 166 188 91

Age(median,
range)

65(35–88) NA 62(39–82)

Gender(%)

Female 90 NA 38

Male 76 NA 53

T(%)

T1 7 NA 5

T2 18 NA 16

T3 137 NA 55

T4 3 NA 12

TX 1 NA 3

N(%)

N0 44 NA 42

N1 118 NA 56

NX 4 NA 3

M(%)

M0 79 NA 62

M1 5 NA 29

MX 82 NA 0

Stage

I 21 NA 16

IIA 25 NA 33

IIB 112 NA 29

III 3 NA 6

IV 5 NA 7

Grade(%)

G1 29 NA 31

G2 90 NA 35

G3 43 NA 14

G4 2 NA 8

GX 2 NA 3

Survival status

Alive 80 56 43

Dead 86 132 48
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and verified in an external data set. Functional analyses
demonstrated that immune-associated cascades were abundant.

Although a few previous investigations (Elander et al.,
2008; Amirian et al., 2011) have indicated that several AA
metabolism-related genes enhance cell proliferation,
migration and infiltration, their relationship with the OS of
PDAC patients has not been explored. Interestingly, most
AA metabolism-linked genes (75.9%) were expressed
differently between tumor and nonmalignant tissues, with
more than one-third being associated with OS on the basis
of the univariate Cox regression data. These results
markedly revealed the prospective role of AA metabolism in
PDAC and the likelihood of creating a prognostic model
using these AA metabolism-linked genes. Several AA
metabolism-related genes enhance cell proliferation,
migration and infiltration, and eicosanoids generally
enhance the progression of cancer (Young, 1994; Wang and
Dubois, 2010; Johnson et al., 2020) The clinical prediction

model proposed herein consisted of 6 AA metabolism-
associated genes (CYP2C18, PTGS2, PTGES, PLA2G2F,
LTC4S, and GPX4). These genes were roughly grouped into
four classes consisting of COX metabolism (PTGS2, PTGES),
LOX metabolism (LTC4S, GPX4), CYP metabolism
(CYP2C18) and phospholipase A2 relevant gene (PLA2G2F).
The CYP2C18 gene is localized within a cluster of
cytochrome P450 genes on chromosome 10q24. The CYP2C
family participates in the conversion of AAs into four
regioisomers of EETs: 14,15, 11,12-, 8,9-, and 5,6-EETs.
Mounting research evidence documents that metabolism
mediated by CYP enzymes has a pivotal role in tumorigenesis
as well as the cardiovascular system (Jiang et al., 2005; Jiang
et al., 2009; Xu et al., 2011; Sausville et al., 2018). However,
whether CYP2C18 has a role in the prognosis of PDAC
patients by affecting AA metabolism remains unclear.
Prostaglandin-endoperoxide synthase (PTGES), also referred
to as cyclooxygenase (COX), is the critical enzyme involved

FIGURE 2. Identification of AA metabolism-related genes in the TCGA-PDAC queue. A. Heatmap of AA-related differentially expressed
genes (DEGs) in the TCGA-PDAC queue. B. Forest plots exhibiting the prognostic value of AA metabolism-related genes. C. The PPI
network of the candidate genes. D. The correlation network of differentially expressed genes.
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in the biosynthesis of prostaglandin and functions both as a
peroxidase and as a dioxygenase. PTGS exists into isoforms,
namely, constitutive PTGS1 and inducible PTGS2, differing
in their tissue distribution and modulation of expression.
This gene codes for the inducible isozyme. It is modulated by
distinct stimulatory events, implying that it accounts for the
biosynthesis of prostanoids participating in mitogenesis and
inflammation (Kosaka et al., 1994). Multiple studies have
documented that COX-2 is overexpressed in colorectal,
breast, prostate, esophageal, and PCs (Eberhart et al., 1994;
Sano et al., 1995; Hida et al., 1998; Tucker et al., 1999;
Denkert et al., 2001; Pidgeon et al., 2007). PTGES is also

known as microsomal PGES-1 (mPGES-1), and the gene for
human mPGES-1 maps to chromosome 9q34.3. This gene
codes for the glutathione-dependent prostaglandin E synthase
protein (Forsberg et al., 2000). Microsomal PGES-1 (mPGES-
1) mediates the impacts of PGE2 in tumorigenesis. The
genetic deletion of mPGES-1 and concurrent suppression of
endogenous PGE2 was reported to repress the onset of
intestinal tumors in ApcMin/and AOM mice (Elander et al.,
2008; Sasaki et al., 2012). The PLA2G2F gene is localized on
chromosome 1 and located within a sPLA(2) gene cluster of
approximately 300 kbp, which also contains the genes for
group V sPLA(2)s, IID, IIA, IIE, and IIC. In adult tissues,

FIGURE 3. Prognostic risk score model analysis in the TCGA queue. A. Distribution of patient survival duration and gene expression levels. B.
The allocations of OS status, OS and risk score in the TCGA queue. C. PCA plot of the TCGA queue. D. t-SNE analysis of the TCGA queue. E.
Kaplan–Meier curves of OS based on the gene signature in the TCGA queue. F. AUC of time-dependent ROC curves in the TCGA queue.
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PLA2G2F is overexpressed in the placenta, kidney, testis, liver,
and thymus. Finally, PLA2G2F was recombinantly expressed
(Valentin et al., 2000). Pla2g2f−/− mice had a fragile stratum
corneum and were remarkably protected from psoriasis, skin
cancer, and contact dermatitis (Yamamoto et al., 2015). The
GPX4 (glutathione peroxidase 4) gene encodes a glutathione
peroxidase protein family member (Savaskan et al., 2007). It
participates in glutathione peroxidase in platelets in AA
metabolism. Reduces hydroperoxy ester lipids generated by a
15-lipoxygenase that might have a role in downregulating the
cellular 15-lipoxygenase cascade (by similarity) (Sutherland et
al., 2001). Recent investigations related to GPX4 have shown
that the antioxidant GPX4 appears to be a key regulator of
pancreatic tumorigenesis (Sutherland et al., 2001). LTC4S
(leukotriene C4 synthase). The gene coding for LTC4S is 2.5
kb long and is located on chromosome 5q35, distal to that of

the genes coding for cytokines. In addition, receptors are
significant in the onset and progression of allergic
inflammation (Welsch et al., 1994). Recent investigations
related to leukotrienes have shown that leukotriene B4
promotes lung tumor and colon cancer growth (Satpathy et
al., 2015; Jala et al., 2017; Ringleb et al., 2018; Johnson et al.,
2020). Unfortunately, other than LTB4, there have not been
extensive studies on LTC4S.

Several significant biological processes and signaling
pathways that were active in the high-risk or low-risk group
have been revealed to provide new insights into the
development of PDAC. We divided patients from the
training cohort into two subtypes by performing our gene
signature. Next, we conducted differential expression
analysis between the high and low groups to determine the
association between the metabolic genes and the two

FIGURE 4.Validation of the 6-gene signature in the GEO queue. A. Distribution of patient survival duration and gene expression levels. B. The
allocations of OS status, OS and risk score in the GEO queue. C. PCA plot of the GEO queue. D. t-SNE analysis of the GEO queue. E. Kaplan–
Meier curves of OS based on the gene signature in the GEO queue. F. AUC of time-dependent ROC curves in the GEO queue.
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subtypes. We found that upregulated genes in the high-risk
group were mainly involved in cell cycle regulation, and
upregulated genes in the low-risk group were mainly
involved in metabolic and energy regulation.

For many years, the function of eicosanoids in cancer has
been investigated (Young, 1994; Wang and Dubois, 2010).
The consensus of these initial investigations indicated that

eicosanoids generally enhanced the progression of cancer
and that these influences were primarily modulated via
direct effects on tumor cells. GSEA confirmed a similar
result. Significant pathways that were positive in the high-
risk group were mostly related to cell cycle regulation, the
P53 signaling pathway, and tight junctions. In contrast,
meaningful pathways that were positive in the low-risk

FIGURE 5. Validation of the 6-gene signature in the ICGC queue. A. Distribution of patient survival duration and gene expression levels. B.
The allocations of OS status, OS and risk score in the ICGC queue. C. PCA plot of the ICGC queue. D. t-SNE analysis of the ICGC queue. E.
Kaplan–Meier curves of OS based on the gene signature in the ICGC queue. F. AUC of time-dependent ROC curves in the ICGC queue.
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group were mostly associated with metabolic and energy
regulation.

Emerging data indicate that eicosanoids play significant
roles in immunosuppressive cascades. Many studies have
documented that both products of the COX and 5-LO
cascades participate in modulating antitumor immunity.
These studies suggest that eicosanoids have an immune
repressive role, different from their direct influences on
cancer cells. Eicosanoids have been reported to modify the
antitumor influences of cytotoxic T cells (DiMeo et al.,
2008; Poczobutt et al., 2016), alter innate immune cell
populations favoring the increment of immunosuppressive
cells consisting of MDSCs and tumor-related macrophages
(Lone and Taskén, 2013; Esser-von Bieren, 2017), and
regulate metabolic cascades, e.g., indoleamine 2,3-
dioxygenase 1 (IDO1) (Moore and Pidgeon, 2017). Our
functional analysis also found numerous enriched T-cell-
linked biological processes and cascades. Additionally, the
high-risk groups in the TGCA data set had lower

proportions of CD8+ T cells, B cells, mast cells, neutrophils,
NK cells, T helper cells, pDCs, TILs, and Tfh cells.
Moreover, higher risk scores were associated with impaired
antitumor immunity consisting of the activity of the type II
IFN response and T_cell_co-stimulation, T_cell_co-
suppression, Cytolytic activity, Check-point and fractions of
NK cells. Hence, diminished antitumor immunity in high-
risk patients could explain the worse prognosis. These
results suggest that immune pathways and pancreatic cancer
are closely related, but the specific mechanisms need further
validation.

In conclusion, our study established a new clinical
prediction model of 6 AA metabolism-associated genes. This
model was independently linked to OS in both the
derivation and verification data sets, providing an
understanding of the estimation of PDAC prognosis. The
mechanism responsible for the association of AA
metabolism-linked genes with tumor immunity in AA
metabolism remains unclear and therefore should be studied.

FIGURE 6. A–C. Kaplan–Meier curves of the prognostic value of the risk model in clinical subgroups of patients. Kaplan–Meier survival
curves for patients by age group (<62, 62–76, and >76). D–E. Kaplan–Meier survival curves for sex subgroups (male and female). F–G.
Kaplan–Meier survival curves for pathological grade subgroups (G1/2 and G3/4). H–I. Kaplan–Meier survival curves for T-stage
subgroups (T1/2 and T3/4). J–K. Kaplan–Meier survival curves for subgroups by N-stage (N0 and N1).
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FIGURE 7. Univariate (A) and Multivariate (B) Cox regression analyses in the TCGA derivation queue. Univariate (C) and Multivariate (D)
Cox regression analyses regarding OS in the ICGC queue. (E) The nomogram was built in the TCGA queue.
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FIGURE 8. External validation using online databases. A. The mRNA expression levels of six genes from GEPIA (http://gepia.cancer-pku.cn/).
B. Kaplan–Meier curves of the prognostic impact of six gene expression levels in pancreatic cancer patients. C. The mRNA expression levels of
the six genes in the Oncomine database (http://www.oncomine.org/) (p < 0.05) D. Proportion of alterations in six genes in the cBioPortal
database (https://www.cbioportal.org/). E. IHC of the GPX4, PTGES, and PTGS2 genes in tumor and normal pancreatic tissues obtained
from the human protein atlas (https://www.proteinatlas.org/).
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FIGURE 9. Functional analysis using the TCGA queue. Typical signaling pathways evidently enriched in the high-risk group identified by
GSEA (A, B and C). Comparison of the ssGSEA scores among different risk groups in the TCGA queue. D. The scores of 16 immune cells
and E. 13 immune-related functions. FDR is shown as follows: ns, not significant; *, p < 0.05; **, p < 0.01; ***, p < 0.001.
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