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Abstract: Mesenchymal stem cells (MSCs) are multipotent cells usually isolated from bone marrow, endometrium,

adipose tissues, skin, and dental pulp. MSCs played a crucial role in regenerative therapy and have been introduced as

an interdisciplinary field between cell biology and material science. Recently, MSCs have been widely explored for

their application in regenerative medicine and COVID-19 treatment. Different approaches to evaluate the future of

biomaterials and stem cell properties have been developed. However, misconceptions and ethical issues still exist, such

as MSCs being non-angiogenic, anti-apoptotic, and immunoregulatory competencies. Embryonic stem cells isolation

primarily requires the consent of donors and can include the killing of fertilized eggs. These issues generate questions

related to ethical and moral issues. However, MSCs have gained considerable attention for tissue regeneration owing

to their differentiation ability with immunomodulatory effects. They are capable of secreting a broad range of

biomolecules such as proteins, nucleic acids, exosomes, microRNAs, and membrane vesicles, collectively known as

secretomes. Secretomes are released in response to the surrounding microenvironment. In this article, we briefly

address topics related to the therapeutic potential of MSCs as an advanced approach in the field of regenerative

medicine and various perspectives.

Abbreviations
Angiopoietin-1: Ang-1
Angiopoietin-2: Ang-2
Cardiac Troponin-I: C-TnI
Vascular Endothelial Growth Factor: VEGF
von Willebrand Factor: vWF
Spinal Muscular Atrophy: SMA
Interleukin-6: IL-6
Insulin-like growth factor 1: IGF-1
Transforming growth factor β: TGF-β

Introduction

Mesenchymal stem cells (MSCs) are multipotent stromal cells
capable of self-renewal and exhibit multilineage
differentiation properties. MSCs are isolated from various
human body tissues, including skin and bone marrow,
which shows multipotent differentiation competencies

(Marofi et al., 2019a). However, some ethical issues exist
owing to the related properties of MSCs, such as pro-
angiogenic, anti-apoptotic, and immunomodulatory
attributes (Tavakoli et al., 2020). Many studies related to
MSCs therapeutic potential in which MSCs derived
extracellular vesicles accomplished a vital role. Additionally,
a significant investigation revealed the potential applications
of MSCs in a range of disorders, including cardiomyopathy,
neurodegenerative diseases, cancers, and injuries related to
the spinal cord, kidney, liver, and lungs (Bodart-Santos
et al., 2019; Marofi et al., 2019b). Bone marrow resident
c-kit+ stem cells (BMSCc+) were previously cultured with
L-carnitine (LC) for cardiac cell therapy (Fathi et al., 2020).
Upregulation of mRNA and protein associated with cardiac
markers, including Ang-1, Ang-2, C-TnI, VEGF, vWF, and
SMA, was observed in BMSCc+ with LC.

Enhanced expression of IL-6, IGF-1, TGF-β, and VEGF has
also been observed in LC treated BMSCc+ groups, suggested the
cardiac differentiation of BMSCc+, and can be utilized in tissue
engineering for cardiac cell therapy. MSCs can secrete various
immunomodulatory factors that create a regenerative
microenvironment (Vasanthan et al., 2021). The Mesenchymal
and Tissue Stem Cell Committee, which belongs to the
International Society for Cellular Therapy, stated that
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plastic-adherent properties are the minimum criteria for
determining MSCs. Furthermore, they should express proteins
CD105, CD90, and CD73, suppress the expression of proteins
CD45, CD79α, CD34, CD11b, CD14, CD19, and human
leukocyte antigen-DR isotype (HLA-DR) surface biomolecules,
and differentiate into adipocytes, osteoblasts, muscle cells,
neurons, and chondrocytes (Dominici et al., 2006). In in vivo,
MSCs are the source of trophic factors that modulate the
immune system in the body and induce innate stem cells to
repair injured tissues (Rodríguez-Fuentes et al., 2021).
However, it can be challenging to differentiate when they are
connected with wounded tissue, opposed to when they instruct
tissue-specific progenitor cells responsible for the
redevelopment of damaged tissue.

Biomaterials evolve from inert materials that overcome the
lack of interaction with the body to continue biological activities
(i.e., informational materials that can act as hosts and provide
signals to surrounding cells and tissues) (Rodrigo-Navarro
et al., 2021). These well-engineered living materials contain
living cells and polymeric matrices, functioning as actively
responding biomaterials. These biomaterials can be prepared
using various technologies such as electrospinning, 3D
printing, coating, and freeze-drying (Chen et al., 2021; Mishra
and Srivastava, 2021). For instance, Chandramohan et al.
(2021) isolated MSCs from human ovarian follicular fluid and
grew them on a chitosan-polycaprolactone-zinc scaffold to
study their application in bone tissue engineering
(Chandramohan et al., 2021). The biological outcome
confirmed that the engineered biomaterial promoted
osteoblast differentiation at the molecular and cellular levels.
The expression of secretomes (osteoblast markers) such as
RunX family transcription factor 2 (Runx2) and type 1
collagen messenger RNAs (mRNAs), osteonectin, and
osteocalcin were enhanced in the presence of the scaffold. In
these studies, MSCs were successfully utilized as initial cells
to differentiate into tissue cells that provide essential cell
sources and practical support for tissue regeneration treatment.

For a wide variety of clinical applications, MSCs require
the host cells to migrate to target tissues (de Becker and Riet,
2016). However, biomaterials can act as hosts for MSCs.
Improved angiogenesis, cell proliferation, and scarless wound
healing applications were clinically observed in adipose-
derived MSCs with or without the presence of biomaterials
(Gentile et al., 2021a). Shilan and coworkers developed the
exosome-loaded bioactive alginate scaffold for wound healing
application. They found that the developed scaffolds
facilitated enhanced collagen synthesis, angiogenesis, and
improved wound repair (Shafei et al., 2020). The clinical
trials were conducted to explore the potential use of MSCs in
acute lung injury or acute respiratory distress syndrome
(ARDS), which opened a new possibility for the treatment of
post-COVID-19 patients (Loke et al., 2021). Gentile and
Sterodimas published an article suggesting the emergency and
successive use of MSCs in COVID-19 treatment (Gentile and
Sterodimas, 2020a). The authors recommend inserting
Adipose-derived stromal stem cells (ACSs) and stromal
vascular fraction cells (SVFs) in patients along with the
conventional therapy as an immediate step of cure. Another
alternative could be to produce SVFs and ASCs from MSCs,
and isolate the secretomes to reinfuse in certified drugs or

directly into patients. Flow diagram of AD-MSCs
biomolecular pathway and mechanism in COVID-19 induced
pneumonia is presented in Fig. 1. In another study,
intravenous incorporation of MSCs into patients can improve
the respiratory activity in COVID-19 patients (Gentile and
Sterodimas, 2020b). The MSCs therapy enriched the lung
microenvironment after the SARS-CoV-2 infection. Immune-
modulation effects of SVFs and ASCs help form new micro-
capillary networks, which mediates the improved delivery of
proper nutrients and oxygen for fast dealing in COVID-19
patients. MSCs and AD-MSCs are also used as anti-viral drug
delivery agents in the virus-infected microenvironment
(Gentile et al., 2020). AD-MSCs have the homing ability,
lower risk of complications, potent anti-inflammatory and
immune-modulatory ability, which improves its potential as
regenerative medicine in this critical pandemic situation of
COVID-19.

In the present article, we briefly addressed the current
knowledge about MSC-secreting molecules with biomaterials.
We have also concisely illustrated the possible applications in
the field of regeneration medicine and tissue engineering. A
schematic presentation for different sources, immunomodulation
and differentiation of MSCs is presented in Fig. 2.

Biomolecules derived from MSCs
Mesenchymal stem cells (MSCs) can be initially isolated from
the shin, bone marrow, adipose tissue, umbilical cord, and
placental tissues (Rungsiwiwut et al., 2021). MSCs secrete a
broad range of active biomolecules, comprising cytokines,
messenger RNAs (mRNAs), growth factors, proteins,
microRNAs (miRNAs), and membrane vesicles. Exosomes
are also secreted by MSCs and are widely used in
regenerative medicine and tissue engineering (Pant et al.,
2021). MSCs, along with their benefits, also have fewer
moral, ethical, and safety issues than embryonic stem cells.
Additionally, they possess poor immunogenicity and
desirable immunomodulatory properties that can alter the
function of lymphocytes (Natural killer cells, T cells, B
cells), macrophages, and monocytes (Ahangar et al., 2020).
For bone regeneration, MSCs secrete proteins such as
VEGF, TGF-β, and bone morphogenic proteins (BMPs) in
the conditioned medium or inside extracellular vesicles (El
Moshy et al., 2020). The composition of the MSC secretome
is highly influenced by the microenvironment to which it is
exposed. In the presence of inflammatory signals such as
interferon-γ (IFN-γ) and interleukin-1β (IL-1β), MSCs
release the immunomodulator granulocyte colony-
stimulating factor (G-CSF), galectin-9, and factor H
(Wangler et al., 2021). A list of various sources of MSCs
with their secretomes and applications is presented in Table 1.

Use of stem cells in regenerative medicine
Stem cells have multifunctional potentials and show different
effects on different cell lines. Fathi et al. examined the impact
of MSCs on MolT-4 cell lines as acute lymphoblastic leukemia
cells (Fathi and Vietor, 2021). A dramatic decrease in
telomerase activity was observed in MSCs co-cultured with
MolT-4 cells. Whereas an enhancement in β-galactosidase
activity occurred in MSCs co-cultured with MolT-4 cells.
A significant enhancement in pro-caspase-8 and
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cleaved-caspase 8 and 9 expressions have also appeared in
MSCs co-culture with MolT-4 cells. The co-cultured groups
demonstrated increased apoptosis and senescence in Molt-4
cells via the caspase-8, 9 cascades, as well as the GSK-3α/β
and ERK1/2 signaling pathways (Fathi and Vietor, 2021). In
another study, Fathi and coworkers also investigated the
effects of BMSCs on the proliferation of chronic myeloid
leukemia (CML) cell lines (K562) via the Extracellular
signal-regulated kinase (ERK) pathway (Ezzatollah et al.,
2020). A lowering in BMSCs induced cell line growth has
occurred in K562 cells co-cultured with BMSCs via

decreasing ERK protein expression. BMSCs produce CD444
and CD90, but not CD34 or CD56 hematopoietic markers.
Many cytokines and growth factors are secreted in the co-
culture of BMSCs and K562 cells, which restricted the
proliferation of CML cell lines via the ERK pathway.

Ethical issues
It is essential to address the ethical issues associated with the
clinical applications of cell transplantation. The protection of
donor privacy is mandatory for such applications. It is also
essential to understand how gametes, embryos, and somatic

FIGURE 1. Biomolecular pathway od AD-MSCs and its mechanism for treatment in COVID-19 induced pneumonia (ESC: Epidermal stem
cells; PGE2: prostaglandin E2; LIF: leukemia-inhibiting factor; ECM: extracellular matrix; TGF-1: transforming growth factor-1; HGF:
hepatocyte growth factors; INF-γ: interferon-γ; VEGF: vascular endothelial growth factor; PDGF: platelet-derived growth factors; GF:
growth factors) (Gentile and Sterodimas, 2020a).

FIGURE 2. Overview of various
sources of Mesenchymal Stem Cells
(MSCs), their further culturing for
the development of engineered
living biomaterial, and release of
secretome for immunomodulation
and differentiation in another kind
of cells (neuron, chondrocytes,
osteocytes, adipocytes, hepatocytes).
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cells of donors will be used in the future and how donors’
privacy will be protected (Charitos et al., 2021). The
guidelines have been updated related to the ethical issues
regularly from the International Society for Stem Cell
Research (ISSCR). These recommendations should be
studied for information on cell and tissue donors and the
permission process and data collection. Two major issues,
including donor’s agreement and their information, are
associated with isolating stem cells from the umbilical cord.
Pain and hazards related to the donor should also consider
during the isolation of BMSCs. These issues are also
associated with the somatic cell collection process.

In vitro fertilization is used to obtain the overabundance of
fertilized eggs. Following the isolation of pluripotent stem cells,
these fertilized eggs are destroyed, raising moral concerns about
the death of fertilized eggs with the potential to develop into
human beings. However, according to medical and biological
sciences, fertilized eggs from the first fourteen days do not
contain life. As a result, the termination of life does not
include pluripotent cell separation in the first fourteen days.
Also, in the event of a deliberate or spontaneous abortion, a
pregnant woman’s consent is required to isolate stem cells
from cadaveric embryonic tissue. However, it is illegal to
create human embryos only for research purposes (Charitos
et al., 2021). According to Ballini et al. (2019) there are no
ethical concerns with stem cells produced from the dental
bud and pulp and hence can be used for research without
any issues (Ballini et al., 2019).

Future Perspective

According to previous studies (Moghadasi et al., 2021), MSC-
based tissue engineering still has considerable limitations,
including the fact that among the injected cells, only a few
can survive and grow on the desired tissue area and play a
medicinal role. MSCs possess self-renewal and multilineage
differentiation ability; however, they were not frequently
utilized in tissue regenerative medicine applications. Although

the cell-free approach is a promising therapy, various
problems have arisen before the clinical transformation.
Establishing therapeutic and clinical regimens is complicated
due to the intricate interactions among secretome
components during tissue restoration (Rahimi et al., 2021).
Another limitation of the secretome is related to its collection
purity, preparation, and analysis workflow. Some secreted
factors have low concentrations because of dilution by the
culture media. Moreover, dead cells or proteins secreted by
apoptotic cells contaminate the secretome. Therefore, MSC-
conditioned media should be prepared cautiously to ensure it
is free from impurities. Another drawback is that proteomic
analysis interfaces with salt and other compounds in the
culture media, making specific protein precipitation necessary
for proper proteomic analysis.

Biomaterials must possess different properties according
to the demand of the treatment area. The developed material
is expected to occupy the anatomy of the defective site,
providing pleasing surroundings to recruit and promote
host stem cells. For example, scaffolds for bone regeneration
should have good tensile and compressive strengths to
fulfill the osteoconductive and osteoinductive criteria.
Osteoconductive properties stimulate bone cell growth, and
osteoinductive properties promote the proliferation and
differentiation of MSCs (Ercal and Pekozer, 2020). Various
materials such as ceramics, natural and synthetic polymers,
and metallic nanoparticles are used widely to synthesize
scaffolds. Collagen is a natural polymer with a low antigenic
reaction, high tensile strength, and flexibility. Biomaterials
and MSCs-based regenerative therapy essentially preserve
cell viability while properly guiding their fate and
functionalization toward the wounded site. MSCs’
phenotypic functioning and viability can quickly be changed
if isolated from their surroundings. As a result, for MSCs to
preserve their characteristics and optimally demonstrate
therapeutic benefits, highly imitating native room
biomaterials are required. MSC behavior is influenced by
various biophysical and biochemical parameters, including

TABLE 1

Different sources of Mesenchymal stem cells with their markers and differentiation in various cells

MSC source Markers Differentiation Application References

Placental
derived
MSCs

CD105, CD90, CD73,
CD44, CD29, CD13,
CD166, CD10, CD133

Keratinocytes, fibroblasts cells,
pancreatic cells

Nerve regeneration (e.g., heart, kidney,
lungs, bone cartilage, blood vessels etc.)

(Abumaree et
al., 2017)

Adipose-
derived
MSCs

CD34, CD90, CD44,
CD105, OCN, OPN,
BMP-7

Adipocytes, osteoblasts,
chondrocytes, muscle cells

Skeletal muscle injuries (e.g., soft tissue
augmentation), cosmetic and dermatology
(e.g., antiaging, ulcers, burns)

(Maria et al.,
2017; Strioga et
al., 2012)

Dental
derived
MSCs

CD106, CD105, CD90,
CD44,

Osteocytes, chondrocytes,
adipocytes, odontoblasts, nerve
cells, myogenic cells

Orofacial bone and neuron
regeneration

(Kaneko et al.,
2018)

Endometrial
derived
MSCs

CD73, CD90, CD166,
CD44, CD29, MHC-1,
CD105, OCT-4,

Adipocytes, chondrocytes,
osteoblasts, muscle cells,
hepatocytes

Nervous tissue, skin and pancreatic cell
regeneration, hematopoietic lineage

(Gargett et al.,
2015)

Umbilical
derived
MSCs

CD73, CD105, Tra-1-81,
SSEA-1, ALP, Tra-1-60,
CD90

Adipocytes, chondrocytes Wound healing (severe diabetic foot, burns,
atopic dermatitis)

(Yaghoubi et
al., 2019)
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stiffness, topography, porosity, growth factors, and tiny
bioactive compounds (Li et al., 2021). Incorporating
biophysical and biochemical cues into next-generation
biomaterials could assist in regulating MSCs in the
futuristic approach of regenerative medicine and cell
therapy. Biomaterial development for regenerative
medicine must be paired with multidisciplinary research
advancements and the biophysical and biochemical
parameters that influence MSCs’ behavior. The parameters
must be accurately integrated and altered according to the
needs of the wounded area. Yasamin et al. (2020) coupled
multi-material 3D bio-printing with electronic platform
technology in a prior study to develop a hybrid device that
reconstructs the mechanical structure of nasal cartilage and
detects odor.

Before utilizing MSCs, a selection of procedures should
be performed, and the particular properties and types of
proteins, material wettability, mechanical and chemical
properties, and topography should be determined (Ferreira
et al., 2012; Ventura Ferreira et al., 2012). The selection of
more specific biomaterials and optimized parameters can
make a significant difference in regenerative medicine and
tissue engineering results. However, polymers such as
acrylamide (AAM) possess drawbacks, including low
elasticity, which is lower than many tissues in the human
body (Engler et al., 2006). However, several clinical trials
have been conducted or are ongoing. It is necessary that the
comparative response of biomaterial-modified MSCs be
investigated within different research groups for similar types
of experiments and to generalize the knowledge and opinions
about more important parameters (cytotoxicity/compatibility,
protein adhesion layers, proliferation, and differentiation), as
well as the treatment steps for standard models (Moghadasi et
al., 2021). The most appropriate biomaterial to be used with
MSCs for regenerative medicine should be discovered faster
and more reliable. This is necessary to improve the efficiency
of MSC-based therapy as well as the parameters for cell
culture conditions, the procedure for manufacturing, storage,
optimized therapeutic doses and schedules, and dependable
potency that can be generalized for particular therapy (Schaap-
Oziemlak et al., 2014). MSCs can be used against infections
and inflammatory diseases such as cholera. Bahroudi and
coworkers demonstrated the immune-modulation effect of
lipopolysaccharide (LPS)-MSC-conditioned media as a vaccine
candidate against Vibrio cholera LPS immunization in a mice
model (Bahroudi et al., 2021). The LPS-MSC-conditioned
media regulated the anti-inflammatory response and induced
the formation of vibriocidal antibodies to fight against the
cholera disease. In another study, they showed robust
bactericidal and antibiofilm performance of MSCs supernatant
to inhibit the cholera infection (Bahroudi et al., 2020).
Another approach for inhibiting bacterial infection is by
culturing the MSCs with toll-like receptor (TLR)3 ligands
(Johnson et al., 2017). This helps neutrophils to survive for a
long time and kill the bacteria.

The benefits and capabilities of MSC biomaterials are
receiving growing attention. MSC-exosomes (Harrell et al.,
2020) are being broadly utilized for more advanced
innovative regenerative approaches for several treatments.
This includes inflammatory responses, targeting of the

pivotal signaling axis of immune cells, inhibition of
phosphatase and tensin homolog deleted on chromosome 10
(PTEN) protein activation and pro-fibrotic molecule
expression, suppression, and expression of matrix
metalloproteinases (MMPs) to promote the generation of
pro-angiogenic factors, and activation of pro-fibrotic
molecules in various treatments. However, MSC-based
applications must still overcome several challenges. Many
researchers currently use growth factors to facilitate stem
cell differentiation and tissue engineering. Most research is
in the preclinical stage, and their translation into clinical
applications necessitates additional testing to demonstrate
safety and efficacy. Furthermore, it was discovered that the
same elements have distinct impacts on MSCs from other
sources. Current and future research will continue to focus
on the origin of MSCs as well as the desirable surface
microenvironment.

MSC adhesion to biomaterials should also be considered.
New strategies need to be developed to improve the in vitro
adhesion of MSCs. This can be achieved by modifying the
extracellular matrix (ECM) through using natural, artificial,
and smart polymers, joining adhesion peptides, designing
cytocompatible scaffolds, nanopatterning, and using molecular
signals. Understanding the mechanism, involved molecules,
and factors influencing adhesion could help manage MSC
survival and proper manipulation for regenerative applications.
Several issues must be considered in the future to develop
regenerative medicine better. These approaches include the
following: MSCs should retain their properties when exposed
to modified surfaces of biomaterials, physical properties should
promote the growth of MSCs, and cells should maintain their
properties for an extended period.

Innovative platforms with customizable biophysical
properties, such as biomaterial diversified multiscale
topography, 3D engineering microenvironment, and 4D
reversibly responsive systems, which may react to internal
or external stimuli, have recently been developed. These can
perfectly replicate the stem cell’s dynamic milieu and give
practical tools for studying the impact of biophysical stimuli
on stem cell behavior in a spatiotemporal manner (Wan et
al., 2021). Therefore, a complete understanding of the roles
of biophysical cues in cell stimulation within multiple
dimensions will boost basic cell biology and biomaterial
design for tissue regeneration. Furthermore, the MSC
culture process might affect the amount of expression of the
resultant factors. Wound healing, photoprotection, hair
growth encouragement, psoriasis treatment, and other
antimicrobial uses are the secretome’s skin regeneration
applications. Given the many components of the secretome,
it has a lot of potential in various diseases, but it will require
additional in-depth research to be entirely relevant.

The application of MSCs in wound healing, scar
treatment, and soft tissue repair is also studied extensively.
In recent years, lipofilling has emerged as a popular scar
treatment method. The regenerative capacity of adipose-
derived stem cells (AD-MSCs) suspended in an extracellular
matrix called stromal vascular fraction (SVF) has significant
benefits for scar treatment. Similarly, fat tissue is also used
as a bioactive material in regenerative surgery. Lipofilling/fat
graft-nano-fat technique act as a bioactive scaffold for
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wound healing and scar treatment (Gentile et al., 2021b). Foot
ulceration in diabetic patients can lead to high disability and
even mortality. Platelet-rich plasma (PRP) therapy is used
widely for diabetic wound healing due to its high content of
growth factors. To overcome the rapid degradation of
growth factors in PRP, AD-MSCs are combined with PRP
therapy to promote diabetic wound healing by
downregulation of the notch signaling pathway (Ebrahim et
al., 2021). The combined therapy showed improved re-
epithelialization and granulation tissue formation with a
significant increase in collagen, epidermal thickness, and
angiogenesis. Autologous stem cell therapy, including PRP,
human follicles stem cells, and AD-MSCs, are effective for
hair regrowth in patients affected by androgenetic alopecia
and for wound healing (Gentile et al., 2021a). The skin acts
as a natural shield against the sun’s ultraviolet (UV) rays
(Gentile et al., 2021b). However, extended exposure to the
sun and UV radiation can harm the skin’s structure, reduce
collagen formation, and speed up the aging process (called
photoaging). Photoaging indications, wrinkles, loss of elasticity,
and soft tissue abnormalities in the face are all treated with
AD-MSCs. AD-MSCs are used because of their migratory
activity, paracrine effects, and in vivo-ex vivo outcomes, such
as dermal fibroblast proliferation, antioxidant impact, and
reduction of matrix metalloproteinase (MMPs) (Gentile et al.,
2021b). In conclusion, considering the benefits of MSCs, these
cells have wide applications in pure form as well as combined
with biomaterials or other various therapies to treat diseases.
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