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Abstract: Presenilin (Psn) protein is associated with organismal aging. Mutations in the Psn gene may lead to Alzheimer’s

disease (AD), dilated cardiomyopathy (DCM), and many age-dependent degenerative diseases. These diseases seriously

affect the quality of life and longevity of the population and place a huge burden on health care and economic systems

around the world. Humans have two types of Psn, presenilin-1 (PSEN1) and presenilin-2 (PSEN2). Mutations in the

genes encoding PSEN1, PSEN2, and amyloid precursor protein (APP) have been identified as the major genetic

causes of AD. Psn is a complex gene strongly influenced by genetic and environmental factors. The effects of exercise,

training, and a high-fat diet on the Psn gene expressed in the heart and its related pathways are not fully understood.

Fortunately, relevant aspects of the mutational effects on Psn can be studied experimentally in easily handled animal

models, including Drosophila, mice, and other animals, all of which share orthologous genes of Psn with humans.

Many previous studies have linked aging, exercise training, and a high-fat diet to the Psn gene. This review discusses

the interrelationship between aging, exercise training, and a high-fat diet on the Psn gene and its associated disease,

AD. The aim is to understand the adverse effects of Psn gene mutations on the body and the diseases caused by AD,

find ways to alleviate the adverse effects and provide new directions for the improvement of treatment strategies for

diseases caused by Psn gene mutations.

Introduction

Population aging phenomenon exists in most developed
countries, even some developing countries. The world’s
aging population is increasing continuously at a high rate.
The aging of the body is accompanied by a variety of age-
dependent degenerative diseases such as Alzheimer’s disease
(AD) and dilated cardiomyopathy (DCM). Research has
shown that mutations in the Presenilin (Psn) gene have
been found in both AD and DCM (Li et al., 2011a).
Research has also shown that mutations in the Psn gene and
a high-fat diet accelerate the development of aging-related
diseases. On the contrary, exercise training and a balanced
diet can delay the aging process and reduce the risk of
aging-related diseases (Marcon et al., 2009). However, there
are few reports on the effects of exercise training and a
high-fat diet on the Psn gene and related pathways.

Psn is a multichannel transmembrane protein, an
intramembrane protease complex that catalyzes the
intramembrane cleavage of intact membrane proteins such

as Notch receptors (Guo et al., 1999). Psn is located in the
apical plasma membrane, late endosomes, and recycling
endosomes. It is an integral component of the plasma
membrane (Ankarcrona and Hultenby, 2002). It is
expressed in multiple structures, including the anterior and
posterior subdivision of the organism and the central
nervous system, and is essential for the study of AD and
DCM (Lehmann et al., 1997). Psn is a γ-catalytic
component of the secretase intramembrane protease
complex; other non-catalytic Psn roles are also found in
cellular signaling processes, including calcium homeostasis,
lysosomal acidification, autophagy, and protein transport
(Song et al., 2013). Vertebrates have two Psn genes,
presenilin-1 (PSEN1) and presenilin-2 (PSEN2). PSEN1 is a
macromolecular protein on the endoplasmic reticulum and
Golgi apparatus. PSEN1 is, additionally, a transmembrane
protein that forms a complex with amyloid precursor
protein (APP) in the cell and is involved in APP transport
and post-synthesis processing (Raemaekers et al., 2005).
With age, PSEN1 increases in the human brain, thereby
affecting memory in the elderly (Culvenor et al., 2004).
Mutations in the PSEN1 gene, which encodes this protein,
are thought to be closely associated with the development of
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AD (Blanchard et al., 1997). Patients with hereditary AD carry
PSEN1 and PSEN2 or APP. These disease-related mutations
lead to an increase in amyloid-beta (Aβ) peptides (Villegas
et al., 2007). Both PSEN1 and PSEN2 are proteins with anti-
apoptotic effects.

Age-dependent neurodegenerative diseases affect
millions of people worldwide (Arora and Ligoxygakis, 2020).
Psn mutations are not only an important cause of age-
dependent neurodegenerative diseases but also have many
adverse effects on the body (Han et al., 2021). In this
review, we will systematically explore the interaction of Psn
and AD with aging, exercise training and a high-fat diet,
hoping to find ways to alleviate the adverse effects through
dietary changes and exercise training. Through this study,
we aim to provide new directions for the improvement of
complementary treatment strategies for Psn mutation-
related diseases, thereby improving the quality of life and
longevity and reducing the burden on the economy and
health care systems around the world.

Psn in the brain and heart
PSEN1 and PSEN2 genes are expressed in various human
organs such as the brain and heart (Bruni, 1998). In the
brain, Psn is found in neuronal cells in the hippocampus
and cerebral cortex associated with learning and memory
(Lee et al., 1996). Psn has a general and essential role in the
survival of excitatory and inhibitory neurons during aging
(Kang and Shen, 2020). Genetic studies in mice suggest that
Psn regulates neurodevelopment in the developing brain
through the Notch signaling pathway (Kim and Shen, 2008).
Specific loss of PSEN1 in the forebrain of mice affects
specific aspects of memory (Feng et al., 2001). PSEN1 plays
an important role in brain development and neuronal
function, which is related to the brain-specific pathological
role of PSEN1 mutations (Hartmann et al., 1997). PSEN1
and PSEN2 are expressed in the heart and its role in the
heart has been discussed earlier (Levy-Lahad et al., 1996).
Mutations in the Psn gene are thought to be involved in
pathological changes in the heart (Yang et al., 2020). PSEN1
can act as an important regulator of cardiac Ca2+ pump
function with complex stimulatory/inhibitory properties
(Bovo et al., 2021). PSEN1 is associated with apoptosis and
cardiac development, and PSEN1 mutations trigger enlarged
ventricular chambers and systolic dysfunction (Li et al.,
2011b). Abnormalities in the dynamic regulation and
function of PSEN1 lead to abnormal cardiomyocyte
ultrastructure and cardiovascular disease (CVD) (Song et al.,
2018). In contrast, PSEN2 is ubiquitous in various organ
tissues, including the heart, and plays an important role in
cardiac excitation-systole coupling by interacting with the
cardiac ryanodine receptor (RyR2) (Takeda et al., 2005).

Psn and aging
PSEN1 and PSEN2 genes are necessary for the survival of adult
neurons, and mutation in this gene affects the aging of the
organism. Aging is characterized by a deterioration of
cellular function and physical health over time,
accompanied by an increased susceptibility to disease
(Goldsmith, 2014). Psn has a role in promoting neuronal
activity in the brain, and the knockdown of Psn gene leads

to an increase in the likelihood of neuronal death (Kang et
al., 2017). AD is the most common form of dementia,
accounting for more than half of dementia cases (Gaugler et
al., 2022). AD is an age-related neurological disease that is one
of the leading causes of death and disability worldwide (Small
et al., 1997). It is an irreversible neurodegenerative disease
characterized by insidious onset and slow progression
(Hashimoto et al., 2005). In addition, AD is the most common
type of chronic neurodegenerative disease among the elderly
and is clinically characterized by progressive memory decline
(Zhuang et al., 2020). In general, the clinical manifestations of
AD are mainly characterized by anterograde episodic memory
disorder. This condition is often accompanied by multiple
cognitive impairments, such as visuospatial, language, and
executive function (Chan et al., 2013). The combination of the
above features can lead to global cognitive decline, eventually
leading to a state of total dependence and, ultimately, death
(Bowman and Quinn, 2008). The above studies show that AD
can cause serious damage to the body, so it is crucial to study
the treatment strategies for AD by exploring Psn-related
literature.

AD caused by Psn mutations can have many adverse
effects on the organism. Both AD and familial AD (FAD) are
affected by changes in Psn levels. Studies on cultured nerve
cells have shown that mutations in the PSEN1 gene lead to
disturbances in cellular calcium homeostasis, and many early-
onset familial AD (EOFAD) is caused by mutations in this
gene (Mattson et al., 2000). Studies have shown that
mutations in a single copy of the Psn and APP may
contribute to the development of FAD. Only normal Psn
levels can maintain normal cognition throughout the lifespan.
Therefore, the decrease in PSEN1 and PSEN2 functional
activity may be related to the pathogenesis of FAD. A
decrease in Psn function was found to lead to age-related
cognitive deficits (Nagakura et al., 2013). Some aspects of
FAD and AD may be caused by the decreased activity level of
Psn (McBride et al., 2010). It is, hence, apparent that Psn is
closely related to the generation of AD, and its low levels
largely lead to memory deficit and cognitive impairment,
resulting in the occurrence of FAD and AD.

A close relationship between Psn and aging can be found
in studies using mice as a model. Psn plays an important role in
the growth and development of embryos, and the inactivation
of PSEN1 may lead to developmental defects and eventual
perinatal death in mice (Donoviel et al., 1999). Studies have
shown that the interaction between the AD-associated
protein PSEN1 and the synaptic vesicular protein SYT-1 is
increased during normal aging of the mouse brain and
neuronal aging in vitro (Keller et al., 2020). Therefore, studies
on mice have found that changes in Psn level can affect
normal learning and memory, growth and development, and
even the conditions necessary for the survival of mice.

A study using Drosophila as a model found that Psn is
extremely closely related to growth, development, and aging.
In Drosophila melanogaster, Psn is expressed at different
developmental stages, and the expression level in the adult is
higher than that in the larvae, mainly in the central nervous
system. Mutations in the Psn gene are the most common
cause of EOFAD. PSEN1 mutations account for 18%–50%
of EOFAD cases, while PSEN2 mutations are rare. PSEN1 is
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uniformly expressed, and PSEN2 is confined to the heart,
skeletal muscle, and pancreas (Zheng et al., 2015). It is thus
clear that Psn plays an important role in growth and
development and mainly acts on mature individuals. The
loss of Psn function in D. melanogaster increases the level of
apoptosis in developing tissues (Ye and Fortini, 1999). It is
evident that both Psn knockdown and overexpression can
lead to apoptosis. RNA interference (RNAi) to stall the
expression of the Drosophila ubiquitin homolog (dUbqln)
enhances retinal degeneration caused by Psn overexpression
(Li et al., 2007). Overexpression of Psn in the retina leads to
a smaller eye phenotype (Reynolds-Peterson et al., 2020).
Taking into account the aforementioned studies, it is,
therefore, demonstrated that Psn gene mutations can alter
the phenotype of Drosophila eyes and also lead to serious
consequences such as apoptosis.

Psn and cardiac aging
PSEN1 and PSEN2 play an important role in the regulation of
cardiovascular function. PSEN2 promotes heart excitation-
contraction by directly coupling with RyR2 (Takeda et al.,
2005). The morphology of the heart in mice with PSEN1
gene mutation exhibits ventricular septal defects and a
double outlet of the right ventricular (Nakajima et al., 2004).
The incidence of heart dysfunction and arrhythmias in the
hearts of senescent Drosophila increases significantly with
age (Ocorr et al., 2007). Cardiovascular stimulation in
Drosophila revealed a negative correlation between age and
maximum heart rate, that being smaller in older Drosophila
(Paternostro et al., 2001). It is thus clear that Psn plays an
important physiological role in the heart.

Psn gene is closely related to the development and
function of the heart. The mutations in the Psn gene lead to
EOFAD and DCM, both of which accelerate cardiac aging
(Cannon and Bodmer, 2016). The etiology of AD is mainly
idiopathic, and in particular, autosomal dominant genetic
disorders caused by mutations in the PSEN1 and PSEN2
genes are thought to be the main cause of FAD (Yang et al.,
2020). Psn knockdown can lead to a significant decrease in
heart rate, while the opposite occurs with Psn overexpression
(Li et al., 2011a). Research has found a strong correlation
between AD and heart insufficiency (Tublin et al., 2019).
Mutations in PSEN1 and PSEN2 may lead to an increased
risk of cardiac systolic and diastolic dysfunction in patients
with AD (Yang et al., 2020). Research has shown that PSEN1
and PSEN2 mutations are associated with DCM and heart
failure (Li et al., 2006). Therefore, these studies suggest that
mutations in the Psn gene lead to abnormal heart
development, dysfunction, and accelerated cardiac aging.

Alzheimer’s disease and muscle aging
Psn mutation-induced AD is often accompanied by muscle
atrophy and aging. With age and muscle atrophy, the onset
and progression of AD may be accelerated and accompanied
by weight loss. One of the main features of aging is the
progressive loss of skeletal muscle function and a gradual
decrease in skeletal muscle mass called skeletal sarcopenia
(Demontis et al., 2013a). Studies have shown that muscle
changes play an important role in common diseases (Wolfe,

2006). Muscle aging is associated with a gradual decline in
muscle quantity and mass (Kim et al., 2021). Clinical
observation shows that skeletal muscle can affect central
nervous system aging, and neurodegeneration of the central
nervous system is a decisive characteristic of body aging
affected by peripheral tissue (Rai et al., 2021). With the
increase in age, the function of multiple organ systems
gradually declines, and skeletal muscle atrophy is one of the
main physiological problems of the elderly. Studies have
shown that elderly APP/PS1 double transgenic mice
(APP/PS1 double transgenic mice is an AD transgenic
animal model established by transferring amyloid precursor
protein (APP) and PSEN1 mutant genes into mice.)
demonstrating phenotypes of lower body weight, less muscle
tissue, increased myostatin expression, lower muscle
strength, and reduced myostatin expression show AD-
related memory impairment (Lin et al., 2019). This
progressive muscle wasting can lead to the progression of
chronic diseases such as metabolic complexes, cancer, and
AD (Ruiz et al., 2008). Thus, as the organism gradually ages,
the possibility of neurodegenerative pathologies of the
central system, like AD, increases. The onset of these
diseases is often accompanied by a progressive decrease in
skeletal muscle function and quality.

Muscle levels, in turn, affect the progression of AD.
People with higher muscle strength levels are at less risk of
developing AD than those with lower muscle strength levels
(Boyle et al., 2009). Sudden weight loss is one of the signs of
dementia in the elderly, often occurring in AD patients
(Grundman, 2005), and weight loss can predict AD
(Luchsinger and Gustafson, 2009). People with AD lose
muscle at a faster rate than normal people (Burns et al.,
2010). Nutrition and stress perception in skeletal muscle
affect the lifespan and overall aging of the body, and actin
in the muscle affects the progression of age-dependent
diseases, such as AD (Demontis et al., 2013b). Therefore,
weight changes are one of the signs to determine whether or
not dementia is present. If an older person experiences a
sudden loss of weight, it can be considered a sign of
dementia onset.

Alzheimer’s disease and exercise training
Exercise training can mitigate the adverse effects of AD on the
organism. AD is a progressive neurodegenerative disease for
which there are few effective treatments (Um et al., 2008).
Physical exercise is used to treat AD by eliciting positive
neurophysiological effects (Garcia-Mesa et al., 2011).
Aerobic exercise can slow the progressive decline of older
adults as they age (Young et al., 2015). Physical exercise
improves cognitive performance (da Silva et al., 2018).
Therefore, active physical exercise can reduce the likelihood
of cognitive impairment in older adults (de la Rosa et al.,
2020). Exercise also slows the progression of AD by
improving mitochondrial function and REDOX homeostasis
(Teglas et al., 2020). Regular running is beneficial for people
who have traditional cardiovascular risk factors (Tapia-Rojas
et al., 2016). Studies have shown that exercise may also
affect Aβ levels by modulating the immune response of AD
patients (Nichol et al., 2008). Exercise training improves
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cognitive function in AD patients (Zhang et al., 2017). Hence,
regular exercise training has a series of positive effects on AD.

Evidence shows that exercise training can enhance heart
function and is beneficial in delaying cardiac aging and
reducing the occurrence of heart failure (Lai et al., 2014).
Physical exercise can also improve cardiac diastolic
dysfunction, reduce lipid overaccumulation, reduce oxidative
damage, and to some extent, improve the mobility and life
span of Drosophila (Wen et al., 2019). Endurance exercise
promotes health and longevity, while chronic endurance
training also prevents disease, improves heart, skeletal
muscles, and brain functions, and reduces obesity, heart
disease, and cognitive decline (Sujkowski et al., 2020).
Running is an effective way to delay cardiac aging (Wen et
al., 2021). Thus, exercise training may alleviate cardiac aging
and its adverse effects.

In animal models of AD, studies conducted on mice have
shown the protective effect of exercise training on the organism
(Kim et al., 2019). Exercise improved short-term recognition
memory and spatial learning and memory ability, and restored
neuronal excitability of APP/PS1 double transgenic mice (Tan
et al., 2020). Exercise also improves the exploration ability (Li et
al., 2019). And running reduced brain inflammation
(Falkenhain et al., 2020) in APP/PS1 double transgenic mice. In
addition, voluntary exercise prevented mitochondrial
dysfunction in AD, enhanced mitochondrial autophagic activity
in the hippocampus, and effectively improved the pathological
phenotype of APP/PS1 transgenic mice (Zhao et al., 2020).
Regular treadmill exercise plays a neuroprotective role in age-
related memory loss (Zeng et al., 2020). In conclusion, exercise
training alleviates age-dependent degenerative diseases such as
AD and improves cognitive and neural activities.

A combined intervention of treadmill exercise and
dietary polyphenols improves cognitive loss in APP/PS1
double transgenic mice and has a therapeutic effect on AD
(Zhang et al., 2016). Running has been found to inhibit the
deposition of Aβ plaques in the hippocampus, one of the
main pathological markers of AD in APP/PS1 double
transgenic mice (Xia et al., 2019). Treadmill exercise reduces
hippocampal neuron loss in APP/PS1 double transgenic
mice (Zhang et al., 2019). Running also improves the
structure and function of the hippocampus and amygdala-
related neurons in APP/PS1 double transgenic mice (Lin et
al., 2015). In addition, exercise combined with probiotic
supplementation can further delay the progression of AD in
APP/PS1 double transgenic mice (Abraham et al., 2019).

Sports training is categorized into voluntary and passive
exercises that bring about different degrees of training effect;
besides, their impact on AD is also not the same. In a
transgenic mouse model of AD, voluntary exercise significantly
reduced Aβ load (Adlard et al., 2005). Long-term treadmill
exercise can better delay the progression of AD neuropathology
in the hippocampus of APP/PS1 double transgenic mice (Liu et
al., 2013). The effect of voluntary exercise in improving
memory impairment due to AD is better than passive exercise
training (Yuede et al., 2009). Long-term treadmill exercise also
had positive effects on cognitive function and synaptic plasticity
in APP/PS1 double transgenic mice (Zhao et al., 2015). The
above-mentioned studies prove that exercise training, especially
voluntary exercise training, has a certain therapeutic effect on

delaying the progression of AD. However, the relationship
between exercise training and Psn is unclear.

Alzheimer’s disease and a high-fat diet
A high-fat diet is also one of the main causes of AD. High-fat
diets have been shown to induce elevated insulin and blood
glucose in the body and lead to the development of fatty
liver (Oliveira et al., 2014). Research data suggest that high-
fat diets have a detrimental effect on the brain, increasing
the prevalence of AD and damaging the structure and
function of the hippocampus, which impact consequently
learning and memory (Stranahan et al., 2008). Obesity
induced by a high-fat diet is one of the main risk factors for
cognitive impairment in AD (Sah et al., 2017). The high-fat
diet causes significant increases in plasma cholesterol (TC),
triacylglycerol (TG), and low-density lipoprotein (LDL-C)
(Park et al., 2018). Long-term high-fat diets can cause the
body to produce more cholesterol and lead to other adverse
effects on the body, increasing the risk of developing AD.

Studies reveal that a high-fat diet produces a series of
negative effects on APP/PS1 double transgenic mice, who
exhibited a phenotype of significantly impaired glucose
tolerance (Hiltunen et al., 2012). Genetic and diet-induced
insulin resistance affects the pre-pathological manifestations
of AD in APP/PS1 double transgenic mice (Bruning et al.,
2000). Both episodic and spatial memory were found to be
impaired in mice fed on a high-fat diet for just one day
(McLean et al., 2018). Further, APP/PS1 double transgenic
mice fed on a high-fat diet exhibited increased body weight,
decreased number of age spots in the hippocampus, and
significant lipid droplets deposition in the liver (Guo et al.,
2021). High-fat diets also promoted Aβ production
(Perdoncin et al., 2021). Moreover, a high-fat diet resulted
in memory and motor dysfunction and impaired
socialization in APP/PS1 double transgenic mice (de Souza
et al., 2019). Bad dietary habits can also cause many adverse
effects. Short-term western diets are sufficient to induce an
increase in oxidative stress in young APP/PS1 double
transgenic mice (Studzinski et al., 2009). Feeding a high-fat
diet to triad transgenic mice (including PSEN1 transgenic
mice) impaired memory capacity, exacerbated memory
deficits in AD mice, and impaired mitochondrial
morphology (Martins et al., 2017). A high-fat diet leads to
altered APP and PSEN1 protein levels and thus affects Aβ
metabolism (Spagnuolo et al., 2020). Other studies have
found that ethyl acetate (EAE) can prevent memory loss
and reduce the progressive development of neurological
disorders in AD patients (Jara-Moreno et al., 2018). A study
found that high-fat diet-fed obese mice exhibit reversible
impairment of hippocampal function (Hao et al., 2016).
Even in the absence of obesity, an unbalanced diet with
prolonged high-fat diets and continuous intake of excessive
fat can cause cognitive impairment in mice (Cifre et al.,
2018). High-fat diets can also have a range of negative
effects on the heart; it is one of the major factors
contributing to CVD (Stobdan et al., 2019). Obesity caused
by a chronic high-fat diet also accelerates the aging of the
body’s heart function and exercise capacity (Wen et al.,
2018). Studies have shown that a high-fat diet can lead to
the accumulation of heart lipids, decrease heart contractility,
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block the conduction, and cause serious structural
lesions (Birse et al., 2010). A high-fat diet can also
induce hereditary heart dysfunction, such as lipotoxic
cardiomyopathy (Guida et al., 2019). It is thus clear that a
high-fat diet can adversely affect the heart function of
Drosophila and damage the integrity of heart structure and
function. However, the relationship between a high-fat diet
and heart Psn awaits further investigation.

Conclusion

In this review, we have systematically explored many articles
on the interaction of the Psn gene and AD with aging,
exercise training, and high-fat diets. Based on these, we
show that the Psn gene is not only closely associated with
aging but is also necessary for adult neuronal survival and
normal heart function. Psn mutations can have many
adverse effects on the body, and regular exercise training
combined with good dietary habits can alleviate the adverse
effects of Psn mutation-induced AD, such as heart
dysfunction and muscle atrophy. However, the relationship
between exercise training, a high-fat diet, and the Psn gene
warrant further investigation. For example, further studies
should focus on whether exercise training can improve
cardiac aging caused by Psn overexpression or knockdown,
a subject poorly examined. Therefore, the study of the
relationship between exercise training, a high-fat diet, and
Psn can provide a more comprehensive understanding of
the prevention and treatment mechanism of aging.
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