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Abstract: Osteosarcoma is one of the most genomically complex cancers and as result, it has been difficult to assign

genomic aberrations that contribute to disease progression and patient outcome consistently across samples. One

potential source for correlating osteosarcoma and genomic biomarkers is within the non-coding regions of RNA that

are differentially expressed. However, it is unsurprising that a cancer classification that is fraught with genomic

instability is likely to have numerous studies correlating non-coding RNA expression and function have been

published on the subject. This review undertakes the formidable task of evaluating the published literature of non-

coding RNAs in osteosarcoma. This is not the first review on this topic and will certainly not be the last. The review

is organized with an introduction into osteosarcoma and the epigenetic control of gene expression before reviewing

the molecular function and expression of long non-coding RNAs, circular RNAs, and short non-coding RNAs such as

microRNAs, piwi RNAs, and short-interfering RNAs. The review concludes with a review of the literature and how

the biology of non-coding RNAs can be used therapeutically to treat cancers, especially osteosarcoma. We conclude

that non-coding RNA expression and function in osteosarcoma is equally complex to understanding the expression

differences and function of coding RNA and proteins; however, with the added lens of both coding and non-coding

genomic sequence, researchers can begin to identify the patterns that consistently associate with aggressive osteosarcoma.

Introduction

Osteosarcoma is the most common form of bone cancer and is
the third most common cancer among adolescents. It is an
aggressive cancer that frequently metastasizes within a year
of forming (Faisham et al., 2017; Herzog, 2005; Mirabello et
al., 2009; Tang et al., 2008). Over 40 years ago, long-term,
disease-free survival of patients with high-grade
osteosarcoma radically improved from less than 20% to
greater than 60% with the advent of combinatorial,
cytotoxic chemotherapy (Link et al., 1986). The most
common cocktail of adjuvant chemotherapy to treat high-
grade osteosarcoma consists of cisplatin, methotrexate, and
doxorubicin (Carrle and Bielack, 2006). Despite the
herculean reversal in dismal outcomes 40 years ago, there
remains an enigmatic fraction of patients who fail to exhibit
a durable response. Efforts have been made to genomically
identify responders vs. non-responders in attempts to guide
non-responders early to other therapeutic alternatives.
However, due to the high level of genomic complexity, this

has largely been unproductive. Osteosarcoma is the
quintessential example of genomic instability, with
numerous point mutations, INDELS, and structural variants
throughout the entire genomic landscape. Most of the
identified genomic variations are seen as inconsequential;
although, the non-coding variants might hold the key to
unlocking the mystery underlying the differences between
survivors and non-survivors. Herein this review, the most
common epigenetic mechanisms that can contribute to
chemosensitivity are discussed; including numerous
mechanisms that involve non-coding RNAs.

Epigenetic Control of Gene Expression

Precision medicine is centralized around the dogma of
molecular biology. This states that DNA is the fundamental
coding material that transcribes sequences into RNA, and
RNA is translated into protein resulting in phenotypic
cellular behavior (Crick, 1970). Thus, changes in any step
along the process can impact how cells act. While DNA
mutations can alter this pattern, factors outside of DNA
mutations can equally impact gene expression levels to
change cell behavior. This is referred to as epigenetic control
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(Baylin and Jones, 2016). Although DNA methylation and
histone modifications are the most commonly studied and
well-understood mechanisms of epigenetic control over gene
expression, another new angle that has been under
investigation in recent times is regulation by non-coding
RNAs (Yang et al., 2020). With progress made in
personalized medicine and epigenetic therapeutics in cancer,
harnessing this unique interplay between non-coding RNAs
and the other epigenetic enzymes might be an excellent
alternative to address the therapeutic challenges in
osteosarcoma.

Non-coding RNAs
The entire mammalian genome can be transcribed to some
level, yet there remain thousands of RNA transcripts that do
not code for proteins. These are known as non-coding
RNAs (ncRNAs) (Palazzo and Lee, 2015; Yan and Bu, 2021;
Yang et al., 2020; van Bakel et al., 2010). Their expression
level and the function are very controversial. Previously
known as non-functional, ‘noise’ or ‘junk’ of transcriptome,
according to recent reports, much of those transcriptions are
likely functional (Richard Boland, 2017) and associated with
disease pathogenesis and progression, especially in cancers
and neurodegenerative disorders. They can alter gene
expression at pre-transcription, transcription, and post-
transcription levels and regulate numerous cellular processes
related to cancer initiation and progression (Schmitt and
Chang, 2016; Yang et al., 2020; Zhu et al., 2019). A growing
body of evidence emphasize that ncRNA’s control over
genes and chromosomal modifications are attributed to their
interactions with the chromatin remodeling complexes,
histone modifiers, or DNA methyltransferases (Chen and
Xue, 2016; Costa, 2008; Peschansky and Wahlestedt, 2014;
Ramassone et al., 2018; Yu, 2009). Differential expression
and stability of ncRNAs, especially in blood or urine hold
great diagnostic and prognostic biomarker potential in various
cancer types including osteosarcoma (di Fiore et al., 2013; Wu
et al., 2019). Indeed, some ncRNAs have already been
proposed to be the circulating biomarkers owing to their
correlation with osteosarcoma progression and metastasis,
clinical stage, and patient outcome (Botti et al., 2019).

Based on their size, shape and genomic location, ncRNAs
are divided into three major classes, long ncRNAs (lncRNAs),
circular RNAs (circRNAs) and short ncRNAs (micro RNAs,
short interfering RNAs, piwi RNAs) (Palazzo and Lee, 2015;
Wu et al., 2019; Yan and Bu, 2021). Long ncRNAs
(lncRNA) are the linear gene transcripts with limited
protein-coding capacities, over 200 NT long and regulate
gene expression at pre-transcriptional, transcriptional, and
post-transcriptional levels (Yan and Bu, 2021). Depending
on their expression pattern and biological function,
lncRNAs can be classified as sense, antisense, bidirectional,
intron, intergenic, or enhancer-lncRNAs (Al-Rugeebah et
al., 2019; Palazzo and Lee, 2015). Circular RNAs (circRNA)
are another long transcript type but unlike lncRNAs, these
single-stranded RNAs form a covalently closed continuous
loop (Chen and Huang, 2018). Regulation of gene
expression by both lncRNAs and circRNAs includes miRNA
decoy/sponging, therefore interacting with DNA, RNA, and
proteins (Zhang et al., 2020c). MicroRNAs (miRNA) are the

small, 19 to 22 nucleotide base pair sequences, they can
inhibit translation or result in the degradation of target
mRNA by forming RNA-induced silencing protein complex
(RISC) (Llobat and Gourbault, 2021). PIWI-interacting
RNAs (piRNA) are the 24 to 32 long transcripts mainly
expressed in the germline, derived from single-stranded
RNA, and processed by Dicer-independent process. piRNAs
are very well known for their function in repressing
transposable elements and epigenetic regulation of gene
expression (Costa, 2008; Zeng et al., 2020).

Non-coding RNAs and genomic instability
DNA damage response, mediated by a well-constructed
regulatory network, is a vital part of maintaining genomic
integrity. Decades of research in ncRNAs led to a significant
bidirectional regulatory loop between the differential
expression of ncRNAs and regulation of DDR-associated
genes expression (Malakoti et al., 2021; Zhang and Peng,
2015). ncRNAs, especially lncRNAs, miRNAs and circRNAs,
have been found to play multifaceted roles in DDR such as
acting as DDR sensor or transducer; thereby, repairing
DNA, causing cell cycle arrest, or inducing apoptosis
(Khanduja et al., 2016; Malakoti et al., 2021; Zhang and
Peng, 2015). It is not surprising that many of these
pathways are also interlinked with chromatin remodeling or
histone modifications. However, even with most extensive
research and understanding of ncRNAs and DDR pathways,
it remains questionable how ncRNAs and DDR pathways
align together in maintaining cellular integrity. Thus, in this
review, we sought to understand whether there is any
correlation between epigenetic regulation of the ncRNAs
with one of the major hallmarks of cancer: genomic instability.

Long Non-Coding RNAs

lncRNAs can directly or indirectly affect almost all of the
hallmarks of cancer (Hanahan and Weinberg, 2011; Yan
and Bu, 2021) and their oncogenic or tumor-suppressive
role can be regulated genetically and/or epigenetically
(Zhang et al., 2020c). Since discovery of the regulatory
mechanisms of the earliest lncRNAs (Lo et al., 2014), many
functional lncRNAs were found to work through epigenetic
mechanisms, such as, H19 (imprinted maternally expressed
transcript), Xist (X-inactive-specific transcript), HOTAIR
(Hox transcript antisense intergenic RNA), etc. (Chan et al.,
2014; Clemson et al., 1996; Fazi et al., 2018; Zhang et al.,
2015; Zhang et al., 2020c; Zhao et al., 2008).

The expression pattern of lncRNAs and their function in
tumorigenesis is well investigated in osteosarcoma (Table 1).
A recent transcriptome profiling study based on the
TARGET data detected a total of 13,903 expressed lncRNAs
and their integrative gene expressions and SCNA analysis
revealed 167 novel driver lncRNAs (including 2 previously
reported lncRNA PVT1 and ZFAS1) to be associated with
osteosarcoma (Luo et al., 2019). Another microarray
analysis noted 25,733 expressed lncRNAs in human
osteosarcoma, among which 403 were upregulated and 798
were downregulated when comparing osteosarcoma tissues
to adjacent normal tissues (Li et al., 2018). Some lncRNAs
were also highlighted as circulating biomarkers due to their
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stability, significantly higher expression in body fluids
(especially in serum/plasma of osteosarcoma patients) and
their correlation to disease stage or metastatic potential; for
example, lncRNA TUG1, UCA1, HNF1A-AS1, MALAT-1,
FAL-1 and ATB, etc. (Botti et al., 2019). All of these data
imply that many lncRNAs are involved in osteosarcoma
occurrence, chemoresistance and metastasis or relapse which
could be exploited as potential diagnostic, prognostic
biomarkers, and therapeutic targets.

Until recently, several differentially expressed lncRNAs
have been identified in different cancers owing to their
association and interaction through epigenetic modifications
such as histone modification and/or chromatin remodeling
(e.g., lncRNA XIST, MALAT1, HOTAIR, ANRIL, HULC,
GCLnc1, FENDRR, UCA1, TCF7, GAS5, NEAT1, PVT1);
DNA methylation (e.g., lncRNA H19, DACOR1, PTENP1);
and CpG Island methylation at the Imprinting Control
Regions (e.g., lncRNA TP53TG1, MEG3), competing
endogenous RNA (ceRNA) networks (e.g., lncRNA CASC2/
miR-183/Sprouty2; NKAPP1-miR-21-5p-PRDM11, MSTO2P-
miR-29c-3p-EZH2 and RPLP0P2-miR-29c-3p-EZH2) (Gao et
al., 2019; Lou et al., 2020; Wei et al., 2017). lncRNAs are

generally found to carry out their epigenetic modifications
via-(a) chromatin modification and remodeling, (b) histone
modification and nuclear body localization, (c) altering
chromosome structures by interacting with the SWI/SNF
complex, (d) inducing DNA methylation and/or (e) through
interactions with micro RNAs by acting as miRNA sponges or
via ceRNA (competitive endogenous RNA) networking (Shin
et al., 2020; Zhang et al., 2020c) (Fig. 1).

Chromatin modifications and DNA methylation patterns
Around 25% of all the intergenic lncRNAs have been found
to interact with the chromatin-modifying proteins especially
via interacting with Histone modifying enzymes (e.g.,
histone acetyl transferases, histone deacetylases) and/or
incorporating PRC2 complex members (e.g., EED, SUZ12
and EZH2), and facilitate transcriptional and post-
transcriptional regulation of target genes (Cantile et al.,
2020; Ren et al., 2019a). EZH2 (Enhancer of Zeste Homolog 2),
which is a histone methyltransferase, a critical element of
the multiplex-suppression complex called Polycomb
Repressive Complex 2 (PRC2). EZH2 functions through the
trimethylation of lysine in histone H3 and its aberrant

TABLE 1

List of lncRNAs and their function in osteosarcoma

Oncogenic Tumor suppressor Targets (gene/protein/signaling pathway or miRNAs)

DANCR EZH2/p21 p27; miR-335-5p and miR-1972/ROCK1

PVT1 MYC; ALKBH5-PVT1

ZFAS1 BMI1 and ZEB2

ANRIL miR-125a-5p/STAT3

MALAT-1 EZH2/β-catenin and E-cadherin; PI3K/AKT; RhoA/ROCK; miR-509/Rac1;
miR-142-3p/miR-129-5p/HMGB1; miR-140-5p/HDAC4

SNHG10 Wnt/β-catenin

AFAP1-AS1 RhoC/ROCK1/p38MAPK/Twist1; miR-497/IGF1R

HOTAIR miR-126/CDKN2A/DNMT1; PRC2/HOXD

KCNQ1OT1 KCNQ1/DNMT1

ZEB1-AS1 ZEB1

FOXD2-AS1 EZH2/P21

HOXD-AS1 EZH2/P57

FOXP4-AS1 LSD1 and EZH2, LATS1

MIR100HG EZH2, LATS1, LATS2, Hippo signaling pathway

B4GALT1-AS1 YAP

H19 Yap, Hedgehog signaling

AC011442.1 AMPK and hedgehog signaling

MEG3 miR-361-5p/FOXM1, miR-664a; miR-127/ZEB1; Notch and TGF-β

HIF1α-AS1 BRG1

p21 (TRP53COR1) miR-130b; PTEN

CEBPA-AS1 Notch signaling pathway, NCOR2

EPIC1 MEF2D

NBAT1 miR-21/PTEN/PDCD4/TPM1/RECK

BLACAT1 STAT3

NEAT1 G9a-DNMT1-Snail (E-cadherin)
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expression has been heavily investigated in cancers (Czermin
et al., 2002; Yang et al., 2018). Several studies have
documented the involvement of EZH2 with lncRNAs in
osteosarcoma. In addition to these, the alteration in the
methylation patterns (by binding DNMTs, e.g., DNMT1,
DNMT3A, and DNMT3B) mediated by lncRNAs have also
been associated with the pathogenesis and progression of
osteosarcoma. Other mechanisms involve ubiquitination or
phosphorylation in important onco- or tumor suppressor
genes, and a strong regulatory network amongst the
lncRNAs and miRNAs could also be exploited given their
implicit regulation of genes expression. The following
sections list some of the most significant lncRNAs in
osteosarcoma that have been implicated for their biomarker
potential.

lncRNA HOTAIR is one of the broadly studied ncRNAs.
HOTAIR is an important EMT regulator and has been
implicated in the pathogenesis of several cancers. HOTAIR
inhibits HOXD transcription through PRC2 recruitment,
forming a heterochromatin and transcriptional gene
suppression via H3K9 trimethylation (Zhang et al., 2015). In
osteosarcoma, HOTAIR was found to positively regulate the
global DNA methylation level and specifically DNMT1
expression, making it an interesting diagnostic marker and
therapeutic target (Li et al., 2017b). lncRNA MALAT1
(Metastasis Associated Lung Adenocarcinoma Transcript 1)
located at chromosome 11q13.1, is suggested to be an
oncogenic lncRNA in other cancers. Epigenetic regulation of
MALAT1 in osteosarcoma has been investigated (Zhang et
al., 2018b) especially with respect to the expression pattern
of EZH2 (Li et al., 2017a). Zhang et al. (2018b) identified
that MALAT1 regulates the expression of β-catenin and E-
cadherin via the MALAT1/EZH2 axis which in turn changes
the gene expression downstream of β-catenin. In another
latest study, MALAT1 was also found to serve as a ceRNA
network for HDAC4 (histone deacetylase 4), where it
regulates osteosarcoma proliferation and apoptosis by

upregulating HDAC4 via decoying miR-140-5p (Sun and
Qin, 2018).

A majority of the antisense-lncRNAs influenced
dysregulation by either methylation pattern or chromatin
conformational changes, typically found to regulate
expression of their opposite strand gene. For instance,
lncRNA KCNQ1OT1 (KCNQ1-opposite strand/antisense
transcript-1) negatively regulates KCNQ1 gene via
promoting DNMT1 expression in the KCNQ1 gene
promoter region (Qi et al., 2019). lncRNA FOXD2-AS1
(FOXD2 Adjacent Opposite Strand RNA 1) is robustly
expressed in the osteosarcoma tissue specimens and cell
lines (induced by transcription factor HIF-1α). FOXD2-AS1
was found to play a critical role in hypoxia-induced
osteosarcoma tumorigenesis by interacting with the EZH2
and repressing p21 protein expression (Ren et al., 2019b;
Zhang et al., 2021). The oncogenic lncRNA DANCR
(Differentiation Antagonizing non-coding RNA) is
overexpressed in many cancers and also promotes
proliferation, migration and invasion in osteosarcoma (Pan
et al., 2020). Several studies found the interaction between
DANCR and EZH2 in many tumor types including
osteosarcoma (Cheng et al., 2021; Wang et al., 2019; Zhang
and Peng, 2017). When DANCR was knocked down, it
lowered the EZH2 expression and activated both p21 and
p27, hence inhibiting the osteosarcoma cell proliferation,
migration, and invasion (Zhang and Peng, 2017). lncRNA
HOXD-AS1 epigenetically inhibits p57 by interacting with
EZH2, thereby repressing the expression of p57 and
aggravating osteosarcoma oncogenesis (Gu et al., 2018).

lncRNA interactions with EZH2 were seen again with
FOXP4-AS1 (forkhead box P4-AS1). Overexpression of
FOXP4-AS1 was found to regulate osteosarcoma
progression by downregulating LATS1 (large tumor
suppressor 1) through binding LSD1 (lysine-specific
demethylase 1) and EZH2 (Yang et al., 2018). The
oncogenic lncRNA MIR100HG is another potential

FIGURE 1. Epigenetic modifications
of the lncRNAs to regulate gene
expression: (a) via chromatin
modification and remodeling by
interacting with the epigenetic
activator or repressive complex
members, (b) histone modifications to
alter chromatin structure, (c) via
Promoter DNA methylation, (d) via
ceRNA networking (miRNA sponging).
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prognostic marker that promotes osteosarcoma progression
via interacting with EZH2. MIR100HG epigenetically
silences both LATS1 and LATS2 kinases by binding with
EZH2 and thereby inactivating the Hippo signaling pathway
(Su et al., 2019).

Hippo is an evolutionarily highly conserved pathway for
the control of organ development and other cellular functions
that are vital in oncogenesis (Calses et al., 2019; Harvey et al.,
2013). The transcriptional activity of one of the downstream
effectors of Hippo signaling, YAP (Yes-associated protein 1)
was proved to be governed by lncRNA B4GALT1-AS1 (Li
et al., 2018) and XIST to maintain osteosarcoma tumor
progression. Interestingly, YAP overexpression is also induced
by aberrant Hedgehog signaling, which in turn causes
overexpression of lncRNA H19 and is responsible for the
pathogenesis of osteoblastic osteosarcoma (Chan et al., 2014).
Recently, in a comprehensive study characterizing prognostic
lncRNA, correlation analysis of copy number alteration
(CNA) and lncRNA expression identified AC011442.1,
predicted to regulate AMPK and hedgehog signaling pathway
thereby acting as an oncogenic driver in osteosarcoma
(Gao et al., 2020).

Oncogenic lncRNA ZEB1-AS1 (ZEB1 Antisense-1) has
been implicated as a potential biomarker and therapeutic
target due to its association with the opposite strand gene,
ZEB1. ZEB1-AS1 can recruit histone acetyltransferase p300
to the promoter region of ZEB1 that results in an open
chromatin structure and active transcription of ZEB1
promoting osteosarcoma proliferation and migration (Liu
and Lin, 2016; Cheng et al., 2020). lncRNA HIF1α-AS1
(hypoxia-inducible factor 1α-antisense-1) interacts with
BRG1 (Brahma-related gene-1), this was suggested as a
novel therapeutic agent for bone diseases as it was found to
be an essential mediator of osteoblast differentiation
regulated by acetylation (histone deacetylase sirtuin 1)
(Xu et al., 2015).

Crosstalk between lncRNAs and miRNAs
One of the MEG3 (maternally expressed gene 3) gene
transcripts, a 1.6 kb lncRNA situated in 14q32, is a very
well-known tumor suppressor lncRNA in many cancer types
(Li et al., 2013; Shen et al., 2019). The lost or reduced
expression of MEG3 in different cancers has been associated
with promoter hypermethylation and hypermethylation of
the intergenic region (Al-Rugeebah et al., 2019; Modali et
al., 2015; Sellers et al., 2019; Zhou et al., 2012). In
osteosarcoma, MEG3 expression and function were mainly
associated with ceRNA network or miRNA sponging
mechanisms, e.g., sponging onco-miR664a, MEG3/miR-361-
5p/FoxM1 axis, MEG3/miR-127/ZEB1 axis, etc. In most of
the cases, MEG3 was suggested to be acting as a tumor
suppressor and thereby a potential prognostic biomarker for
osteosarcoma. Its overexpression was also able to prevent
cell growth and metastasis by targeting oncogenes or by
inhibiting signaling pathways like Notch and TGF-β (Shen
et al., 2019; Sun et al., 2020; Zhang et al., 2017a). lncRNA
CEBPA-AS1 (CCAAT enhancer-binding protein alpha, aka
LOC80054), that is usually downregulated in osteosarcoma
(GSE16088) and other cancers (Ke et al., 2017), has recently
been reported to inhibit osteosarcoma cell proliferation,

differentiation, and enhance apoptosis by repressing the
Notch signaling pathway via upregulating the expression of
miR-10b-5p-mediated nuclear receptor corepressor 2
(NCOR2) (Xia et al., 2020). lncRNA-p21 (also known as
TRP53COR1-tumor protein p53 pathway corepressor 1) has
been reported to have in vivo and in vitro antitumor
properties against wide range of tumors especially via cell
cycle checkpoint regulation or regulating energy
metabolism, or p53 and B-catenin pathway (Dimitrova et
al., 2014; Wang et al., 2014; Yang et al., 2014; Yang et al.,
2015; Yang et al., 2016). In osteosarcoma it was
downregulated, and when overexpressed, it could upregulate
the tumor suppressor PTEN (phosphatase and tensin
homolog deleted on chromosome ten) level (Han and Liu,
2018). The tumor suppressor function of p-21 was via
sponging miR-130b that significantly inhibited osteosarcoma
proliferation (Han and Liu, 2018). The lncRNA SNHG10
(lncRNA small nucleolar RNA host gene 10) plays an
important role in osteosarcoma growth via miR-182-5p
sponging and the SNHG10/miR-182-5p/FZD3 axis maintain
the activation of the Wnt/β-catenin signaling pathway
(Zhu et al., 2020).

The oncogenic lncRNA AFAP1-AS1 (actin fiber-
associated protein 1 antisense RNA 1) has been proposed as
a promising therapeutic target in osteosarcoma as it is found
to be overexpressed and promoting the epithelial-
mesenchymal transition of osteosarcoma through RhoC/
ROCK1/p38MAPK/Twist1 signaling pathway (Shi et al.,
2019). Recently, Fei et al. (2020) further strengthened this
fact showing that AFAP1-AS1 promotes osteosarcoma
progression by regulating the miR-497/IGF1R axis and
targeting it could inhibit tumorigenesis both in vitro and in
vivo. The lncRNA NBAT1 (neuroblastoma-associated
transcript 1), is recognized as a tumor suppressor lncRNA
in some cancers. In osteosarcoma, the lower NBAT1
expression was associated with distant metastasis and poor
prognosis, as it interacts with miR-21 and its downstream
gene targets including PTEN, PDCD4, TPM1 and RECK
(Yang et al., 2017). lncRNA PVT1 (Plasmacytoma Variant
Translocation 1) is a well-studied oncogenic lncRNA that
was found to function as competing endogenous RNA or
interact and stabilize the MYC protein (Sun et al., 2019;
Tseng et al., 2014). Recently Chen et al. (2020) investigated
the regulatory mechanism of PVT1 in osteosarcoma and
identified that m6A demethylase ALKBH5-mediated
demethylation of the PVT1 promotes osteosarcoma growth.
The authors proposed PVT1 as a potential prognostic
marker and ALKBH5-PVT1 to be a promising therapeutic
target.

A novel interplay between lncRNA HOTAIR, miR-126,
and DNA methylation in osteosarcoma has been reported
by Li et al. (2017b), where they found that HOTAIR can
repress CDKN2A gene expression through DNA
hypermethylation by suppressing miR-126 expression (a
negative regulator of DNMT1). Therefore, the
lncRNAHOTAIR-miR126-DNMT1-CDKN2A axis was
proposed to be a novel therapeutic alternative, especially
targeting HOTAIR due to its potential to increase
osteosarcoma chemosensitivity toward DNMT1 inhibitors
(Li et al., 2017b). lncRNA ANRIL (antisense non-coding
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RNA in the INK4 locus) is upregulated across many cancers. It
is a 3.8 kB-long transcript expressed in the opposite direction
from INK4A-ARF-INK4B which represses the expression of
tumor suppressor gene p15 (INK4B) via recruiting PRC2
complexes (Kotake et al., 2011). The epigenetic crosstalk
between ANRIL and the microRNAs was first documented
in gastric cancer (Zhang et al., 2014a), its overexpression
affects osteosarcoma cell proliferation, invasion, apoptosis
(Cheng et al., 2017; Yu et al., 2018) and metastasis (Guan et
al., 2018). Knockdown of ANRIL in the osteosarcoma cell
lines was able to increase the Cisplatin-induced
chemosensitivity via the upregulation of miR-125a-5p and
reduction of its target gene STAT3 (Li and Zhu, 2019).
Consistent with other studies, this research indeed reveals
the potential for targeting lncRNA-ANRIL/miR-125a-5p
axis in the treatment of the chemoresistant osteosarcoma.
The lncRNA DANCR has been documented to function by
decoying miR-335-5p and miR-1972 in osteosarcoma and to
facilitate ROCK1-mediated proliferation and metastasis (Pan
et al., 2020). The major signaling pathways and ceRNA
network that have been found to be associated with lncRNA
MALAT1 are the PI3K/AKT pathway, RhoA/ROCK signal
transduction pathway, MALAT1/miR-509/Rac1 axis,
MALAT1/miR-142-3p/miR-129-5p/HMGB1 axis (Cai et al.,
2016; Dong et al., 2015; Liu et al., 2017a; Zhang et al., 2018a).

Other epigenetic signatures
lncRNA EPIC1 (Epigenetically Induced lncRNA-1), despite
playing an oncogenic role in other cancers through
interacting with the oncogenic c-MYC protein (Wang et al.,
2018), it has shown to have an opposite effect on
osteosarcoma. It is able to inhibit the cell viability and
invasion in vitro as well as suppress tumor growth in the
osteosarcoma xenograft model by ubiquitin-mediated
degradation of myocyte-specific enhancer factor 2, MEF2D
(Zhao et al., 2019). lncRNA BLACAT1 (Bladder cancer
associated transcript 1) interacts with STAT3 and regulates

the phosphorylation of STAT3 and contributes to the
proliferation and migration of osteosarcoma cells (Dong and
Wang, 2019).

Circular RNAs

Another emerging new class of biomarkers for cancer
development and progression are the circular RNAs
(circRNAs). CircRNAs are the covalently closed/looped
single-stranded non-coding RNA molecules, created by
back-splicing of the pre-mRNA regulated by specific RNA-
binding proteins (Bach et al., 2019; Zhang et al., 2020b).
Previously they were considered as splicing errors, but
recently many circRNAs are being discovered taking part in
the post-transcriptional regulation of gene expression via
different mechanisms.

In osteosarcoma, circRNAs modulate cell proliferation,
migration and invasive properties mostly via circRNA-
miRNA-mRNA interaction to regulate expression of specific
onco- or tumor suppressor genes; for example,
hsa_circ_0001564 (sponge miR-29c-3p), hsa-circ-0016347
(sponge miR-214), circGLI2 (sponge miR-125b-5p), circ-
03955 (sponge miR-3662), circ-0001785 (sponge miR-1200),
circPVT1 (circPVT1/miR-52b/FOXC2 axis), circ-NT5C2,
hsa_circ_0092509, hsa_circ_0009910 (Chen and Huang,
2018; Fatema and Barrott, 2022; Jin et al., 2017; Liu et al.,
2021; Wu et al., 2021; Wu et al., 2019). However, their
function is not confined to sponging miRNA or proteins
only. Accumulating evidence suggests a clear connection
between the differential expression of circRNAs and the
enzymes regulating DNA methylation or histone proteins
(Bach et al., 2019; Chen and Huang, 2018; Jin et al., 2017;
Lee et al., 2019) (Fig. 2).

A comprehensive characterization of circRNAs in
around 1000 human cancer cell lines identified a strong
association between the circRNAs and drug response,
especially circMYC (associated with breast cancer cell

FIGURE 2. CircRNAs in osteosarcoma
regulate gene expression: (a) by
interfering with DNA methylation (e.g.,
binding EZH2), (b) via circRNA-
miRNA-mRNA interaction.
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proliferation) has shown a great sensitivity towards the drugs
targeting histone acetylation (i.e., HDAC inhibitors Belinostat
and Vorinostat) (Ruan et al., 2019).

Positive correlation between the histones and circRNAs has
also been documented in several osteosarcoma cases (Table 2).
For example, novel circRNA, circHIPK3 (homeodomain
interacting protein kinase-3) which has been found to promote
HDAC4 expression via sponging of miR-637 to regulate
osteosarcoma cell proliferation, migration, and invasion (Wen
et al., 2021). However, earlier reports of circHIPK3 state that it
has a tumor suppressor function and a clinical correlation
where decreased expression associates with shorter overall
survival (Long et al., 2018). Oncogenic circLRP6 is highly
expressed in osteosarcoma and its overexpression was
associated with shorter patient survival (both disease-free and
overall). Functionally, circ-LRP6 binds to both LSD1 and
EZH2 and inhibits APC and KLF2 expression thereby
promoting osteosarcoma progression (Zheng et al., 2019). In
another study, Wu et al. (2019) focused on the underlying
mechanism of circTADA2A which is abundantly expressed in
osteosarcoma. TADA2A gene is part of the PCAF histone
acetyltransferase complex and plays important role in
chromatin remodeling, TP53 transcriptional activity, and
regulating apoptosis via XRCC6 acetylation (Huang et al.,
2012). This group concluded that circTADA2A targets an
oncogene, CREB3 to promote osteosarcoma progression and
metastasis via sponging to miR-203a-3p and emphasized
circTADA2A-miR-203a-3p-CREB3 axis as a potent
osteosarcoma-targeted therapy.

Short Non-Coding RNAs–Micro RNAs

According to the miRBase v.22.1, the human genome encodes
for approximately 2,654 mature microRNAs (Gregorova et al.,
2021) and any single microRNA is capable of regulating the
expression of hundreds of different genes (Kim et al., 2008;
Plotnikova et al., 2019). Depending on their expression
pattern and molecular targets in different cancer types,
miRNAs can have either oncogenic or tumor suppressive
function in tumorigenesis (di Leva et al., 2014). miRNAs
can regulate gene expression via RNA interference (RNAi)
mechanism, miRNA sponging mechanism (ceRNA

network), other epigenetic processes such as interfering with
DNA methylation, especially targeting DNA
methyltransferases (Fabbri et al., 2007; Garzon et al., 2009;
Llobat and Gourbault, 2021) as well as the histone-
modifying complex members (Alvarez-Saavedra et al., 2011;
Garzon et al., 2009).

miRNAs and epigenetics
miRNAs can initiate transcriptional gene silencing or induce
re-expression of methylation-silenced genes through
restricting chromatin remodeling enzymes activity and/or
altering DNA methylation status (Benetti et al., 2008;
Fabbri et al., 2007; Wei et al., 2017; Yuan et al., 2011).
Epigenetic mechanisms and chromosomal abnormalities
have also been highlighted as the trigger to the aberrant
expression of miRNAs in different cancers (di Leva and
Croce, 2013; Vicentini et al., 2019). In 23 different types of
tumors, 12% of all the miRNA genes associated with CpG
islands were found inactivated by methylation (Gregorova et
al., 2021). Moreover, the epigenetic modulators, such as
histone methyltransferases, methyl CpG binding proteins,
chromatin domain proteins, and histone deacetylases are
also identified as potential targets of the miRNAs
(Gregorova et al., 2021; Kim et al., 2008; Plotnikova et al.,
2019). They have been found to modulate components of
Polycomb complexes, e.g., targeting the EZH2 (miRNA-101,
miR-26a), inhibiting stem cell factor BMI-1 (miR-128, miR-
200c), promoting skeletal muscle differentiation (miR-214)
(Peschansky and Wahlestedt, 2014). Differentially expressed
histone deacetylases are also targets of miRNAs, but the
conclusions often vary among tumor types (e.g., miR-449)
(Buurman et al., 2012; Noonan et al., 2009).

miRNA clusters and families in the cancer epigenetics
25% of all human miRNA genes are organized in clusters
based on their genomic location (within <10 kB range) and
expression profiles (Kabekkodu et al., 2018). These clusters
may contain the smallest to the highest number of miRNAs
with similar biological function; whereby intergenic regions
contain the most clusters compared to other locations. Two
or more miRNAs with high sequence similarity are referred
to as miRNA gene family and each family can be part of the
same or different miRNA clusters depending on their
function (Guo et al., 2014).

miRNAs within the same cluster regulate the expression
of the onco- and tumor suppressor genes to promote
carcinogenesis both genetically (e.g., SNPs) and
epigenetically (e.g., CpG island hyper- and hypomethylation,
etc.) (Kabekkodu et al., 2018). Gregorova et al. (2021)
highlighted the epigenetic mechanisms in different cancers
that are found associated with the dysregulation of
miRNA clusters or miRNA gene families such as-global or
site-specific hypomethylation, CpG island promoter
hypermethylation, and histone modifications, etc. According
to that report, the most highlighted cancer associated
miRNA clusters/families are-Let-7-5p/98-5p Family, miR-
125-5p Family, miR-99-5p/100-5p Family; miR-34-5p/449-
5p Family, miR-34b-5p/449c-5p Family; The miR-141-3p/
200a-3p Family, miR-200ab-5p Family, miR-200bc-3p/429
Family, miR-200c-5p/550a-3p Family; miR-17~92a-1

TABLE 2

List of circRNAs in osteosarcoma

Oncogenic Tumor
suppressor

Targets (gene/protein/signaling
pathway or miRNAs)

circ_TADA2A miR-203a-3p/CREB3

circ_CRIM1 miR-432-5p/HDAC4

circ-CRIM1 miR-513

circ_MYC HDAC

circ_HIPK3 miR-637/HDAC4

circ_HIPK3

circ_0001658 miR-382-5p/YB-1

circ-LRP6 EZH2 and LSD1; APC and KLF2
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Cluster, miR-106a~363 Cluster; miR-15-5p/16-5p/195-5p/
424-5p/497-5p Family; miR-23-3p Family, miR-23b~24-1
Cluster, miR-23a~24-2 Cluster; miR-130-3p/301-3p/454-3p
Family and miR-29-3p Family (Gregorova et al., 2021).

miRNAs in osteosarcoma
Several miRNAs found deregulated in osteosarcoma compared
to normal bone, osteoblasts, and mesenchymal stem cells, and
some are also selectively expressed in osteosarcoma
(Baumhoer et al., 2012; Jones et al., 2012; Llobat and
Gourbault, 2021; Maire et al., 2011; Ramassone et al., 2018;
Sarver et al., 2010; Thayanithy et al., 2012; Ziyan et al., 2011).
miRNAs may well play both oncogenic and tumor suppressive
roles depending on their target genes and pathways in
osteosarcoma (Llobat and Gourbault, 2021). In a recent review
on miRNAs in human osteosarcoma, Llobat and Gourbault
(2021) compiled the miRNAs involved in osteosarcoma
progression, in particular the clusters which have pivotal role
in cancer hallmarks, for example the miR-17-92 and miR-
106b-25 clusters. In a global microarray analysis of a panel of
19 human osteosarcoma cell lines, Namløs et al. (2012)
identified 177 differentially expressed miRNAs relative to
normal bone, nearly half of which overlapped with two
earlier studies, including the common miR-150. Among
these, miR-126/miR-126*, miR-142-3p, miR-150, miR-223,

miR-486-5p, and members of the miR-1/miR-133a,
miR-144/miR-451, miR-195/miR-497 and miR-206/miR-133b
clusters were found to be downregulated; miR-9/miR-9*,
miR-21*, miR-31/miR-31*, miR-196a/miR-196b, miR-374a
and members of the miR-29 and miR-130/301 families were
found to be upregulated (Table 3).

All such differentially expressed miRNAs, miRNA
clusters and families - having the similar biological function
with the potential to regulate specific mRNAs of target
genes-are promising diagnostic and prognostic markers for
osteosarcoma (Lei et al., 2020; Ramassone et al., 2018;
Zhang et al., 2015). A large number of miRNAs hold
biomarker potential due to their differential expression in
body fluids (especially in patients’ blood), their correlation
with the response to chemotherapy and patient survival; for
instance, miR-Let7A (Hua et al., 2018). Botti et al. (2019)
recently in a review summarized the circulating miRNAs
with biomarker potential in the diagnosis, prognosis, and
clinical monitoring of osteosarcoma patients. According to
them, miR-29 family members (miR-29a, miR-29b,
miR-29c), miR-199a-3p, miR-196a, miR-196b, miR-214,
miR-574, miR-335, miR-9, miR-191, miR-221, miR-148,
miR-195-5p, miR 320a, miR-421, miR-542, miR-95-3p,
miR-21, miR-27a and miR-253-p are found highly expressed
in patient serum and the miR-34 family members (miR-34a

TABLE 3

List of miRNAs, cluster, and families in osteosarcoma

Role in OS tumorigenesis miRNAs, family, or clusters Mechanism of action and targets (gene/protein/signaling
pathway or lncRNA/circRNA)

Oncogenic miR-524 PTEN99; PI3K/AKT

miR-10b-5p NCOR2

miR-485-3p
MiR-370
miR-142
miR-7
miR-129-5p

Interaction with DNA methyltransferases

Tumor suppressor miR-126
miR-133b
miR-204

HDAC4 or Sirtuin-1

miR-449a
miR-449b

E2F1; H3K27me3

miR-377 Interaction with histone acetyltransferase 1

miR-17-5p
miR-20a

Heterochromatin formation

miR-425-5p Interaction with lncRNA

miR-26a
miR-1296-5p
miR-34
miR-200

Jagged1
Notch2
Notch1
Jagged1

miR-154-5p E2F5, Cyclin E1 and CDK2

miR-598
miR-143
miR-23a

Osteoblast differentiation

miR-370 FOXM1; Wnt/β-Catenin; DNA methylation

miR-101 EZH2; DNA methylation
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and miR-34b), miR-124, miR-205-5p, miR-133b, miR-206,
miR-195, miR-152, miR-326, miR-145, miR-558, miR-497,
miR-491 and miR-375 are significantly downregulated.
Zhang et al. (2020a); Wu et al. (2011) proposed a novel
diagnostic marker for predicting osteosarcoma metastasis,
the plasma EV-packaged miR-101 (EV-miR-101), which the
author indicated might serve as a useful circulating
biomarker. Furthermore, the following sections will
delineate the major markers of epigenetic control of
miRNAs in osteosarcoma.

DNA methylation and chromatin modifying miRNAs
An assessment of the clinical utility of miRNA sets and their
association with methylation status (Hill et al., 2017) found
that most prognostic miRNAs affecting gene expression via
DNA methylation, cluster in 14q32-a region which was also
previously reported to encode more than 40 miRNAs
including imprinted genes important in osteogenic
differentiation and inhibiting cancer (Thayanithy et al.,
2012). This report suggests that miRNAs and modulation in
methylation patterns may offer prognostic and therapeutic
strategies in osteosarcoma treatment (Lietz et al., 2020). The
hypothesis that miRNA may regulate gene expression
epigenetically was reinforced by the relationship of certain
miRNAs and DNA methyltransferases, for example-miR-
485-3p, MiR-370, miR-142, miR-7, miR-129-5p (Ding et al.,
2015; Du et al., 2018; Fabbri et al., 2007; Khraiwesh et al.,
2010; Wu et al., 2010; Zhang and Peng, 2017; Zhang et al.,
2017a; Zhang et al., 2019) (Fig. 3).

Few other miRNAs have been found targeting the
histone modifying enzymes such as HDAC4 or Sirtuin-1
and thus inhibiting proliferation, migration, invasion and
epithelial-mesenchymal transition of osteosarcoma cells,
for example, miR-126, miR-133b, miR-204 (Liao et al.,
2021; Shi et al., 2017; Tang et al., 2017; Ying et al., 2017).
Tumor suppressor miR-449a and miR-449b were
epigenetically repressed in the osteosarcoma cell line via
H3K27me3 resulting in E2F1 deregulation. And their

expression could be restored when targeted with a
combination of small-molecule histone methylation
inhibitor Deazaneplanocin A (DZNep) and HDAC
inhibitor trichostatin-A (TSA) (Yang et al., 2009).

Another proposed mechanism of action is through
forming heterochromatin (e.g., miR-377, miR-17-5p and
miR-20a) (Gonzalez et al., 2008; Xia et al., 2019). miR-377,
which is a well-recognized tumor suppressor miRNA in
many cancers, has been found to target HAT1 (histone
acetyltransferase 1) in osteosarcoma (Xia et al., 2019). And
apparently upregulation of miR-377 or inhibition of HAT1
prevented osteosarcoma progression via inactivating Wnt
pathway thereby providing a therapeutic alternative.

Interaction with lncRNA and circRNA
Several miRNAs have been reported to interact with the
lncRNAs as well as circRNAs to serve their oncogenic or
tumor suppressive role in osteosarcoma (described in the
previous sections). Significantly reduced serum miR-425-5p
expression makes it a potential prognostic marker in
osteosarcoma, and when overexpressed it decreases the
expression of very well-known oncogenic lncRNA MALAT1
and TUG1 in addition to suppressed tumor growth in-vivo
(Yang et al., 2019).

Other signaling pathways governed by miRNAs
Several miRNAs have been reported to be involved in the
Notch signaling pathway in the initiation and progression of
osteosarcoma, of which some are tumor suppressor miRNAs
such as miR-26a (targets Jagged1), miR-1296-5p (targets
Notch2), miR-34 and miR-200 (targets Notch1) and some
play oncogenic role for example, miR-10b-5p (targets
NCOR2) (Lei et al., 2020; Xia et al., 2020). miR-154-5p acts
as tumor suppressor in osteosarcoma and its upregulation
inhibits the proliferation, migration and invasion in vitro as
well as in-vivo tumor growth via the dysregulation in the
pro-apoptotic proteins’ expression and the cell cycle
regulators such as E2F5, Cyclin E1 and CDK2 (Tian et al.,

FIGURE 3. miRNAs affect gene
expression by (a) regulating histone
modifying enzymes activity and DNA
methylation, (b) altering chromatin
structure, (c) ceRNA networking
mechanisms, (d) regulating onco- or
tumor-suppressor genes expression
via miRNA sponging.
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2020). Another miRNA, miR-524 activates PI3K/AKT
pathway and induces proliferation in osteosarcoma via
directly inhibiting PTEN expression (Zhuang et al., 2018).
Some miRNAs such as miR-598, miR-143, and miR-23a,
also found to play a role in osteoblast differentiation in
osteosarcoma progression (Grilli et al., 2015; Liu et al., 2017b).

Short Non-Coding RNAs–piRNAs and siRNAs

piRNAs are approximately 26–30 NT long, consisting of more
than 50,000 different species. Recent studies demonstrated
possible involvement of aberrant piRNAs expression in
tumorigenesis and all the hallmarks of cancer, and thereby
suggested as a diagnostic and prognostic marker (e.g., piR-
L-163, piR-823) (Wei et al., 2017; Wu et al., 2020). piRNAs
been speculated to have a role in epigenetic regulation as
they bind to Piwi proteins, a known epigenetic regulator
functioning by binding to Polycomb group genes (Lin,
2007). piR-39980, which has been reported to have an
oncogenic function in human osteosarcoma cells (Das et al.,
2020), has been found to have strong anti-tumor activity in
fibrosarcoma (early metastatic lethal tumor) by repressing
RRM2 (Das et al., 2019). siRNAs can result in
transcriptional gene silencing via DNA methylation and
histone modifications in cells especially through interfering
with EZH2 (Bayne and Allshire, 2005; Morris et al., 2004;
Zhou et al., 2015).

Non-Coding RNAs as Therapeutic Targets for Epigenetics-
Driven Personalized Medicine

Epigenetic therapeutics in combination with the selective
targeting of the ncRNAs might hold a great key for treating
the cancers that are more chemoresistant and more prone to
relapse after chemotherapy. In fact, studies focused on DNA
methylation pattern for drug repurposing in osteosarcoma
(Chaiyawat et al., 2020) identified a significant increase in
DNMT1-dependent chemosensitivity toward Cisplatin
therapies when treated with Decitabine (DNMT inhibitor).

The lncRNA HOTAIR (discussed in earlier sections) is
an outstanding therapeutic target for anticancer therapies
(Cantile et al., 2020; Li et al., 2017b). Recently, a computer-
aided structure-based drug design method has been able
to develop small molecule inhibitor of HOTAIR (e.g.,
AC1NOD4Q) which particularly interferes with the
HOTAIR/EZH2 interaction and prevents tumor metastasis
in breast cancer models (Ren et al., 2019a). Moreover,
suppressing HOTAIR in combination with other epigenetic
drugs (e.g., DZNep and AC1Q3QWB) showed a great
promise in treatments for breast cancer and glioblastoma (Li
et al., 2019; Sun et al., 2015). Its unique expression pattern
in osteosarcoma, regulation of DNA methylation, exploiting
chromatin remodelers, functioning via ceRNA network, and
also promising outcomes in other cancers; all of these shows
a great potential for HOTAIR to be an excellent candidate
for epigenetic therapeutics in osteosarcoma (Cantile et al.,
2020; Li et al., 2017b).

lncRNA NEAT1 (nuclear enriched abundant transcript 1)
is another oncogenic transcript involved in the osteosarcoma
metastasis and EMT regulation (Li and Cheng, 2018). NEAT1

induces epigenetic suppression of E-cadherin (CDH1)
expression by mediating CDH1 promoter methylation via
G9a methyltransferase. And when knocked down, it can
significantly reduce G9a-DNMT1-Snail complex association
in CDH1 promoter. Consequently, NEAT1 is yet another
promising target in the treatment of metastatic
osteosarcoma via epigenetic-derived therapeutics. Previously
described lncRNA MEG3 was also suggested to be a
potential therapeutic target in osteosarcoma due to its
negative regulation of the well-known oncogene FOXM1
through sponging miR-361-5p (Shen et al., 2019). Other
oncogenic lncRNAs such as AFAP-AS1 and MALAT1
(discussed previously) have also been proposed to be a
therapeutic target due to their effects on osteosarcoma
progression and metastasis (Fei et al., 2020).

Preclinical studies on osteosarcoma emphasized the
potentials of different miRNAs as therapeutic targets (e.g.,
miR-146b-5p) (Jiang et al., 2019). Several miRNAs
expression has also been associated with abnormal
methylation that could be targeted with DNMT inhibitors to
suppress osteosarcoma progression (e.g., miR-485-3p, miR-
370, miR-142, miR-7, miR-129-5p) (Ding et al., 2015; Du et
al., 2018; Long et al., 2015; Zhang and Peng, 2017; Zhang et
al., 2019). Indeed, osteosarcoma cells when treated with
DNMT inhibitor DAC, increased the levels of tumor
suppressor microRNA miR-370. Not only that, DAC
treatment also enhanced its inhibitory effect on FOXM1 by
suppressing FOXM1-β-catenin interaction and inhibiting
Wnt/β-Catenin signaling (Zhang et al., 2017b).

In a recent review, Lei et al. (2020) outlined the miRNA-
based therapeutics in clinical trials as well as the miRNA
mimics that are currently under development for targeting
osteosarcoma both in vitro and in vivo. These includes
nanoparticles, bioengineered prodrugs, and exosome-mediated
delivery of miRNA mimics of miR-199a-3p, let-7a, miR-34a,
miR-145, miR-143, and miR-101. A prodrug designed for
miR-34a (tRNA/miR-34a) has shown substantial antitumor
activity in preclinical canine model of osteosarcoma cell lines
and in vivo xenograft model (Alegre et al., 2018), providing
evidence for the potential of the miRNA-based therapies in the
treatment of human osteosarcoma.

miR-101 is a well-known tumor suppressor miRNA in
several cancers and in osteosarcoma, it was found
functioning through repressing EZH2 expression to
decrease metastasis (Zhang et al., 2014b). Recently, Zhang
et al. (2020a) designed an exosomal delivery of miR-101
with EV derived from engineered AD-MSCs, and their
study showed that miR-101 had the potential to inhibit
metastatic osteosarcoma, possibly via regulation of EZH2
and BCL6.

Conclusion

Identifying biomarkers that differentiate responders/survivors
from non-responders remains enigmatic and could overcome
the stagnate survival statistics that have persisted for the past 40
years. While biomarkers in the coding RNA and DNA have
been unreliable, there is potential to investigate the ncRNA
for consistent biomarkers. As discussed in this review, there
are a number of potential biomarkers among the different
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classes of ncRNAs that not only serve as biomarkers to
differentiate more aggressive osteosarcomas, but help to
explain the biological processes that drive the hallmarks of
cancer. By understanding the underpinnings of how ncRNAs
drive transformation and progression, they can then become
pharmacological targets to modulate cancer pathways and
drive favorable outcomes for patients. The most advanced
therapeutics in this field involve the complementary targeting
of miRNAs that regulate numerous cell processes that
regulate protumorigenic behavior. Currently several clinical
trials are underway to investigate their therapeutic potential.
However, as with most targeted therapies already applied to
osteosarcoma, these therapies will also likely fail unless
combined with other approaches. The heterogeneity and
genomic instability that exists in the DNA coding regions is
likely to complicate the interpretation of the ncRNAs, but the
potential is there to discover something truly ground-breaking.
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