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Abstract: Metabolic reprogramming and immunologic suppression are two critical characteristics promoting the

progression of head and neck squamous cell carcinoma (HNSCC). The integrative analysis of all the metabolism-

related genes (MRGs) in HNSCC is lacking and the interaction between the metabolism and the immune

characteristics also requires more exploration to uncover the potential mechanisms. Therefore, this study was

designed to establish a prognostic signature based on all the MRGs in HNSCC. Genes of HNSCC samples were

available from the TCGA and GEO databases while the MRGs were retrieved from a previous study. Ultimately 4

prognostic MRGs were selected to construct a model possessing robust prognostic value and accuracy in TCGA

cohorts. The favorable reproducibility of this model was confirmed in validation cohorts from GEO databases. The

risk score calculated by this model was an independent prognostic factor that further classified these HNSCC patients

into high-/low-risk groups. GSEA analyses and somatic mutations indicated the low-risk group could activate several

anti-tumor pathways and possessed lower TP53 mutation. The results of ESTIMATE, single-sample GSEA,

CIBERSORT, and some immune-related molecules analyses suggested the low-risk group exhibited lower metabolic

activities and higher immune characteristics. The Spearman correlation test implied most metabolic pathways with

tumor-promoting function were negatively correlated with the immune activity, indicating a plausible approach of

combining the anti-metabolism and the immunotherapy drugs in the high-risk group to enhance therapeutic effects

than applied separately. In conclusion, this prognostic signature linking MRGs with the immune landscape could

promote the individualized treatment for HNSCC patients.

Introduction

Head and neck squamous cell carcinomas (HNSCC) have a
global annual incidence of approximately 600,000 cases,
making it the sixth leading cause of cancer-related death
(Ferlay et al., 2015). Despite the comprehensive alternatives
for diagnosing and treating HNSCC, its prognosis remains
far from optimal with a five-year survival rate of less than
50% (Bose et al., 2013). Given that HNSCC is a
heterogeneous disease, patients within the same TNM stage
might exhibit different molecular features and could benefit
from individualized therapies (Leemans et al., 2018; Mroz
et al., 2015). Therefore, to improve the clinical outcomes of

HNSCC patients, it is of great value to explore more reliable
prognostic biomarkers for distinguishing different risk
patients from other perspectives serving as a supplement to
the conventional TNM cancer staging.

Compelling evidence has suggested that sequencing
technology combined with data mining are handy tools for
building powerful prognostic models and classifying
different subgroups in various cancers (Hu et al., 2020; Zhao
and Cui, 2019; Chen et al., 2019). Considering the high
energy and molecular demands of cancer cells, metabolic
reprogramming plays a vital role in cancer progression and
could contain numerous clinical prognostic indicators
(Hsieh et al., 2019). Therefore, intensify the understanding
of metabolic mechanisms in HNSCC possesses enormous
benefits for exploring novel anti-cancer treatments. Some
previous studies used glycolysis-related genes or
glutaminolysis-related genes to identify prognostic index in
HNSCC (Liu and Yin, 2020; Okazaki et al., 2019). However,
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the integrative analysis of all the metabolism-related genes
(MRGs) in HNSCC has not been conducted yet. Consequently,
it is worth exploring all the MRGs with prognostic value in
HNSCC to identify novel therapeutic targets.

Biswas (2015) suggested that metabolic reprogramming
could also impact the immune functions of active immune
cells. In light of the crucial role of immune cells in cancer
progression, it is important to further study the correlation
between the metabolism and the immune characteristics in
HNSCC. Therefore, in this study, we constructed a
metabolism-related prognostic signature containing 4 MRGs
selected from all the MRGs in HNSCC and further classified
the patients into the high-/low-risk groups accordingly. We
also performed a multi-omics analysis on this gene classifier
to explore the difference between the high-/low-risk groups.
Finally, we investigated the correlation between the
metabolism and the immune characteristics in HNSCC.
These findings might advance the personalized diagnosis and
treatment in HNSCC.

Materials and Methods

Patient data extraction
Gene expression data and corresponding patient clinical data
for HNSCC were downloaded from The Cancer Genome
Atlas (TCGA) database (https://portal.gdc.cancer.gov/).
Altogether, 502 tumor tissues and 44 adjacent normal
tissues were embodied in the HNSCC cohort. Some patients
were excluded for not complying with the inclusion criteria
of having and surviving a primary tumor for more than 30
days. Eventually, 490 tumor tissues and 44 adjacent normal
tissues were included in this study. An external validation
series containing the GSE41613 and GSE65858 data set was
downloaded from the Gene Expression Omnibus (GEO)
database. The microarray data of GSE41613 were based on
the Affymetrix Human Genome U133 Plus 2.0 Array
platform and that of GSE65858 stemmed from Illumina
HumanHT-12 V4.0 expression beadchip. Tab. 1 exhibited
specific baseline information.

Development and validation of the metabolism-related prognostic
signature
The MRGs were obtained from the previous study (Possemato
et al., 2011). These MRGs were further filtered using genes
from the selected TCGA dataset and GEO datasets to pick
out those appearing simultaneously in all datasets. Then
these selected genes were analyzed by DESeq2 R package
with filter criteria of adjusted P < 0.05 and absolute log2-fold
change >1.5 to identify the differentially expressed
metabolism-related genes (DEMRGs) between HNSCC and
normal controls in TCGA datasets.

The correlation between the expression level of DEMRGs
and the patient’s overall survival (OS) was evaluated by the
univariate Cox analysis with P < 0.01 being considered as
statistically significant. Then these prognostic DEMRGs
were initially filtered using the least absolute shrinkage and
selection operator (LASSO) method. Subsequently, we used
bootstrapping (N = 1000) to further select the prognostic
DEMRGs with stable results during the 1000 repetitions by
the Cox regression analysis. The parameter for the Cox

regression analysis was the default parameters in the
‘Survival’ R package. These specific DEMRGs were finally
applied to construct a metabolism-related prognostic model
based on the Akaike information criterion (AIC) using the
stepwise multivariate Cox regression analysis. AIC is a well-
recognized means for measuring the goodness of fit of the
statistical models. AIC encourages the goodness of data
fitting and helps avoid overfitting in the meanwhile. The
priority model should be the one with the lowest AIC value.
Therefore, we constructed the final model based on AIC to
ensure the optimal goodness of fit of the established model.

The optimal cut-off point of the risk score calculated by
the above model was determined using the Survminer R
package to divide the patients into the high-/low-risk
groups. The survival rates of patients in the high-/low-risk
groups were measured utilizing the Kaplan–Meier survival
curve. The time-dependent receiver operating characteristic
(ROC) curves were drawn to assess the sensitivity and
specificity of the model. Dataset GSE41613 with 96 oral
squamous cell carcinoma patients and GSE65858 with 251
HNSCC patients were selected as the validation cohort. The
same procedures were operated in these two external
datasets to investigate whether the established model could
effectively predict survival in HNSCC.

The metabolism-related signature as an independent prognostic
factor
Univariate and multivariate Cox proportional hazards models
were applied to estimate the hazard ratios (HRs) and 95%
confidence intervals (CIs) for the risk of HNSCC mortality.
A stratified multivariate Cox regression analysis based on

TABLE 1

Clinicopathological characteristics of included patients

Characteristics

TCGA-HNSC GSE65858 GSE41613

Number of
cases (%)

Number of
cases (%)

Number of
cases (%)

Age

<60 218 (44) 146 (58) 50 (52)

≥60 272 (56) 105 (42) 46 (48)

Gender

Female 129 (26) 43 (17) 31 (32)

Male 361 (74) 208 (83) 65 (68)

Grade

G1 + G2 352 (72)

G3 + G4 119 (24)

unknown 19 (4)

Stage

Stages I + II 94 (19) 49 (20) 41 (43)

Stages III + IV 329 (67) 202 (80) 55 (57)

unknown 67 (14)

Vital status

Alive 301 (61) 168 (67) 46 (48)

Dead 189 (39) 83 (33) 50 (52)
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the risk status was also performed. Besides, given that the
human papillomavirus (HPV) status could influence the
gene expression, mutational profile, metabolic regulation,
and immune modulation of HNSCC, we further compared
the HPV status in the high-/low-risk groups to evade the
bias resulting from this potential confounding factor.

Somatic mutations and GSEA analysis
In light of gene mutation could drive tumor metabolic
reprogramming, we compared the somatic mutations
between different groups stratified by this metabolism-related
model to uncover potential mechanisms leading to distinct
prognosis. The somatic mutations data of HNSCC patients
were downloaded via the TCGAbiolinks and the data was
visualized by the “maftools” R package. In addition, we also
explored the activated signaling pathways between high-/low-
risk groups. To be specific, we applied the DEseq2 R package
to obtain an ordered list of genes and conducted the
subsequent Gene Set Enrichment Analysis (GSEA) by the
ClusterProfiler R package with adjusted P < 0.05.

Estimation of metabolism and immune characteristics as well
as their correlation
Scores of 26 metabolic pathways were retrieved from https://
choih.shinyapps.io/metabolicsignatures (Choi and Na, 2018).
Immune scores and stromal scores were calculated by applying
the ESTIMATE algorithm which can report the enrichment of
immune and stromal cell gene signatures (Yoshihara et al.,
2013). Moreover, the single-sample gene-set enrichment analysis
(ssGSEA) algorithm was adopted to quantify the relative
abundance of each cell infiltration in the HNSCC tumor
microenvironment (TME). The gene set for marking each TME
infiltration immune cell type was obtained from the study of
Charoentong et al. (2017) which demonstrated diverse human
immune cell subtypes such as CD8 T cell, activated dendritic
cell, macrophage, natural killer (NK) T cell, regulatory T cell,
and so on. Subsequently, the CIBERSORT analysis was
performed to estimate the fraction of the immune cell
infiltration. Additionally, the explorations of some immune-
related molecules including immune checkpoint genes, cytotoxic
effectors, and an “interferon-gamma (IFNG) signature” were
conducted in the high-/low-risk groups. Finally, the association
between metabolic pathways and immune cell infiltrations was
assessed by the spearman correlation test.

Results

DEMRGs in HNSCC
There were 2113 common MRGs in these selected datasets
(Fig. 1A). Further analysis in the HNSCC TCGA dataset
revealed 991 DEMRGs with 383 up-regulated and 608
down-regulated. Fig. 1B visualized the distribution of these
DEMRGs between HNSCC and normal controls. Fig. 1C
was the expression heatmap of these DEMRGs, in which
significantly up-regulated genes and down-regulated genes
were each represented by red and blue.

Construction and validation of a metabolism-related signature
A total of 55 possible prognostic DEMRGs were preliminarily
identified by univariate Cox analysis while 11 of them

remained after being filtered by LASSO (Fig. 2A). Ultimately,
4 DEMRGs (GRIA3, PYGL, HPRT1, and SLC23A1) were
selected after bootstrapping and they were applied to the final
prediction model by stepwise multivariate Cox regression
analysis. The imputed risk score from the metabolism-related
signature was calculated using the following formula:
(−0.38167 × expression level of GRIA3) + (0.31221 ×
expression level of PYGL) + (0.42102 × expression level of
HPRT1) + (−0.50125 × expression level of SLC23A1).
Patients were classified into the high-/low-risk groups
according to the optimal cut-off of their risk scores (Fig. 2B).
To be specific, patients with high risk tended to die earlier
than those with low risk (Fig. 2C). Fig. 2D presented the
survival heatmap, demonstrating GRIA3 and SLC23A1 to be
the protective MRGs that were highly expressed in the low-
risk group. On the contrary, PYGL and HPRT1 were highly
expressed in the high-risk group, standing for the risk-
associated MRGs. Kaplan–Meier curves for the high-/low-risk
groups were exhibited in Fig. 2E, implying that the high-risk
group had a poorer prognosis than the low-risk group. The
area under the curve (AUC) of the 3-year ROC curve was
0.702, suggesting good predictive performance for the 3-year
OS (Fig. 2F).

Similar analyses were conducted in other independent
HNSCC series obtained from GEO (GSE41613 and
GSE65858) to further validate the predictive value of this
metabolism-related signature and confirm its
reproducibility. The risk scores for 96 patients in the
GSE41613 dataset and 251 patients in the GSE65858 dataset
were imputed using the same formula as above.
Consistently, patients with higher risk showed poorer
prognosis in both the GSE41613 dataset (Fig. 3A) and the
GSE65858 dataset (Fig. 3B). What’s more, the sensitivity
and specificity evaluation of our metabolism-related
signature for the 3-year OS in GSE41613 and GSE65858 was
0.642 and 0.573, respectively (Figs. 3C and 3D). These
validation results of GEO datasets led to an identical
conclusion with the initial analysis of the TCGA dataset,
suggesting favorable reproducibility of this metabolism-
related signature in HNSCC.

The risk score of the metabolism-related signature was
independently associated with HNSCC mortality
As seen in Tab. 2, Cox proportional hazards models adjusted
for different variables indicated that patients with high risk
had significantly higher mortality (2.85 [2.07, 3.93], P <
0.0001 in Model I; 2.81 [2.03, 3.88], P < 0.0001 in Model II)
in comparison with those in the low-risk group. A stratified
multivariate Cox analysis was carried out to further verify
the robust relevance between the risk score of the
metabolism-related signature and the mortality of these
HNSCC patients. The results in Tab. 3 showed that the
high-risk score was associated with high mortality of
HNSCC in each subgroup (of age, sex, grade, and stage)
except for the subgroup of Stages I + II. No interactions
between risk score and other factors were found. Besides,
there was no significant difference in the relative
distribution of HPV (+) and HPV (−) between the
high-/low-risk groups (Suppl. Fig. S1). In other words, HPV
(+) tumors did not show enrichment in either population.
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The high-/low-risk groups with distinct somatic mutations and
signaling pathways
Somatic mutations were analyzed using TCGA database. The
TP53 mutation was significantly enriched in the high-risk
group. Mutations in CDKN2A, PLEC, CASP8, FAM135B,
AHNAK, NSD1, PKDH1L1, S1, and FAT3 also exhibited
different statuses in different risk groups (Fig. 4).

GSEA analysis discovered five significant KEGG
pathways and two hallmark pathways activated in the
low-risk group, including linoleic acid metabolism, drug
metabolism cytochrome P450, cell adhesion molecules
(CAMs), primary immunodeficiency, neuroactive ligand-
receptor interaction, allograft rejection, and KRAS
signaling DN (Fig. 5). Consequently, it is reasonable to
assume that the activation of these pathways could
elucidate the underlying mechanisms of the better
prognosis in the low-risk group from diverse aspects
including metabolism.

The high-/low-risk groups with distinct metabolic characteristics
Given that the prognostic model was constructed based on
metabolism-relevant genes, a feasible next step in delineating
the underlying mechanisms is to explore the metabolic
characteristics corresponding to different risk scores. As a result,
scores of 26 metabolic pathways were acquired from the
previous study while the subsequent analysis revealed a
significant correlation between high risk and high metabolic
characteristics. Glycolysis, glycogenolysis, glucose metabolism,
gluconeogenesis, pyruvate metabolism, carbohydrate
metabolism, steroid synthesis, amino acid (AA) metabolism,

protein metabolism, purine metabolism, pyrimidine
metabolism, ribonucleotide synthesis, mRNA metabolism,
RNA metabolism, and nitric oxide metabolism were all
higher in the high-risk group (Fig. 6). Similar results were
obtained in the GSE41613 dataset (Suppl. Fig. S2A) and
the GSE65858 dataset (Suppl. Fig. S3A).

The high-/low-risk groups with distinct immune characteristics
It was well accepted that metabolic reprogramming was
critically associated with the immune microenvironment, so
we further studied the immune characteristics of the
high-/low-risk groups. Results demonstrated that the
immune score and the stromal score of the high-risk group
were both lower than those of the low-risk group (Fig. 7A).

Since the immune scores between the high-/low-risk
groups were significantly different, the relative abundance of
each TME infiltrating cell was further investigated with
ssGSEA analysis. Accordingly, groups with different risks
exhibited distinct immune infiltration. Specifically, 16
immune cell populations (activated B cell, activated CD8 T
cell, activated dendritic cell, CD56 dim NK cell, eosinophil,
immature B cell, macrophage, mast cell, MDSC, monocyte,
NK cell, plasmacytoid dendritic cell, regulatory T cell,
T follicular helper cell, Type 1 T helper cell, and Type 17
T helper cell) showed higher abundance in the low-risk
group while CD56 bright natural killer cell showed higher
abundance in the high-risk group (Fig. 7B). What’s more,
the fraction of active immune cells like CD8+ T cell and
follicular helper T cell was higher in the low-risk group,
whereas the proportion of inactive immune cells like resting

FIGURE 1. Selection of differentially expressed metabolism-related genes (DEMRGs) between head and neck squamous cell carcinoma
(HNSCC) patients and adjacent non-tumor tissues.
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mast cell and naive CD4+ T cell was higher in the high-risk
group (Fig. 7C).

At last, the comparisons of some immune-related
molecules between the high-/low-risk groups were achieved.
Altogether, 32 immune checkpoint genes described in
previous studies (Cao et al., 2018; Yu et al., 2020) were
analyzed in this study and the results revealed that the
expression levels of 22 immune checkpoint genes were higher
in the low-risk group such as CTLA4, CD40, ICOS, TIGIT,
and so on (Fig. 7D). Besides, cytotoxic effectors (GZMA,
GZMB, GZMH, GZMK, and PRF1) and four out of six genes
in the IFNG signature (CXCL9, HLA-DRA, IDO1, and
IFNG) were higher in the low-risk group (Fig. 7E). Similar
results were obtained in the GSE41613 dataset (Suppl. Figs.
S2B–S2E) and the GSE65858 dataset (Suppl. Figs. S3B–S3E).

The correlation between the metabolism and the immune
characteristics
Given that the high-risk group demonstrated higher metabolic
activity and lower immune activity when analyzed separately,
we further explore the correlation between metabolic
pathways and immune cell infiltrations by the spearman
correlation test. Consistent with the above unilateral results,
most major metabolic processes promoting tumor
progression had significantly negative correlations with the
immune cells exerting antitumor function. For instance, the
high-risk group possessed higher activity of glycolysis as
well as lower infiltration of activated B cell, activated CD8 T
cell, and activated dendritic cell. Correspondingly, the
correlations between glycolysis and the above immune cell
infiltrations were significantly negative as expected (Fig. 8).

FIGURE 2. Construction of a metabolism-related signature in the TCGA dataset.
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Discussion

With the continuously updating understanding of molecular
heterogeneity inherent within HNSCC, emerging biomarkers
with prognostic value have been identified by genomic
expression analyses from diverse perspectives such as
transcription factors, lymph node metastases, radiomics, and
so on (Zhang et al., 2019; Huang et al., 2019b; Huang et al.,
2019a; Tonella et al., 2017; Chung et al., 2004). Considering
metabolic reprogramming as a hallmark of cancer, some
previous studies also constructed prognostic models based
on genes related to specific metabolic pathways (Liu and
Yin, 2020; Okazaki et al., 2019). To fully explore the
metabolism reprogramming in HNSCC, we expanded the
study scope to all the MRGs in HNSCC. Finally, a model

containing 4 MRGs with favorable prognostic value was
established using TCGA dataset and was further validated in
two independent GEO datasets. This prognostic model
could also serve as a gene classifier dividing the patients into
different risk groups with altered metabolism and immune
characteristics.

Among these 4 DEMRGs, solute carrier family 23
member 1 (SLC23A1) and glutamate ionotropic receptor
AMPA type subunit 3 (GRIA3) were highly expressed in the
low-risk group, indicating their potential roles of being
protective MRGs in HNSCC. Similar protective properties of
SLC23A1 also appear in gastric malignancy since SLC23A1
is a transporter mediating the electrogenic uptake of anti-
cancer agent ascorbic acid (Wu et al., 2017; Wright et al.,
2009). Nevertheless, overexpression of GRIA3 promotes the

FIGURE 3. External validation of the metabolism-related signature in the two independent GEO datasets.

TABLE 2

Relationship between risk score and overall survival of HNSCC

Outcome
Crude Model Model I Model II

HR (95%) P-value HR (95%) P-value HR (95%) P-value

Risk score

Low risk Reference Reference Reference

High risk 2.92 (2.12,4.02) <.0001 2.85 (2.07,3.93) <0.0001 2.81 (2.03,3.88) <0.0001
Note: Model I adjusted for age and sex. Model II adjusted for age, sex, grade and stage.

116 JIAYU ZHANG et al.



TABLE 3

Effect size of risk score and overall survival of HNSCC in each subgroup

Characteristic No. of participants HR (95%CI) P-value P for interaction

Age (year) 0.137

<60 218 3.77 (2.18, 6.52) <0.0001

≥60 272 2.30 (1.53, 3.46) <0.0001

Sex 0.103

Male 361 3.26 (2.21, 4.80) <0.0001

Female 129 2.03 (1.10, 3.74) 0.024

Grade 0.646

G1 + G2 352 2.71 (1.85, 3.97) <0.0001

G3 + G4 119 3.20 (1.60, 6.41) 0.001

Stage 0.381

Stage I + Stage II 94 1.85 (0.81, 4.19) 0.1429

Stage III + Stage IV 329 2.74 (1.84, 4.09) <0.0001
Note: Adjusted for age, sex, grade, and stage except for the subgroup variable.

FIGURE 4. Different somatic mutations in the high-/low-risk groups.

FIGURE 5. Gene Set Enrichment Analysis indicated distinct signaling pathways in the high-/low-risk groups.
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FIGURE 6. Boxplot
of 26 metabolic
pathways scores in
the high-/low-risk
groups (ns, non-
significant, *P <
0.05, **P < 0.01,
***P < 0.0001, ****P
< 0.0001).

FIGURE 7. (continued)
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FIGURE 7. Immune characteristics in the high-/low-risk groups (ns, non-significant, *P < 0.05, **P < 0.01, ***P < 0.0001, ****P < 0.0001).

FIGURE 8. Correlation between the metabolic pathways and the immune cell infiltrations.
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proliferation andmigration of pancreatic cancer (Ripka et al., 2010),
which seems to be contradicted with our results in HNSCC.
Therefore, more functional investigations of GRIA3 in various
cancers are necessary. The rest 2 DEMRGs act as risk-associated
MRGs for HNSCC in this study, namely hypoxanthine-guanine
phosphoribosyltransferase1 (HPRT1) and glycogen phosphorylase
L (PYGL). Consistently, HPRT1 is not only widely used to assess
cancer risk and determine possible carcinogens but also has the
potential to act as a cancer biomarker and neoantigen with its
overexpression leading to the dysregulation of nucleotide
synthesis and protein production in the malignant environment
(Townsend et al., 2018). Meanwhile, as a key role in glycogen
metabolism, PYGL is up-regulated in most tumors to sustain
cancer cell proliferation and is also identified as a novel p53
candidate target gene in various cancers as well as a metastasis-
related metabolic gene in prostate cancer (Chen et al., 2018;
Garritano et al., 2013; Favaro et al., 2012).

In this study, TP53 mutation was significantly higher in
the high-risk group, which is consistent with the tumor
suppressor role of TP53. Mutations of TP53 are the most
frequent among all the somatic genomic alterations in
HNSCC and have a significant correlation with poor
outcomes in HNSCC patients indicated by short survival time
and tumor resistance to radiotherapy and chemotherapy
(Zhou et al., 2016). Therefore, TP53 mutation might also
serve as an effective prognostic biomarker. GSEA analysis
indicates that several pathways with anti-tumor activities are
activated in the low-risk group, linoleic acid metabolism,
CAMs, and KRAS signaling DN for instance. Linoleic acid
has been identified as an anti-carcinogenic fatty acid with
anti-obesogenic effects and anti-atherosclerotic properties
(den Hartigh, 2019). CAMs are proteins that mediate cell-to-
cell adhesion and cell-to-extracellular matrix interactions,
which are essential to maintain homeostasis in healthy tissues
(Janiszewska et al., 2020). The downregulation of KRAS
signaling could also ubiquitously inhibit the activity of most
tumors (Sexton et al., 2019). These might partly explain why
low-risk patients exhibit a longer survival time.

The analysis results of 26 metabolic pathways reveal that
the high-risk group tends to exhibit higher activity in some
major metabolic processes such as glycometabolism, lipid
metabolism, and AA metabolism. Increased glucose uptake
and enhanced glycolysis are well-recognized hallmarks in
HNSCC to meet the energy demands of highly proliferating
cells (Yamamoto et al., 2017). Essential roles exerted by
specific lipids in promoting growth and metastasis of cancer
cells have been gradually unveiled in a myriad of research
(Beloribi-Djefaflia et al., 2016), and our team also defined a
3-lipid metabolism-related genes signature as a biomarker for
prognostic prediction in oral squamous cell carcinoma
previously (Hu et al., 2019). Besides, the serum levels of
specific amino acids such as valine, tyrosine, serine, and
methionine were higher in HNSCC patients (Yonezawa et al.,
2013). Therefore, tremendous efforts have been undertaken to
develop anti-cancer schemes by targeting these hyperactive
metabolic pathways in HNSCC with the hope of improving
therapeutic efficiency (Boroughs and DeBerardinis, 2015).

Accumulating evidence has revealed the close
relationship between metabolic characteristics and immune
cells (Biswas, 2015). Considering the vital roles of immune

landscapes in cancer progression and the immunosuppressive
state of HNSCC, it is necessary to explore the immune
microenvironment of different risk groups with different
metabolism characteristics (Kang et al., 2015). As we
expected, patients with low risk possess higher immune
activity. The evaluation of immune infiltration shows a higher
abundance of 16 immune cell populations in the low-risk
group, further accompanied by higher fractions of active
immune cells like activated B cell, activated CD8 T cell, and
so on. On the contrary, patients from the high-risk group
had higher proportions of inactive immune cells,
confirming the promotion role of immunosuppressive
status in HNSCC. Generally, the presence of abundant
tumor-infiltrating lymphocytes is related to the improved
prognosis due to immune activation (Canning et al., 2019).
In other words, the dysfunction of the T cell, impairment
of the NK cell activity, and a whole declination of the
lymphocyte counts could deteriorate the prognosis in
HNSCC patients (Solomon et al., 2018).

Immunotherapy provides a new option for the treatment
of HNSCC, while currently, only a small percentage of
patients respond well to immunotherapy (Oliva et al., 2019).
Targeting checkpoint pathways achieves anti-tumor
immunity in TME and encourages the development of
potential targets in immunotherapy such as CTLA-4, TIGIT,
ICOS, and CD40 (Marin-Acevedo et al., 2018). Moreover, as
a critical role for host defense and tumor surveillance, IFNG
can enhance the activity of some cytotoxic effectors and is
proposed to be an important driver of programmed death
ligand-1 (PD-L1) expression in HNSCC (Ayers et al., 2017).
What’s exciting is that most immune checkpoint genes,
cytotoxic effectors, and genes in the IFNG signature within
our study have a higher expression in the low-risk group,
which might predict promising results of immunotherapy in
the low-risk group.

The last but not the least, our study suggested that many
metabolic pathways with tumor-promoting function were
negatively correlated with the immune activity, leading to the
state of metabolic activation and immunologic suppression in
the high-risk group. This immunosuppressive state to a
higher degree might contribute to immune evasion in the
high-risk group. The negative correlation between
metabolism and immune here could be ascribed to the
possibility that active metabolism would hinder the
nutritional supply of immune cells. Therefore, it might be
plausible to adopt a combination of anti-metabolism and
immunotherapy drugs in the high-risk group to achieve
better therapeutic effects than applied separately.

It is interesting that within the scope of our research,
HPV (+) was not enriched in either the high-risk or the
low-risk group, but the low-risk group tended to exhibit
similar characteristics with HPV (+) HNSCC such as fewer
p53 mutations and altered metabolism as well as immune
landscape. Nevertheless, changes towards specific metabolic
pathways or expression of immune genes were not exactly
the same in the low-risk group and the HPV (+) population.
Considering the samples of the HPV analysis are not big
enough in this study, larger samples are necessary to further
determine the association between the HPV (+) status and
the low-risk group stratified by this model.
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In summary, this study generates a robust metabolism-
related prognostic model that classifies the HNSCC patients
into the high-/low-risk groups each with different somatic
mutations, signaling pathways, metabolic characteristics, and
immune landscapes. The correlations between major
metabolic pathways and the immune infiltrations also verify
that the metabolic changes could impact the immune
functions during cancer progression. These results provide a
compelling rationale for MRGs to serve as candidate
prognostic biomarkers and gene classifiers in HNSCC.
Furthermore, this study offers a preclinical proof of concept
that biomarker-driven cancer therapy and individualized
treatment for HNSCC patients have promising prospects.
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SUPPLEMENTARY FIGURE S1. HPV status in the high-/low-risk groups.
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SUPPLEMENTARY FIGURE S2. (continued)
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SUPPLEMENTARY FIGURE S2. The metabolic pathways scores and the immune characteristics in the high-/low-risk groups of the
GSE41613 dataset (ns, non-significant, *P < 0.05, **P < 0.01, ***P < 0.0001, ****P < 0.0001).

SUPPLEMENTARY FIGURE S3. (continued)
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SUPPLEMENTARY FIGURE S3. The metabolic pathways scores and the immune characteristics in the high-/low-risk groups of the
GSE65858 dataset (ns, non-significant, *P < 0.05, **P < 0.01, ***P < 0.0001, ****P < 0.0001).
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