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Abstract: In rice, high concentration of lead (Pb) can cause phyto-toxicity affecting several physiological functions.

Cultivation of rice varieties that are resistant to Pb-induced oxidative stress is an important management strategy in

Pb-contaminated soils. In the current study, we evaluated four different rice cultivars for their response to Pb-induced

stress. Three japonica type cultivars X-Jigna, Ediget, and Furat, and one Indica type cultivar Amber 33 were grown in

soil containing different Pb concentrations (0 mM, 0.6 mM, and 1.2 mM). The soil was treated with 0 mM or

0.6 mM or 1.2 mM Pb solution one month prior to rice seedling transplantation. Thereafter, four-week-old rice

seedlings were transplanted into the treated soil and their responses were observed until maturity. The data revealed

that a highest concentration of Pb (1.2 mM) induced significant reduction in agronomic traits such as plant height,

number of tillers per plant, number of panicles per plant, and number of spikelets per panicle in all the rice cultivars.

However, least reduction in the agronomic traits was observed in X-Jigna, whereas the highest reduction in the

agronomic traits was observed in Ediget. Antioxidant activity of catalase (CAT), peroxidase (POD), polyphenol

oxidase (PPO), and superoxide dismutase (SOD), was evaluated along with the accumulation of superoxide ions

(O2
.-), protein, proline, chlorophyll, sucrose, glucose, and fructose contents in all the rice cultivars. A significant

increase in antioxidant activity and in the accumulation of proline and sucrose contents with the least reduction in

the chlorophyll and protein contents was observed in X-Jigna suggesting that X-Jigna is the most tolerant among all

the rice cultivars tested against Pb-stress. On the other hand, non-significant and slightly significant increase in the

antioxidant activity, less accumulation of proline and sucrose contents, and higher reduction in the chlorophyll and

protein contents was observed in Ediget, which further suggest that Ediget is the most susceptible rice cultivar to

Pb-stress. In addition, the other rice cultivars Furat and Amber 33, were found to be moderately tolerant to Pb-induced

oxidative stress. In summary, our results suggest that tolerance to Pb-induced oxidative stress would be a result of a

synergetic action of both enzymatic and non-enzymatic antioxidant systems, leading to a balanced redox status in rice.

Introduction

Anthropogenic activities, industrialization, excessive use of
fertilizers in agriculture, and inappropriate disposal of wastes
have polluted the agriculture soil with heavy metals (HMs)
resulting in serious problems to agriculture globally (Yu et al.,
2006). The highly toxic HMs are lead (Pb), cadmium
(Cd), arsenic (As), and mercury (Hg) (Hu et al., 2007;

Yu et al., 2008). Based on the highest risk of inducing
toxicity, Pb stands second after arsenic, (Gaya and
Ikechukwu, 2016). Globally, it can be found abundantly and
is vital at lower concentrations, but at higher concentrations
it is a toxic environmental pollutant (Mahaffey, 1990). Lead is
a useful metal owing to its mechanical properties; however,
its non-biodegradable nature and excessive use are the
reasons for its rising to toxic levels (Nas and Ali, 2018). In
case of plants, at low levels, lead can increase the biomass
and yield of the plants (Wang and Wu, 1997) while it is toxic
to plant at higher concentrations (Zulfiqar et al., 2019).
However, lead present in the soil can be taken up quickly by
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the plants which has created alarming situation globally,
especially in the industrial regions (Mishra et al., 2020). Pb has
the potential to cause impairment in the growth and
development of plants by altering various aspects of plant’s
metabolism (Islam et al., 2007; Uzu et al., 2009). Moreover, it
also affects, cell division, seed germination, seedling growth,
growth of the cell wall, photosynthesis, protein synthesis, redox-
balance, respiration, cell membrane permeability, and ultra-
structural changes (Dogan et al., 2009; Gupta et al., 2009;
Kanwal et al., 2020; Maestri et al., 2010; Zulfiqar et al., 2019).
Furthermore, exposure of plants to Pb stress can cause
phenotypic changes, including reduction in the root length,
plant growth retardation, blackening of roots, yellowing of
leaves, disturbance of water balance, and alteration of
enzymatic activities (Sharma and Dubey, 2005). Overall, these
changes affect the physiological activity of plants and may cause
cell death at higher concentrations (Seregin and Ivanov, 2001).

Generally, plants exposed to Pb stress over-produce
reactive oxygen species (ROS), causing oxidation of various
biomolecules eventually leading to cell death (Vinocur and
Altman, 2005). Therefore, plants have evolved an efficient
antioxidant system to control the level of ROS during
Pb-toxicity (Ali et al., 2014b; Zhang et al., 2018). In response
to Pb-toxicity, previous results report a variation in the
activities of antioxidants (Ali et al., 2014b) and rice cultivars
having high level of these antioxidants are considered to be
tolerant to Pb stress (Verma and Dubey, 2003). Similar to
other environmental stimuli, plants exposed to HMs use their
intrinsic sophisticated strategies for metal uptake, storage,
transportation, detoxification, elimination, and
compartmentalization (Jiang and Liu, 2010). In addition,
previous results show that different plant species or varieties
of the same species can show variations in their ability to
take-up, translocate, and accumulate Pb, and there are several
plant species which show high tolerance to HM stress
(Najeeb et al., 2017; Prasad, 2017; Zhang et al., 2006).

Uptake of Pb from the contaminated soil, and its
accumulation in different parts of the rice especially in
grains and its subsequent lethal effects on human health has
been studied by different scientists previously (Liu et al.,
2013). Roots, the first exposed organ of the plants to Pb
stress, either act as a storage part (in tolerant plants) or an
intermediate organ (in susceptible plants) to transfer Pb
from the soil to the aerial parts of the plants (Chen et al.,
2006). The maximum permissible amount (MPA), in the
soil for Pb is 55 mg/kg (Crommentuijn et al., 2000;
Vodyanitskii, 2016). The European Chemicals Agency
(ECHA), and Food Safety Security (FSS) has ranked Pb in
the group of chemicals of great concern for the environment
(Cheema et al., 2020; Pourrut et al., 2011). Therefore, it is
necessary to identify those rice cultivars which are tolerant
to Pb stress (Ashraf et al., 2015a). In the present study we
evaluated those rice cultivars which are tolerant to higher
concentration of Pb-induced oxidative stress. For this
purpose, four rice cultivars including, X-Jigna, Ediget, Furat
and Amber 33 were exposed to different Pb treatments
(0 mM, 0.6 mM, and 1.2 mM). The evaluation of rice
cultivars in response to Pb-induced oxidative stress was
done in terms of the changes in their agronomic traits,
along with the activity of antioxidants, variation in the

contents of protein, proline, chlorophyll, sucrose, glucose,
and fructose were also observed in all rice cultivars.

Materials and Methods

Plant materials, growth conditions, and Pb application
Four rice cultivars, 2 from Ethiopia namely, japonica ssp. cv.
X-Jigna and Ediget and 2 from Iraq namely, japonica ssp.
cv. Furat and indica ssp. cv. Amber 33, were used as
experimental materials. Seeds of all rice cultivars were
surface sterilized in Prochloraz 62.5 µL/125 mL (v/v) for
about 2 h and rinsed three times in rotary shaker for 3 h
after every 1 h interval, followed by incubation for 72 h at
28°C under dark conditions for germination (Al Azzawi
et al., 2020). The germinated seeds were sown in 50-well
trays supplemented with nutrient enriched soil, until 3–4
leaf stage (for about 4 week). To induce lead (Pb) stress,
Lead (II) nitrate (Pb(NO3)2) was used as the Pb donor. The
big pots containing soil (obtained from Doobaena Plus,
Nong Kyung Ltd., Yeongcheon-si, Korea), was treated with
different concentrations (0 mM (control), 0.6 mM and
1.2 mM) of Pb solution, one month before transplantation
of rice seedlings. The treatment was repeated two times per
week until transplantation. Four-weeks-old healthy seedlings
with uniform height were transplanted into the pots
containing lead treated soil. Thereafter, plants were
routinely irrigated to maintain the required soil moisture for
an optimal plant growth until harvest. The experiment was
performed in greenhouse during May–August 2020 at
Kyungpook National University, Daegu, Korea.

Sampling and phenotypic evaluation under Pb stress
Samples for physio-biochemical analysis were collected
30 days after Pb-induced oxidative stress. However, samples
for phenotypic evaluation, including, plant height, number
of tillers per plant, panicle length, number of panicles per
plant, and number of spikelets per panicle, were measured
after maturation of the rice plants. Furthermore, samples for
biomass dry weight (above-ground parts) were collected
immediately after harvesting and expressed in gram through
the following calculation: (fresh weight-dry weight)/fresh
weight × 100. Weighing of the samples collected was done
using a digital electrical balance (BSA323S-CW Sartorius,
Japan) and noted as plant above-ground dry biomass.

Determination of chlorophyll content and measurement of
panicle length
The chlorophyll content of leaf samples was measured using a
SPAD meter (SPAD-502, Minolta Co., Ltd., Japan) following
the method described earlier (Khan et al., 2019b). The
panicle length was measured using a ruler.

Measurement of electrolyte leakage
Electrolyte leakage (EL) was determined, according to the
procedure described earlier (Khan et al., 2019a) with slight
modifications. In brief, 200 mg fresh leaf samples were
collected from control and Pb-treated plants, rinsed with
de-ionized water to remove any surface electrolytes, and
placed in test tubes containing 10 mL de-ionized water for
6 h at room temperature. After 6 h, electrical conductivity
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1 (EC1) was determined using a portable conductivity meter
(HURIBA Twin Cond B-173, Japan). For the determination
of electrical conductivity 2 (EC2), the samples were
autoclaved and cooled at room temperature. EL was
measured in percentage as the ratio between EC1/EC2 × 100.

Proline measurement assay
Proline quantification was done using the method described
earlier (Bates et al., 1973). Absorbance of the reaction
mixture containing toluene was measured at 520 nm
wavelength, and proline concentration was calculated on a
fresh weight basis and expressed as µg/g DW.

Enzymatic antioxidant assay, protein, and soluble sugars
contents measurement
Activity of antioxidant enzymes, such as catalase (CAT),
peroxidase (POD), polyphenol oxidase (PPO), and
superoxide dismutase (SOD), as well as the accumulation of
superoxide ions (O2

.−), were analyzed as described earlier
(Khan et al., 2017). In brief, 400 mg leaf samples were
crushed using a chilled mortar and pestle. Afterward, the
samples were homogenized with 0.1 M potassium phosphate
buffer (pH 6.8) and centrifuged at 4°C for 15 min at
5000 rpm. The supernatant was used as crude enzyme
source for CAT, POD, SOD and PPO activities, as well as
for total protein content.

The CAT activity was analyzed as described previously
(Rolly et al., 2020). In brief, 50 µL of H2O2 (50 mM) (CAS
No. 7722-84-1, Sigma-Aldrich, Korea) was added to the
crude enzyme extract and absorbance of the reaction was
measured at 240 nm after 1 min. Activity of CAT was
expressed as µg/mg of samples dry weight as described
previously (Sirhindi et al., 2016).

Activity of PPO and POD was measured following the
method described earlier (Khan et al., 2017). The reaction
mixture for POD, which consisted of 50 µL crude enzyme
extract, 50 µL of pyrogallol (50 µM) (CAS No. 87-66-1,
Sigma-Aldrich, USA), 25 µL of H2O2 (50 mM), and 10 µL
of phosphate buffer (0.1 mM, pH 6.8), was incubated at
room temperature for 5 min under dark conditions.
Afterward, 25 µL of H2SO4 (50 w/v) (CAS No. 7664-93-9,
DUKSAN PURE CHEMICALS, Korea) was added to the
reaction mixture, followed by measurement of absorbance at
420 nm. For PPO activity analysis, the reaction mixture
consisted of 50 µL crude enzyme extract, 50 µL pyrogallol
(50 µM), and 100 µL of phosphate buffer (0.1 M).
Absorbance was measured at 420 nm. Calculations were
done as described earlier (Chance and Maehly, 1955).

Furthermore, SOD activity was analyzed as described
earlier (Sirhindi et al., 2016), which follows the photo
reduction of nitro blue tetrazolium (NBT). Absorbance of the
reaction mixture was measured at 540 nm wavelength using a
spectrophotometer (T60 UV-Visible Spectrophotometer, pg
Instruments, Leicestershire, UK). A unit of SOD is the
quantity of enzyme that hampers 50% photo reduction of
NBT and is expressed as U/mg of sample.

To quantify the accumulation of superoxide ion (O2
.−), a

previously describe method followed (de Sousa et al., 2017). In
brief, 1 g of fresh shoot plants was ground to fin powder and
immersed in 0.01 M sodium phosphate buffer (pH 7.0)

containing 0.05% (w/v) NBT (CAS No. 298-83-9, Sigma-
Aldrich, Korea) and 10 mM sodium azide (NaN3) (CAS No.
26628-22-8, Sigma-Aldrich, Korea) and the mixture was
incubated at room temperature for 1 h. Afterward, 5 mL of
the mixture was transferred into fresh tubes and incubated
at 85°C for 15 min in a water bath. The solution was
immediately cooled on ice and vacuum filtered. Absorbance
of the samples was measured at 580 nm wavelength using a
spectrophotometer. Superoxide ion scavenging activity was
calculated using the formula: O2

.-scavanging % = [(A580 of
control – A580 of treated samples)/A580 of control)] × 100.
Total protein content was quantified according to the
method described earlier (Bradford, 1976), and absorbance
of the reaction mixture was measured at 595 nm wavelength.

Soluble sugars (glucose, sucrose, and fructose) were
extracted and quantified according to a method described
previously (Kang et al., 2014; Shahzad et al., 2019) using
HPLC Waters system (Millipore Corp., Waters
Chromatography, Milford, MA, USA), comprising a sugar-
peak column (300 mm, a model 600 controller), and the
sugar signals were detected using Waters 410 refractive
index detector. A Ca-EDTA solution (50 mg/L) was used as
the mobile phase, and the flow rate was maintained at
0.5 mL/min. Glucose, sucrose, and fructose were quantified
by comparing their peak areas with those of specific standards.

Statistical analysis
The collected data was statistically analysed in the Microsoft
Excel program. All the mean values, standard deviation,
standard error, and Student’s t-tests were performed in the
Microsoft Excel program. The data was then visualized
using GraphPad Prism software (version 6.0, San Diego,
CA, USA). Heatmaps for correlation analysis were created
using an online tool (Metsalu and Vilo, 2015).

Results

Pb stress inhibited growth and biomass accumulation in rice
Different rice cultivars were exposed to Pb stress from
vegetative growth to maturity in order to examine the
effects of Pb stress on their phenotypic and biochemical
responses. Our results indicated that, a high
concentration of Pb (1.2 mM) significantly inhibited
most of the plant growth-related characteristics in all the
rice cultivars, except for the cultivar X-Jigna (Figs. 1A
and 1I). Similar negative effects of Pb stress on physio-
biochemical and morphological features of the plants
have been reported earlier (Arce and Yllano, 2008;
Ashraf et al., 2017; Lamhamdi et al., 2011; Sebastian
et al., 2016). Our results revealed a significant reduction
in the plant height in X-Jigna (5.42 and 12.97%), Ediget
(6.87 and 12.18%), and Furat (9.19 and 11.02%) in
response to 0.6 and 1.2 mM Pb treatment, respectively.
On the other hand, this reduction was insignificant in
case of Amber 33 (0.65 and 1.31%) as compared to their
respective controls (Fig. 1A). Furthermore, under 1.2 mM
Pb treatment, a significant reduction was recorded in the
number of tillers per plant in Ediget (18.18%), while on
the other hand, Amber 33 (4.76%), X-Jigna (4.34%), and
Furat (0%) showed non-significant change to both Pb
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treatments, respectively (Fig. 1B). In addition, exposure to
0.6 and 1.2 mM Pb resulted in a significant reduction of
27.77 and 38.88 % panicles per plant in Ediget, 33.33 and
33.33 % in Amber 33, and 20.83 and 25% respectively in
Furat. However, the X-Jigna variety was least affected at
0.6 mM Pb but showed a reduction of up to 13.83%
panicles per plant at 1.2 mM (Fig. 1C). Besides, the
number of spikelets per panicle were also significantly
inhibited in Ediget (10.60 and 27.27%), Amber 33 (11.11

and 12.98%), Furat (9.09 and 12.2%), and X-Jigna (7.97
and 9.12%), under 0.6 and 1.2 mM Pb exposure,
respectively (Fig. 1D). Moreover, Pb application
significantly reduced the biomass (dry weight) of Ediget
(43.8 and 48.58%), followed by Amber 33 (15.67 and
20.13%), and Furat (11.88 and 18.54%), whereas no
significant effects on the biomass were observed in
X-Jigna (5.17 and 8.27% reduction), under 0.6 and
1.2 mM Pb exposure, respectively (Fig. 1E).

FIGURE 1. Variations in the agronomic traits of the tested rice cultivars (X-Jigna, Ediget, Furat and Amber 33) to different Pb treatments
(0.6 mM and 1.2 mM). (A) Plant height, (B) Number of tillers per plant, (C) Number of panicles per plant, (D) Number of spikelets per
panicle, and (E) Biomass (dry weight). The four rice cultivars are (F) X-Jigna, (G) Ediget, (H) Furat and (I) Amber 33. Bars are mean
values ± SE. The bars are of control (0 mM), 0.6 mM and, 1.2 mM Pb treatments, respectively. Data are compared with their respective
controls (untreated plants 0 mM Pb). *P < 0.05, **P < 0.01, ***P < 0.001, ns: non-significant.
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Pb stress induced the activation of antioxidants and electrolyte
leakage in rice cultivars
Upon exposure to harsh conditions, plants activate their
adaptive response mechanism that includes non-enzymatic
and enzymatic antioxidants, such as, CAT, SOD, POD, and
PPO. For instance, in response to Pb application, an
increase in the activity of CAT and SOD was observed in
maize (Zhang et al., 2018), and similar different increasing
trend in the CAT, SOD, POD and PPO, was also observed
in different rice cultivars under different Pb treatments
(Ashraf et al., 2017). Our results also showed a significant
increase in the activity of antioxidants and electrolyte
leakage in different rice cultivars following different Pb
treatments (0.6 and 1.2 mM), as shown in Figs. 2A–2E. A
significant increase in the activity of CAT was recorded in
X-Jigna (33.95 and 45.43%), followed by Amber 33 (23.79
and 36.04%), Ediget (27.25 and 30.69%), whereas, Furat
(21.54 and 11.63%) showed the lowest increase in the
activity of CAT, in response to 0.6 and 1.2 mM Pb
application, respectively (Fig. 2A). In addition, a significant

increase in the activity of POD was observed in Furat
(294.98 and 295.21%), and X-Jigna (76.98 and 201.24%),
whereas both Amber 33 (30.35 and 34.55%), and Ediget (55
and 43.33%), showed the lowest increase in the activity of
POD, under both treatments (Fig. 2B). Maximum significant
increase in PPO activity was recorded in Furat (170.24 and
98.33%), whereas the other cultivars showed a minimal
increase in PPO activity for Ediget (67.76 and 88.16%),
Amber 33 (58.55 and 55.31 %), and X-Jigna (33.89 and
26.49%), following 0.6 and 1.2 mM Pb application,
respectively (Fig. 2C). In addition, the activity of SOD
enzyme was significantly increased in X-Jigna (7.24 and
70.05%), and Ediget (62.58 and 10.92%), whereas Furat
(15.94 and 23.32 %), and Amber 33 (31.68 and 9.67%),
showed the lowest but significant increase in SOD activity,
under 0.6 and 1.2 mM Pb stress respectively (Fig. 2D).
Furthermore, the highest increase in the activity of
superoxide ion (O2

.−), was recoded in X-Jigna (416.47 and
574.82%), followed by Furat (161.42 and 242. 58), Amber 33
(183.60 and 172.43%), while Ediget (112.39 and 131.49%),

FIGURE 2. Changes in the antioxidant enzymes activity and electrolyte leakage in the tested rice cultivars (X-Jigna, Ediget, Furat and Amber
33) to Pb stress (0.6 mM and 1.2 mM). (A) Catalase, (B) Peroxidase, (C) Polyphenol oxidase, (D) Superoxide dismutase, (E) Superoxide anion,
and (F) Electrolyte leakage. Bars are mean values ± SE. The bars are of control (0 mM), 0.6 mM and, 1.2 mM Pb treatments, respectively. Data
are compared with their respective controls (untreated plants 0 mM Pb). *P < 0.05, **P < 0.01, ***P < 0.001, ns: non-significant
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showed the lowest increase in the accumulation of superoxide
ion (O2

.−), under both treatments of Pb, respectively (Fig. 2E).
The highest significant increase in the electrolyte leakage was
recoded in Ediget (40.79 and 70.20%), and Furat (17.11 and
70.15%), while the other two cultivars X-Jigna (6.52 and
9.67 %), and Amber 33 (18.52 and 22.66%), showed the
lowest electrolyte leakage, under both treatments
respectively (Fig. 2F).

Pb stress reduced protein and chlorophyll contents and
increased the proline content in rice
Different rice cultivars showed different level of protein,
proline and chlorophyll contents to Pb stress (Ashraf et al.,
2017; Rasool et al., 2020). Similarly, we also observed
different responses in the production of protein, proline,
and chlorophyll contents in the tested rice cultivars to Pb
exposure as shown (Fig. 3). A significant reduction was
recorded in the total protein content of Ediget (31.67 and
44.93%), and Amber 33 (29.19 and 37.34%). On the other
hand, the lowest but significant decrease in the protein
content was found in X-Jigna (16.06 and 25.43%), and Furat
(6.73 and 29.28%), in response to Pb treatments (0.6 and
1.2 mM), respectively (Fig. 3A). Proline, a multifunctional
amino acid, significantly increases during abiotic stress
conditions and is well known for its role in the adaptive
response mechanism toward abiotic stress tolerance (Chun
et al., 2018; Kumchai et al., 2013; Liang et al., 2013). Our
data showed a significant increase in the activity of proline

in response to Pb stress in X-Jigna (66.79 and 219.02%),
followed by Furat (70.56 and 166.53%), and Amber 33
(56.48 and 125.34%), while Ediget showed the lowest level
(41.62 and 62.45%), under 0.6 mM and 1.2 mM Pb
treatments, respectively (Fig. 3B). In case of chlorophyll
content, a significant reduction was observed in Amber 33
(21.75 and 37.65%), and Ediget (23.04 and 33.17%), while
X-Jigna (10.09 and 15.21%), and Furat (8.94 and 15.95%),
showed the least reduction under both treatments,
respectively (Fig. 3C).

Pb stress differentially affected soluble sugars level in rice
A change in the metabolism of plants is expected when they
are exposed to harsh conditions. Under these conditions,
plants channel their resources, including energy use, to the
adaptive response mechanism for stress tolerance, while
maintaining a balanced oxidation-reduction status. Plant
sugars are crucial players in the oxidative challenge during
abiotic stress conditions. Our results showed a significant
increase in sucrose content in Furat (135.50 and 165.91 %),
and X-Jigna (58.63 and 63.87%), while Ediget (17.84 and
71.70%), and Amber 33 (22.49 and 49.73%), showed the
lowest increase in the sucrose contents, under 0.6 mM and
1.2 mM Pb treatments, respectively (Fig. 4A). However, a
significant decrease in the glucose contents of Amber 33
(50.36 and 75.59%), followed by X-Jigna (65.70 and
62.65%), Furat (32.19 and 52.45%) and Ediget (12.3 and
44.8%), under both Pb treatments respectively (Fig. 4B).

FIGURE 3. Changes in the protein, proline, and chlorophyll contents under Pb treatments (0.6 mM and 1.2 mM). (A) Protein content, (B)
Proline content, and (C) Chlorophyll contents. Bars are mean values ± SE. The bars are of control (0 mM), 0.6 mM, and 1.2 mM Pb treatments,
respectively. Data are compared with their respective controls (untreated plants). *P < 0.05, **P < 0.01, ***P < 0.001.
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Similar decreasing trend was also observed in the fructose
contents under both Pb treatments. The results revealed, a
significant decrease in the fructose contents of Ediget (77.90
and 86.20%), Amber 33 (72.27 and 77.01%), followed by
X-Jigna (52.14 and 55.57%), and Furat (37.17 and 44.02%),
under 0.6 and 1.2 mM Pb application, respectively (Fig. 4C).

Heatmap analysis to understand the correlation between
various parameters studied in X-Jigna, Ediget, Furat and
Amber33
The data on all the studied parameters are represented in the
form of heatmaps to understand their correlation. According
to the heatmap analysis, treatment with higher concentration
of Lead (1.2 mM) showed positive correlation with proline,
sucrose, electrolyte leakage, superoxide anion and activity of
antioxidantive enzymes like polyphenol oxidase, peroxidase,
superoxide dismutase and catalase in all the cultivars
(Fig. 5). The same treatment negetively correlated with
agronomic parameters, protein and chlorophyll content.
These results indicate that higher concentration of Pb in soil
has adverse effect on the agronomic and biochemical growth
parameters of each cultivar. However, activation of their
antioxidative defence system allows them to cope with Pb
stress. Our results indicate that the higher antioxidative
potential of X-Jigna makes it a tolerant cultivar among others.

Discussion

Pb stress inhibits growth and productivity of rice
Due to their non-motile nature, plants are exposed to several
biotic and abiotic stress conditions, causing severe damages
and loss of productivity. Heavy metals, for instance Pb, are

major environmental pollutants and adversely affect all living
organisms including plants (Ashraf et al., 2018; Bargagli et al.,
2019; Islam et al., 2007). The key factor in Pb-induced
toxicity in plants is its transportation to various parts of the
plants via vascular bundles (Ashraf et al., 2017). However, the
adverse effects of Pb depend on the exposure time,
concentration and intensity, plant stage, and its availability in
different parts of the plant (Ashraf et al., 2015b). The
previous findings suggest that HMs including Pb, have toxic
effects on various physio-biochemical processes at different
stages of rice growth and development (Maestri et al., 2010;
Xie et al., 2018), and the responses of different plant species
are different to Pb-induced oxidative stress (Rout et al., 2001;
Yoon et al., 2006). The toxic effects on different growth
parameters of the plants could be attributed in part to the
obstruction in nutrient uptake from the roots due to Pb
contamination (Singh et al., 2016). Similarly, our findings
also reveal negative effects of Pb-induced oxidative stress on
the growth and development of all rice cultivars, and the
degree of effects was varied among all four rice cultivars and
Pb concentrations as shown in the Figs. 1A–1I. Though,
Pb-induced oxidative stress showed negative effects on the
growth and development of all the rice cultivars yet the least
affected rice cultivar was X-Jigna, and the most affected rice
cultivar was Ediget (Figs. 1A–1I). Therefore, our present
findings suggest that under Pb-induced oxidative stress the
most tolerant rice cultivar is X-Jigna while, the most
susceptible rice cultivar is Ediget (Figs. 1A–1I).

Pb stress alters the physiological and biochemical properties of rice
After the perception of biotic or abiotic stress, plants undergo a
complex physiological and biochemical reprogramming, as well

FIGURE 4. Changes in the sucrose, glucose and, fructose contents of the tested rice cultivars (X-Jigna, Ediget, Furat and Amber 33), in Pb
(0.6 mM and 1.2 mM) treated soils. (A) Sucrose, (B) Glucose, and (C) Fructose content. Bars are mean values ± SE. The bars are of control
(0 mM), 0.6 mM, and 1.2 mM Pb treatments, respectively. Data are compared with their respective controls (untreated plants). *P < 0.05, **P <
0.01, ***P < 0.001.
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as redistribution of resources to combat stress, which in our case,
is in response to Pb-mediated oxidative stress. Previous studies
suggest that Pb-induced oxidative stress inhibits plant growth
and development, and also interferes in the regulation of
reactive oxygen species (ROS) (Kaur et al., 2015; Kumar et al.,
2012; Zhou et al., 2018). In response to HMs, plants regulate
the over produced ROS via a well-sophisticated anti-oxidant
system (Pirzadah et al., 2020; Pirzadah et al., 2018; Su et al.,
2017), and the plants with increased antioxidant activities are
considered to be the most tolerant (Ashraf et al., 2017; Ashraf
et al., 2020; Wang et al., 2020). Similarly, in the current
investigation, an increase in the activation of antioxidants
(CAT, POD, PPO, SOD, and O2

.−), was observed in all rice
cultivars (Fig. 2A–2E). Interestingly, the rice cultivar X-Jigna,
which exhibited a balanced phenotypic growth and improved
tolerance for Pb stress, recorded a significant increase in the
activity of CAT, POD, PPO, SOD, and the accumulation of
O2

.− (Figs. 2A–2E). While on the other hand, no significant
increase was recorded in the activity of POD and the
accumulation of O2

.− in Ediget rice cultivar (Figs 2B and 2D),
which exhibited an imbalanced phenotypic growth and
sensitive response to Pb stress. Our present findings suggest
that the rice cultivars with more coordination in the activity of
antioxidant system are considered more tolerant to Pb stress.
These results suggest that lead stress tolerance in X-Jigna can
be attributed to its strong antioxidative potential (Figs. 2A–2E).
While other rice cultivars like Furat and Amber 33 were found
to be moderately tolerant to Pb stress, the cultivar Ediget is
most susceptible to lead stress owing to its weak antioxidant
potential (Figs. 2A–2E).

Proteins are the building blocks of life and have several
key functions in to their nutritional role, have other
functions in living organisms. The physiological responses
and cellular conditions of plants under stress depend upon
the magnitude and severity of stress and the level of
resistance and susceptibility of the plants. Stress can result
in an overall decrease in total biomass, the total protein
would also be reduced. However, the concentration of
specific proteins such as those encoding the antioxidant
enzymes that respond to stress increases drastically. The
accumulation of HMs such as Pb prominently cause a
reduction in the protein and chlorophyll contents of plants
(Ali et al., 2014a; Ali et al., 2015; Chatterjee et al., 2004;
Kopyra and Gwóźdź, 2003; Kurtyka et al., 2018). In the
current study, a similar trend in the reduction of protein
and chlorophyll contents to Pb-induced oxidative stress was
observed in all the rice cultivars (Figs. 3A and 3C).
However, the highest reduction was recorded in Ediget, and
the lowest in X-Jigna, which indicate that these are the most
susceptible and tolerant rice cultivar (Figs. 3A and 3C).
While the other two cultivars Furat, and Amber 33 seem to
be moderately tolerant to Pb-induced stress (Figs. 3A and
3C). Furthermore, in response to HMs such as Pb and
copper (Cu), rice cultivars increase the production of
proline (Ashraf et al., 2017; Chen et al., 2001; Hayat et al.,
2012). Similarly, in response to Pb stress, we also observed
an increase in the proline content in all rice cultivars
(Fig. 3B). However, X-Jigna showed the highest increase,
while Ediget showed the lowest increase in proline contents
(Fig. 3B). These results further support the strong stress

FIGURE 5. Heatmaps showing the correlation between lead treatment and its effect on various parameters studied in different rice cultivars
used in the study.
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tolerance potential of the rice cultivar, X-Jigna as compared to
the other varieties tested.

The previous investigations reveal a variation in the
production of carbohydrates, sugar metabolism and
aggregation of various osmolytes to HMs stress (Devi et al.,
2013; Kumar et al., 2015; Rodríguez-Serrano et al., 2009).
We also noticed a variation in the contents of sucrose,
glucose, and fructose as shown in Figs. 4A–4C. For instance,
we recorded a significant increase in sucrose content in all
rice cultivars under both 0.6 mM and 1.2 mM Pb treatment
(Fig. 4A). However, glucose and fructose content were
shown to be significantly reduced under both 0.6 mM and
1.2 mM Pb treatments as compared to their respective
controls (Figs. 3B–3C). Sucrose, is an energy source for the
plants and therefore its production increases during stress
conditions (Ogawa and Yamauchi, 2006a, 2006b). The
reason for the decrease in glucose and fructose may be due
to their direct involvement in many pathways and also these
monosaccharides are the components of sucrose.

Conclusion

An increase in the concentration of soil Pb, negatively affects
the growth and development of different rice cultivars.
In the current investigation, the collected data recorded
from the agronomic traits, antioxidants, protein, proline,
chlorophyll, sucrose, glucose, and fructose contents,
collectively suggest that X-Jigna is the most tolerant
cultivar whereas, Ediget is the most susceptible rice cultivar
to Pb-induced oxidative stress. Our results indicate that
among the tested rice cultivars, X-Jigna could be one of the
candidates for developing Pb-tolerant rice cultivars and
may be used for further understanding the redox signaling
under heavy metal stress owing to its strong antioxidative
potential. However, further detailed investigation is
required to unravel the Pb-tolerant capabilities of X-Jigna
cultivar which could be used to mitigate Pb-induced yield
reduction in plants.
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