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Abstract: Oxidative stress is a critical condition derived from the imbalance between the generation of reactive oxygen

species and the sophisticated network of antioxidant mechanisms. Several pollutants and environmental factors can affect

this system through connected mechanisms, indirect relationships, and cascade effects from pre-transcriptional to

catalytic level, by either enhancing intracellular ROS formation or impairing antioxidant defenses. This review

summarizes the current knowledge on the pro-oxidant challenges from emerging environmental stressors threatening

marine organisms, such as pharmaceuticals, microplastics and climate-related ocean changes. Emphasis will be placed

on oxidative pathways, including signaling proteins and transcription factors involved in regulation of antioxidant

responsiveness. Mechanistic insights and lack of knowledge will be pointed out by presenting single and combined

effects of multiple stressors, unravelling questions to be addressed by future research in marine ecotoxicology.

Abbreviations:

(AP1): Activator protein 1
(APIs): Active Pharmaceutical Ingredients
(ATP): adenosine triphosphate
(CAT): Catalase
(CBZ): Carbamazepine
(CYP450): Cytochrome P450
(DIC): Diclofenac
(ERK): extracellular signal-regulated kinase
(FLU): Fluoxetine
(GCLC): Glutamate-Cysteine Ligase Catalytic Subunit
(GPx): Glutathione peroxidases
(GR): Glutathione reductase
(GSH): Glutathione
(GST): Glutathione S-transferases
(JNK): c-Jun N-terminal kinase
(Keap1): Kelch Like ECH Associated Protein 1
(MAPK): Mitogen-activated protein kinases
(MPs): Microplastics
(NADPH): Nicotinamide adenine dinucleotide phosphate

(NPs): Nanoplastics
(Nrf2): NF-E2–related factor 2
(NF-kB): Nuclear factor kappa B
(NSAIDs): Non-Steroidal Anti-Inflammatory drug
(PA): polyamide
(PAH): Polycyclic aromatic hydrocarbon
(PAR): paroxetine
(PE): polyethylene
(PET): polyethylene terephthalate
(PLHC-1): Poeciliopsis lucida hepatocellular carcinoma
(PP): polypropylene
(PS): polystyrene
(PVC): polyvinylchloride
(RCS): reactive carbonate species
(RNS): Reactive nitrogen species
(ROS): Reactive oxygen species
(SAF-1): Sparus aurata Fibroblast-1
(SOD): Superoxide dismutase
(SSRIs): Selective Serotonin Reuptake Inhibitors
(Trx2): Thioredoxin 2
(TrxR): Thioredoxin reductases
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Introduction

The maintenance of redox status is crucial for aerobic
organisms, which are exposed to intracellular fluctuations of
ROS, derived either from their own metabolism or from the
external stimuli. Main sources of ROS formation include
electron transport chain of mitochondria, peroxisomal and
lysosomal functions, Fenton’s and Haber-Weiss’s reactions,
and activities of specific oxido-reductase enzymes like
monoamine oxidase, NADPH oxidase, xanthine oxido-
reductase, arachidonic acid and cytochrome P450 oxidase, as
well as inactivation of antioxidant enzymes and depletion of
free radical scavengers (Regoli and Giuliani, 2014; Halliwell
and Gutteridge, 2015). ROS have detrimental effects on
cellular molecules and structures, resulting in lipid
peroxidation, protein oxidation, DNA damage and unbalance
of intracellular redox status. On the other side, ROS also act
as signaling molecules, which trigger cytoprotective and
antioxidant responses to protect the cellular components
from oxidative damage and minimize their damaging effects
(Halliwell and Gutteridge, 2015; Sachdev et al., 2021).
Antioxidants include enzymes and nonenzymatic molecules
that neutralize ROS and other oxidant molecules (Tab. 1).

The generation of ROS is a mechanism common to many
environmental contaminants (e.g. trace metals, polycyclic
aromatic hydrocarbons, polychlorinated biphenyls,
halogenated compounds, dioxins) that, in addition, can also
inhibit the proper functioning of antioxidant system
(Benedetti et al., 2015). In this respect, investigations on
oxidative metabolism are largely used to examine the health
status of marine organisms, and their susceptibility toward

environmental conditions (Benedetti et al., 2015). Few
information is available on oxidative effects of emerging
stressors in the marine environment, which are attracting
great concern in the scientific community. Among these,
Active Pharmaceutical Ingredient, microplastics/nanoplastics
and CO2-related changes (ocean warming and acidification)
have a prevalent role.

The increasing occurrence of APIs in marine
environment is strictly related to the development of the
global pharmaceutical market and future projections suggest
this increment will continue given the human population
aging and growth (IQVIA, 2019). Despite being
characterized by different environmental sources and
distribution pathways, wastewater treatment plants have
been identified as a major route for APIs release in aquatic
systems (Ojemaye and Petrik, 2019). Moreover, the
numerous uses of plastic and its low degradation rates have
led to the accumulation of various sizes of plastic in the
marine environment (Sorensen and Jovanović, 2021). The
release into the sea occurs through a variety of pathways,
that include deliberate or accidental direct inputs from land-
and-sea-based sources and indirect inputs from land via
rivers, drainage, sewage systems, atmosphere (UNEP, 2016).
Nonetheless, APIs and plastics are released in oceans that
are facing deep physical and chemical changes driven by the
continuous emissions of anthropogenic CO2 in the
atmosphere: since the beginning of the industrial revolution,
oceans have warmed by 0.7°C and seawater pH decreased of
0.1 units on a global scale, due to the absorption of almost
30% of anthropogenic CO2 (IPCC, 2013); during this
century, these changes are projected to continue and intensify.

TABLE 1

Function of the main non-enzymatic and enzymatic antioxidants

Non-enzymatic antioxidants

Reduced glutathione Cytosolic scavenging of ROS (1O2, O2-, HO•) and reactive nitrogen species; Cofactor of glutathione-
dependent antioxidant enzymes

Ascorbic acid, vit. C Cytosolic scavenging of ROS (H2O2, O2-, HO•, lipid peroxides)

α-Tocopherol, vit. E
Carotenoids

Membrane-bound scavenging of ROS (1O2, peroxides), protection of cell membrane from lipid peroxidation

Antioxidant and antioxidant-related enzymes

Superoxide dismutase Conversion of superoxide anion (O2-) to hydrogen peroxide (H2O2)

Catalase Reduction of H2O2 to H2O

Glutathione peroxidases Reduction of H2O2 and lipid peroxides

Peroxiredoxins Reduction of H2O2, lipid peroxides and peroxynitrite

Thioredoxin Reduction of oxidized cysteine residues

Thioredoxin reductase Regeneration of reduced thioredoxin

Glutathione reductase Reduction of oxidized glutathione (GSSG) to reduced form (GSH)

Glutathione S-transferases Conjugation of GSH to organic chemicals, reduction of lipid peroxides

NAD(P)H:quinone
oxidoreductase

Reduction of quinones

Heme oxygenase Degradation of heme, reduction of O2- and other ROS

Glutamate cysteine ligase First step of glutathione synthesis

Glutathione synthetase Second step of glutathione synthesis
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Despite the subtle occurrence of these emerging stressors, they
impact the environment on a global scale, modulating, alone or
interacting with other stressors, several biological processes. This
review summarizes the current knowledge on the oxidative effects
of such new challenges in marine organisms, with particular
focus on signaling pathways, regulation mechanisms and
interactions between different stressors.

Redox Metabolism Modulation by Residues of Active
Pharmaceutical Ingredients

The widespread occurrence of APIs in marine and coastal
areas represents a serious environmental issue due to the
potential long-term deleterious consequences on non-target
species (Almeida et al., 2020; Mezzelani et al., 2018a;
Shi et al., 2019; Zhang et al., 2020). These heterogenous
chemicals (~4000 compounds) are specifically designed to
be active on living cells at very low concentrations. Since
biological targets of APIs (e.g., transporters, receptors or
enzymes) are evolutionarily and functionally conserved
across the animal kingdom, marine organisms are exposed
to the risk of these new typology of environmental stressors
(Almeida et al., 2020; Zhang et al., 2020). Antibiotics,
synthetic steroids, antinflammatories, antidepressants,
antiepileptics, cardiovascular and lipid regulating agents are
considered as the most environmentally relevant APIs.
Indeed, field investigations have documented their
ubiquitous presence in water column, sediments and also in
tissues of marine species (Martínez-Morcillo et al., 2020;
Mezzelani et al., 2020; Moreno-González et al., 2016;
Ojemaye and Petrik, 2019; Wolecki et al., 2019). Laboratory
experiments contributed to demonstrate their role as
promoters of molecular and biochemical changes, which
might finally affect organismal physiological health status
(Almeida et al., 2020; Bebianno and Gonzalez-Rey, 2015;
Kovalakova et al., 2020; Mezzelani et al., 2018a,b; Zhang et
al., 2020). APIs can act as enhancers of ROS production
through the direct induction of the biotransformation
pathway of CYP450, involved in the oxidative metabolism
of numerous endogenous and exogenous compounds
including several typologies of pharmaceuticals (Burkina et
al., 2015; Mezzelani et al., 2018a,b; 2021). Under basal
condition the ROS are generated in situ when CYP450
reacts with the substrate. However, excessive ROS
production during induction results in uncoupling of the
CYP450 cycle, leading to the increase of oxidative pressure
(Ghosh et al., 2015). The exposure of liver slices of Atlantic
cod (Gadus morhua, Linnaeus, 1758) to the synthetic steroid
17α-ethinylestradiol EE2 enhanced cyp1a gene transcription
(reviewed by Burkina et al., 2015), while in vitro studies on
fish PLHC-1 cells exposed to the SSRIs, FLU, PAR and
fluvoxamine revealed the increase of CYP450 activity
demonstrating its responsiveness also at the catalytic level
(Burkina et al., 2015); similarly, more elevated CYP450
activity was measured in hepatic microsomes of
Dicentrarchus labrax (Linnaeus, 1758) exposed to the
NSAIDs DIC (Burkina et al., 2015). Noteworthy, although
the CYP450 biotransformation metabolism in marine
invertebrates still needs to be fully elucidated, transcriptional
changes of phase I-related genes were observed in bivalves

Mytilus galloprovincialis (Lamarck, 1819) and Ruditapes
philippinarum (Adams & Reeve, 1850) exposed to
environmental levels of NSAIDs (cyp1a) and to the
antiepileptic CBZ (cyp4f8, cyp3a2, cyp3a29) (Mezzelani et
al., 2018a,b; 2021). The hypothesis that APIs can unbalance
organismal redox homeostasis was further corroborated by a
wide array of cellular damages measured in marine
invertebrates: exposure to NSAIDs, SSRIs, CBZ and
cardiovascular compounds was reflected by the significant
increase of peroxidation products like lipofuscin and
malondialdehyde in digestive gland of M. galloprovincialis,
R. philippinarum, Scrobicularia plana (da Costa, 1778) and
Venerupis decussata (Linnaeus, 1758) (Almeida et al., 2020;
Franzellitti et al., 2014; Freitas et al., 2016; Hampel et al.,
2017, Mezzelani et al., 2018a, 2021; Munari et al., 2014).
Oxidative stress and ROS production lead to the activation
of several signaling pathways involved in cell protection. In
this respect, Nrf2-Keap1 modulates cytoprotective responses
to oxidative stress, regulating the synthesis of antioxidant
defenses to minimize oxidative damages (Espinosa-Diez et
al., 2015). Although detailed mechanistic studies in marine
species are limited, various investigations demonstrate the
activation of Nrf2-Keap1 pathway following APIs exposure
(Almeida et al., 2020; Bebianno and Gonzalez-Rey, 2015;
Mezzelani et al., 2018a,b; Ruiz et al., 2020; Wang et al.,
2020a). In the fish species Mugilogobius abei (Jordan &
Snyder, 1901), the widely used NSAIDs aspirin, caused a
transient downregulation of Nrf2-Keap1-related genes
expression (nrf2, keap1, gclc, gst, sod, cat, trx2, and trxr),
followed by their induction throughout 7 days-exposure; at
catalytic functional level a significant enhancement of
related enzymatic activities (GPx, GST, SOD, CAT) and
GSH levels were paralleled to the reduction of lipid
peroxidation products (Wang et al., 2020a). Conversely,
limited variations in nrf2, sod and cat gene expression were
observed in Sparus aurata (Linnaeus, 1758) cell line (SAF-1)
exposed to CBZ (Ruiz et al., 2020), although the complex
relationships between transcriptional and catalytic levels of
antioxidant defenses do not allow to exclude the modulation
of such cytoprotective responses at functional level (Regoli
and Giuliani, 2014). In this respect, variations of antioxidant
enzymes were often measured in response to APIs,
highlighting species-specific, dose and compound-dependent
trends (Almeida et al., 2020; Bebianno and Gonzalez-Rey,
2015; Mezzelani et al., 2018a,b). Adults of S. aurata exposed
to the antibiotic erythromycin, showed inhibited activities of
GPx and induction of GR (Rodrigues et al., 2019), while
bivalve S. plana and the polychaete Diopatra neapolitana
(Delle Chiaje, 1841) exhibited significant modulation of
SOD, CAT and GST activity in response to CBZ (Freitas et
al., 2016). Induction of SOD, CAT, GST was reported in
mussels M. galloprovincialis exposed to the antinflammatory
DIC (Almeida et al., 2020; Bebianno and Gonzalez-Rey,
2015), while various bivalves species (M. galloprovincialis,
Perna perna, Linnaeus, 1758 and R. philippinarum)
highlighted biphasic variations of SOD, CAT, GR and GPx
and the induction of GST in response to the antidepressant
FLU (reviewed by Mezzelani et al., 2018a). Among the large
number of pathways regulating the perturbation of redox
homeostasis (Fig. 1), the cooperation between NF-kB, AP1
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and MAPK cascade was shown to be an effective early
cytoprotective response to oxidative stress (Espinosa-Diez et
al., 2015). Transcriptional responses revealed enhanced
mRNA levels of nf-kb gene in Mytilus spp. treated with
environmentally realistic concentrations of various NSAIDs,
while NF-kB pathways was significantly suppressed in the
bivalve Tegillarca granosa (Linnaeus, 1758) exposed to the
antidepressant FLU (Shi et al., 2019; Mezzelani et al., 2018a).

Microplastics/Nanoplastics and Oxidative Stress in Marine
Organisms

Over the last decade, field studies showed the constant presence
of MPs in superficial seawater, along water column, in
sediments, beaches and organisms worldwide (Cole et al.,
2011). MPs include any synthetic solid particle or polymeric
matrix, consisting of items ranging from 1 μm to 5 mm that
are manufactured to be of such microscopic dimensions, or
deriving from the weathering and fragmentation of larger
plastics (Bessa et al., 2019). With the advent of modern
analytical techniques and detection methods, most recent
studies have observed and reported plastic debris to the nano-
scale (Alimba and Faggio, 2019). MPs/NPs in the oceans exist
in a variety of dimensions, shapes (e.g., fragments, films,
sphere, fibers), colors and polymers with different density,
being PE, PS, PVC, PP, PET and PA the most frequently
found (Paul-Pont et al., 2018). MPs/NPs affect all marine taxa
and life stages, and observed interactions can occur via
adhesion, absorption, ventilation and specially ingestion, that
lead to accumulation and translocation within tissues and cells
(Lusher, 2015). From an ecotoxicological perspective, MPs

have the peculiar characteristic to combine a physical stress
with a chemical challenge (Pittura et al., 2018). The chemical
impact is mostly related to additives present in the plastic
from manufacturing, as well as, to the environmental
contaminants which can be adsorbed by the hydrophobic
nature and high surface-to-volume ratio of MPs/NPs (Atugoda
et al., 2021). Pollutant-plastic interaction depends on
properties of both MPs/NPs and chemical contaminants and
can be modulated by the surrounding environmental
conditions of pH, salinity and temperature (Menéndez-Pedriza
and Jaumot, 2020). There is an active debate regarding the
relevance of adsorption of pollutants on MPs/NPs and their
possible transfer to marine organisms due to the variability of
experimental results (Elizalde-Velázquez et al., 2020).

Although the ecotoxicological effects of MPs/NPs are
complex to be elucidated, several studies suggested oxidative
stress as an important mechanism underneath microplastics
toxicity (Hu and Palić, 2020). The first evidence of
disturbance in redox homeostasis was the increase of
intracellular ROS levels observed in rotifers (Brachionus
koreanus, Hwang, Dahms, Park & Lee, 2013) (Jeong et al.,
2016), crustaceans (Tigriopus japonicus, Mori, 1938 and
Artemia salina, Linnaeus, 1758) (Choi et al., 2020; Suman et
al., 2020), bivalves (Mytilus spp. and T. granosa) (Paul-Pont
et al., 2016; Shi et al., 2020), and fishes (Oryzias melastigma,
McClelland, 1839) (Kang et al., 2021) exposed to commercial
PS-spheres, and in the sea urchin Paracentrotus lividus
(Lamarck, 1816) exposed via diet to PET-MPs of irregular
shape and size (Parolini et al., 2020). Given the evidence that
MPs/NPs can pose an oxidative challenge to marine
organisms, main mechanisms can be supposed (Fig. 2).

FIGURE 1. Main APIs-mediated ROS formation and scavenging pathways.
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Similar to other environmental stressors, MPs/NPs can
trigger ROS production through damage to mitochondria
(Yang et al., 2020), or increasing responses of the immune
system during attempts of the cell to neutralize potentially
infectious foreign particles (Hu and Palić, 2020; Pittura et
al., 2018; Tang et al., 2018, 2020; Sıkdokur et al., 2020). In
addition, chemical additives leaching from plastics can
further contribute to ROS formation (Hu and Palić, 2020;
Yang et al., 2020). Oxidative challenge of MPs/NPs exposure
was extensively supported by significant changes in
antioxidant defenses (i.e., CAT, SOD, GST, GPx and GSH)
both at catalytic and transcriptional level and by the onset
of oxidative damages to lipids, proteins and DNA (reviewed
in Trestrail et al., 2020, Kim et al., 2021, Gonçalves and
Bebianno, 2021), that was even observed after exposures to
environmentally realistic concentrations of MPs (Hariharan
et al., 2021) and persistent also after a period of depuration
(Hariharan et al., 2021; Capó et al., 2021). These effects
suggest that MPs/NPs, as other pro-oxidant stimuli, can
activate expression of antioxidant genes via the Nrf2-
dependent mechanism. The up-regulation of nrf2 was
measured in the head-kidney leucocytes isolated from the
gilthead seabream S. aurata after exposure to PE- or PVC-
MPs (Espinosa et al., 2018). Since no responses of
antioxidant system occurred at biochemical level, the
authors hypothesized a limited oxidative challenge on Nrf2
of seabream. In the copepod Paracyclopina nana (Smirnov,
1935) a positive correlation was observed between
intracellular ROS generation and phosphorylation of ERK
and p38 kinase after the exposure to PS-microbeads,

supporting a defense mechanism against microplastic-
induced oxidative stress via the MAPK/Nrf2 pathway (Jeong
et al., 2017). An increased phosphorylation of kinases, in
particular p38 and JNK, after exposure to PS-microbeads
was also shown in the monogonont rotifer B. koreanus,
along with the induction of antioxidant enzymes, further
confirming that MAPK-activating proteins are involved in
signal transduction modulating the oxidative stress response
(Jeong et al., 2016). In both P. nana and B. koreanus, the
activation of MAPK pathway was influenced by the particle
size, and the nanosized PS-beads caused higher
phosphorylation of p38 MAPKs when compared to 6 μm
particles (Hu and Palić, 2020). The transcriptomic signal of
JNK pathway was activated also in the scleractinian coral
Pocillopora damicornis (Linnaeus, 1758), along with
increased activities of CAT and SOD enzymes, in response
to acute exposure to elevated concentrations of 1 µm PS-
MPs (Tang et al., 2018). Based on the limited available
information, MAPKs pathways might play a synergistic role
with Nrf2-Keap1 in the response to oxidative stress induced
by MPs/NPs in marine organisms.

Ocean Changes as Sources of Oxidative Imbalance

Ongoing ocean changes, caused by the increasing
anthropogenic CO2 emissions, can represent a source of
oxidative imbalance for marine organisms (Fig. 3). As
alteration of environmental characteristics reaches or even
exceeds the limits of homeostatic response, a number of
cellular processes can reflect organisms stress-response

FIGURE 2. Main MPs- and NPs-mediated ROS formation and scavenging pathways.
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(Tomanek, 2015). Detailing the extensive network of
relationships between environmental changes, oxidative
stress and individual components of the antioxidant
network is beyond the scope of this review. However, the
current trends of ocean warming and the frequent
occurrence of extreme-temperature events (marine
heatwaves) are certainly oxidative challenges for marine
species. Thermal stress can directly boost the production of
ROS at cellular level through increased metabolic rate and
progressive mitochondrial uncoupling (Pörtner et al., 1999;
Thoral et al., 2021): a positive relationship between
temperature and ROS production has been demonstrated in
either isolated mitochondria or in vivo studies on marine
invertebrates and vertebrates (Abele et al., 2002; Heise et al.,
2003; Keller et al., 2004; Nash et al., 2019; Okoye et al.,
2019; Paital and Chainy, 2014). Oxidative challenge due to
thermal stress in bivalves and fishes has been further
evidenced by the Nrf2-dependent increase of antioxidants
such as SOD, CAT, GPx, GR, GST, GSH, and the onset of
oxidative damages as lipids peroxidation, loss of DNA
integrity, nuclear abnormalities (Feidantsis et al., 2020a;
Han et al., 2020 and references therein; Matozzo et al., 2013;
Velez et al., 2017). The thermal range of each species plays a
fundamental role in determining whether increased
temperature elicits the activation of antioxidant responses,
possibly hampered by overwhelming heat-mediated protein
damage at temperatures close or above the tolerated limit
(Madeira et al., 2013, 2016; Tomanek, 2015 and references
therein). The proteome of two Mytilus congeners
differentially adapted to thermal stress showed diverse
responsiveness toward acute heat stress (Tomanek, 2014):

the less tolerant species reduced aerobic metabolic pathways
to overcome the limited chaperones levels and antioxidant
responsiveness compared to the more tolerant species.
Despite the common mechanism of regulation through the
Nrf2-Keap1 mediated pathway, antioxidant defenses often
exhibit asynchronous responses to thermal stress (Han et al.,
2020; Klein et al., 2017; Madeira et al., 2013, 2016; Nardi et
al., 2017; Nardi et al., 2018b). Several factors contribute to
oxidative regulation, including additional protective and/or
compensative mechanisms: proteomic studies highlighted
depression of arachidonic acid metabolism, decreased
abundance of mitochondrial complexes, increased heat-
shock proteins, upregulation of Toll-like receptor signalling
pathway in response to temperature-mediated oxidative
stress (Li et al., 2016; Tomanek, 2015 and references therein;
Zheng et al., 2019). Tissue-specific effects and seasonal-
related sensitivity toward thermal stress have also been
highlighted: in M. galloprovincialis the effects of increased
temperature at transcriptional and catalytic levels differed
between digestive and respiratory tissues and showed
diverse magnitude and thresholds of activation between
summer and winter (Feidantsis et al., 2020b; Giuliani et al.,
2020; Nardi et al., 2017; 2018b). Only a few studies focused
on the role of Nrf2-Keap1 pathway in the antioxidant
responsiveness toward thermal stress: nrf2 and antioxidant
genes transcription was not altered in Trematomus
bernacchii (Boulenger, 1902) adults after 14 days
acclimation to higher temperature (Giuliani et al., 2021) and
a correlation between thermal stress and nrf2 transcription
was not evidenced during any stage of development in
embryos of G. morhua (Skjærven et al., 2013). Mechanistic

FIGURE 3. Main temperature- and pH/CO2-mediated ROS formation and scavenging pathways.
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studies are thus still needed to unravel the main actors and
regulators of cellular responsiveness toward thermal stress
and transfer this knowledge to whole organisms physiology.

Ocean acidification is another well recognized challenge
(Pörtner, 2008; Tomanek, 2014) which, beside the effects on
shell formation-dissolution in marine calcifiers, can affect
several biological processes of cellular homeostasis (Tomanek,
2014): onset of cellular hypercapnia and acidosis (decrease of
pH) can impact oxygen transport, ion-exchange rates and
mitochondrial functioning, leading to increased oxidative
stress conditions (Haider et al., 2016; Pörtner, 2008;
Tomanek, 2015; Wang et al., 2020b). Three main
mechanisms have been hypothesized by Tomanek et al.
(2011) to explain acidification-mediated pro-oxidant
challenge in marine organisms: i) reactions between cellular
CO2 and ONOO- can generate secondary radicals, such as
reactive carbonate, oxygen and nitrogen species; ii) in
organisms with limited capacity of acid-base regulation, the
lowering of intracellular pH will negatively affect the
mitochondrial electron transport chain, resulting in increased
electron slip and ROS production; iii) altered intracellular pH
may also facilitate the release of chelated trace metals, like
iron and copper which catalyse Fenton reaction and hydroxyl
radical production. Experimental studies highlighted
increased ROS production under hypercapnic stress (Haider
et al., 2016; Wang et al., 2020b), and pro-oxidant effects have
been confirmed by several laboratory and field conditions
with down- or up-regulation of antioxidant defenses at
transcriptional, proteomic and functional level (Cao et al.,
2018; de Marchi et al., 2019; Matoo et al., 2013; Munari et al.,
2018; Nardi et al., 2018a; Ricevuto et al., 2015; Tomanek
et al., 2011). Similarly to what is described for temperature-
mediated oxidative pressure, the responsiveness of
antioxidant defenses toward reduced-pH/high-CO2 is highly
influenced by other factors, including species-specific
sensitivity and onset of compensation mechanisms, at least
within a limited range of acidification: early increase of ROS
in Crassostrea gigas (Thunberg, 1793) exposed to reduced pH
were counteracted in long-term exposure by physiological
adjustments supported by the up-regulation of calcium
binding proteins and calmodulins (Wang et al., 2020b). Also
in M. galloprovincialis long-term exposure to acidification
determined up-regulation of genes related to calcium
homeostasis, calmodulins and calcium signalling pathways,
causing a lower efficiency of antioxidant enzymes and
accumulation of lipid peroxidation products (Mezzelani et al.,
2021). Changes of acid-base balance in Hyas araneus
(Linnaeus, 1758) were coupled with higher metabolism,
increase of antioxidant defenses, and more pronounced
responsiveness toward moderate rather than high
hypercapnia (Harms et al., 2014); the explanation for these
shifts was hypothesized to support indirect oxidative pressure
due to high CO2, causing energy imbalance and species-
specific limits of stress tolerance. As already described for
thermal stress, sensitivity toward high-CO2/reduced-pH was
demonstrated to vary between investigated tissues and
seasons, with non-synchronous effects at transcriptional and
catalytic levels (Giuliani et al., 2020; Nardi et al., 2017,
2018b). Antioxidant defenses regulation mechanisms in
response to CO2-mediated oxidative stress still need to be

fully elucidated and integrated within a physiological
perspective of whole organism fitness.

In this context, since ocean warming and acidification are
concomitant changes driven by the same cause, the respective
interactions and influence on biological processes are of
outmost relevance to understand the implications for
organisms health. Overall, it has been extensively suggested
that the reduction of seawater pH could narrow the thermal
window of organisms reducing their capability to cope with
thermal stress, especially in lower marine invertebrates that
lack acid-base regulation systems (Pörtner et al., 2017;
Pörtner, 2008): thus the onset of oxidative disturbance due
to thermal stress could be disclosed earlier. Despite this
general assumption, meta-analysis studies on the effects of
interactions between temperature and pH and on the nature
of these interactions, revealed that the interplay between
thermal and pH stress is rather than linear and easily
depictable, but constrained by physiological aspects
regarding tested life-stages and considered taxas (Kroeker et
al., 2013; Lefevre, 2016; Przeslawski et al., 2015).
Nonetheless, previous studies from our laboratory suggested
that the tolerance of marine organisms to concomitant
acidification and warming may be subjected to either
additive or antagonistic effects of the two stressors,
depending on the level of biological organization considered
and on the physiological function of the analysed organ
(Giuliani et al., 2021; Nardi et al., 2017; 2018a,b; Benedetti
et al., 2016). As a corollary, as already demanded for single
stressors, mechanistic investigations of the interactive effects
of ocean warming and acidification on oxidative pressure
and antioxidant responsiveness would deeply increase our
knowledge and would be very relevant in the context of
finding a unifying principle.

Combined Oxidative Challenge from Emerging Multiple
Stressors

Challenges for marine organisms typically occur and act in a
multi-stressors context which may result in a plethora of
unexplored additive, synergistic or antagonistic effects
(Horton and Barnes, 2020). From a biological and
environmentally realistic perspective, an even limited
disturbance directly exerted by a single stressor may
indirectly alter the susceptibility toward a secondary stressor
(Kroeker et al., 2017). In this respect, effects of APIs have
been frequently modulated in marine organisms under
projected ocean changes scenarios (among others Freitas et
al., 2016, 2019; Almeida et al., 2018, 2021; Munari et al.,
2018; Mezzelani et al., 2021). Lipid peroxidation due to
DIC-exposure was enhanced in mussels M. galloprovincialis
exposed at higher temperature despite the activation of
antioxidant defenses (Freitas et al., 2019), while this damage
was not observed after the induction of antioxidant enzymes
in R. philippinarum co-exposed to CBZ and temperature
stress (Almeida et al., 2021). On the other hand, CBZ and
reduced pH inhibited CAT activity and interactively
increased lipid peroxidation in S. plana, along with negative
effects on electron transport activity (Freitas et al.,
2016). Under a similar exposure scenario, a synergistic
increment of lipofuscin was observed in M. galloprovincialis
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(Mezzelani et al., 2021), in which, despite the lack of antioxidants
variations, transcriptomic analyses revealed a conspicuous
modulation of several pathways possibly contributing or
related to oxidative stress (i.e., ATP generation, energy
derivation by oxidation of organic compounds, apoptotic
processes and calcium-mediated signalling). Changes in water
pH and/or temperature have also the potential to influence the
impact of MPs on organisms, modifying both the intrinsic
toxicity of polymers and the bioavailability of chemicals
adsorbed on MPs, like pharmaceuticals (Horton and Barnes,
2020; Menéndez-Pedriza and Jaumot, 2020). Interactions
between MPs, temperature/pH and APIs were mostly
investigated in freshwater organisms (Jaikumar et al., 2018;
Kratina et al., 2019; Weber et al., 2020; Guilhermino et al.,
2018; Zhang et al., 2019; Schmieg et al., 2020), while little is
known for marine species concerning the combined
modulation of oxidative pathways.

The effects of PE-MPs on the redox homeostasis of the
marine fish Pomatoschistus microps (Kroyer, 1838) were
influenced by temperature elevation, with a significant
reduction of GST activity and slight effects on lipid
peroxidation under temperature increase from 20°C to 25°C
(Ferreira et al., 2016; Fonte et al., 2016). Limited interactive
effects of PS-MPs and acidification were reported on
antioxidant enzymes of Mytilus coruscus (Gould, 1861) by
Wang et al. (2020c), while PET-MPs and acidification co-
modulated antioxidant enzymes and lipid peroxidation in
M. galloprovincialis (Provenza et al., 2020). Interactions
between microplastics and pharmaceuticals have been
mainly investigated on the sorption/desorption processes
under various environmental conditions (Atugoda et al.,
2021; Vieira et al., 2021), whereas the possible role of MPs
on APIs bioaccumulation, metabolization, and toxicity in
marine organisms is poorly explored (Santos et al., 2021).
The impact of MPs-antidepressant co-exposure on the blood
clam T. granosa, revealed a synergistic effect of sertaline and
30 µm PE-microbeads on haemocytes ROS production and
lipid peroxidation (Shi et al., 2020). The presence of MPs
may facilitate the internalisation of APIs through the
“Trojan horse” effect, leading to aggravated toxicity (Zhang
and Xu, 2020). The interactive effect on oxidative stress in
T. granosa was further exacerbated by nanoscale 500 nm
PE-beads with a synergistic immuno-toxic effect,
highlighting a size-dependent interaction between plastic
and sertaline (Shi et al., 2020). Similarly, M. galloprovincialis
treated with PS-NPs in combination to the anticonvulsant
CBZ revealed synergistic effects on biomarkers of
neurotoxicity, carbohydrate metabolism, immune responses
and DNA damage, and a slight impairment of oxidative
metabolism (total oxidant status, total antioxidant capacity
and levels of peroxidation products) (Brandts et al., 2018).
The increased toxicity of NPs-APIs compared to MPs-APIs
may also arise from a higher amount of pollutants carried
and delivered into the organisms due to the larger specific
surface area of NPs compared to MPs (Brandts et al., 2018;
Shi et al., 2019). Ultimately, short-term exposure of
P. microps juveniles to PE-microspheres, antibiotic
cefalexine and temperature-stress revealed significant
interactions on redox homeostasis, as highlighted by the
onset of lipid peroxidation (Fonte et al., 2016).

Since oxidative balance can be altered by emerging
stressors, acting either alone or in combination, a relevant
challenge for marine ecotoxicology is to clarify mechanistic
pathways of interaction behind such functional effects, to
predict and prevent adverse outcomes affecting higher levels
of biological organization.
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