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Abstract: The pathogenesis of myelodysplastic syndrome (MDS) may be related to the abnormal expression of microRNAs

(miRNAs), which could influence the differentiation capacity of mesenchymal stem cells (MSCs) towards adipogenic and

osteogenic lineages. In this study, exosomes from bone marrow plasma were successfully extracted and identified.

Assessment of miR-103-3p expression in exosomes isolated from BM in 34 MDS patients and 10 controls revealed its

0.52-fold downregulation in patients with MDS compared with controls (NOR) and was downregulated 0.55-fold in

MDS-MSCs compared with NOR-MSCs. Transfection of MDS-MSCs with the miR-103-3p mimic improved osteogenic

differentiation and decreased adipogenic differentiation in vitro, while inhibition of miR-103-3p showed the opposite

results in NOR-MSCs. Thus, the expression of miR-103-3p decreases in MDS BM plasma and MDS-MSCs, significantly

impacting MDS-MSCs differentiation. The miR-103-3p mimics may boost MDS-MSCs osteogenic differentiation while

weakening lipid differentiation, thereby providing possible target for the treatment of MDS pathogenesis.

Introduction

Bonemarrow loss and a high proclivity to leukemic progression
are the characteristics of myelodysplastic syndrome (MDS).
Recent research has revealed that the mesenchymal niche
plays a significant role in the onset and progression of the
MDS (Chen et al., 2021; Pronk and Raaijmakers, 2019).

The bone marrow microenvironment (BMME) is a
complex network system primarily comprising stromal cells
such as mesenchymal stem cells (MSCs), osteoprogenitor
cells, vascular endothelial cells, monocytes, macrophages, and
cytokines. It maintains normal hematopoietic function by
interacting with hematopoietic stem cells (HSCs) to control
their proliferation and differentiation (Morrison and Scadden,
2014). Considering that an abnormal BMME is essential for
myeloid tumor cell invasion and anti-apoptosis, cloning and
amplifying MDS cells, poor hematopoiesis of bone marrow,

and disease progression, BMME may be a possible
therapeutic target (Matsuda et al., 2004; Mei et al., 2018).

The bone marrow stromal cell (BMSC) population, which
makes up a large part of the hematopoietic microenvironment,
encompasses a variety of adherent cell types. The three most
important types of BMSCs in the BMME are mesenchymal
stem cells, endothelial cells, and osteoblasts, and all three play
important roles in hematopoietic regulation (Chen et al.,
2017; Psaila et al., 2012). Adipocytes, osteoblasts, astrocytes,
cardiomyocytes, chondrocytes, hepatocytes, muscles, and
neurons can all develop from MSCs (Doan and Chute, 2012).
MSCs have a lower ability to differentiate into osteoblasts but
a higher ability to differentiate into adipocytes, which could
be linked to myeloid malignancies (Woods and Guezguez,
2021). However, more research into this mechanism is needed.

Recent research has suggested that the faulty activities of
MDS-MSCs may be related to abnormalities in the expression
of microRNA (Meunier et al., 2020). For example, DICER1
expression is downregulated in MDS-MSCs and MSCs from
acute myeloid leukemia (AML) patients, and microRNA
(miRNA) expression is dysregulated compared with those in
controls (NOR-MSCs), and MSCs from both MDS and
AML patients are changed, thus limiting stromal assistance
to HSCs (Ozdogan et al., 2017; Santamaría et al., 2012).
MiR-7977 causes an abnormal decrease in hematopoietic
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growth factors in MSCs, leading to a reduction in the
hematopoietic supportive capacity of CD34+ cells in the
bone marrow (Horiguchi et al., 2016). Previous studies have
shown that aberrant microRNA expression can affect MDS-
MSCs, which can then affect MDS progression.

MicroRNAs (miRNAs) are non-coding RNAs with a length
of 18–25 nucleotides and always function as a passive precursor
hairpin over target gene expression by degrading or suppressing
mRNA translation (Bartel, 2004). Several recent studies have
shown the relevance of miRNAs in controlling the
hematopoietic microenvironment (Machova et al., 2011).
However, the involvement of miRNAs in the shift in the
differentiation of MSCs from osteoblasts to adipocytes in MDS
is yet to be investigated (Rhyasen and Starczynowski, 2012).
We studied the database GSE139471 by GEO-2R (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139471) and
found reduced expression of miR-103-3p in MDS-MSCs.

In the bone marrow supernatant, miRNAs are mostly
secreted by MSC-derived exosomes and are involved in cell-
to-cell communication, cell signaling, and altering cell or
tissue metabolism. The contents of MSC-derived exosomes
are not static but depend on MSCs tissue origin, their
activities, and their immediate intercellular neighbors.
Hence, abnormal miRNA levels in exosomes are of great
significance when MSCs are cultured with tumor cells or the
in vivo tumor microenvironment (Muntión et al., 2016).

Therefore, in addition to the evidence provided by the
database, we detected the expression level of miR-103-3p in
exosomes from BM supernatant of MDS patients.

MiR-103 is associated with endometrial cancer, breast cancer,
rectal cancer, and other tumors (Chung et al., 2009; Yu et al., 2012;
Nonaka et al., 2015) and is also relevant for the proliferation of
leukemia cells (Kfir-Erenfeld et al., 2017). MiR-103 plays a key
role in facilitating the differentiation of MSCs into adipocytes and
promotes preadipocyte ER stress and apoptosis by inhibiting the
canonical Wnt/β-catenin pathway (Zhang et al., 2018).

Osteogenic differentiation is regulated by: runt-related
transcription factor 2 (RUNX2). RUNX2 is an essential regulator
of bone formation and osteogenic differentiation of MSCs
(Almalki and Agrawal, 2016). It has a significant impact on the
transformation of bone marrow mesenchymal stem cells to
osteoblasts (Zhao et al., 2021) and has been identified as a
major player in the maintenance of bone homeostasis by
promoting osteogenic differentiation of MSCs (Djouad et al.,
2017). A number of miRNAs have been recently identified in
the regulation of RUNX2 expression/activity, thus affecting the
process of osteogenesis. MiRNAs targeting RUNX2 corepressors
favor osteogenesis, while those targeting RUNX2 coactivators
inhibit osteogenesis (Narayanan et al., 2019).

Adipogenesis relies on the regulation of the expression
of several transcription factors, including peroxisome
proliferation-activated receptor γ (PPARG). PPARG is one of
the master regulators of adipogenic differentiation (Zhuang et
al., 2016) and is expressed in both osteoblasts and adipocytes,
as well as in MSCs, suggesting its crucial role in regulating
adipocyte formation and osteoblast development (Giaginis et
al., 2007), and it is considered a validation marker of the
adipogenic differentiation of MSCs.

In this study, following our hypothesis thatmiR-103-3p is
related to the function of MDS-MSCs, we detected the

expression and level of miR-103-3p and investigated the
effect of miR-103-3p on the differentiation of MSCs
obtained from the bone marrow of MDS patients.

Materials and Methods

Patients
The MDS patients were recruited from the Department of
Hematology, Guangdong Provincial People’s Hospital,
Guangdong Academy of Medical Sciences, Guangzhou,
Guangdong, China. All the patients diagnosed with MDS
were over 18 years of age. Baseline characteristics of the
study population included sex, age, peripheral blood cell
count, WHO classification, and IPSS-R risk group (Table 1).

Exosome isolation and identification from bone marrow plasma
The Total Exosome Isolation kit (Thermo Scientific,
Waltham, MA, USA) was used to extract exosomes from
bone marrow plasma. We mixed 1 mL plasma with 0.5 mL
PBS and mixed well using a vortex. Then, we added
0.05 mL Proteinase K and 0.2 mL exosome precipitation
reagent to the sample and mixed them thoroughly. After
incubation of the sample for 10 min at room temperature,
we centrifuged the samples for 5 min at room temperature
and 10,000 g and discarded the supernatant. The exosomes
were trapped in a pellet at the tube’s bottom.

Exosomes are formed when the plasma membrane is
doubly invaginated, forming intracellular multivesicular bodies
(MVBs) containing intraluminal vesicles. These vesicles are
finally released as exosomes with diameters varying from 40 to
160 nm because of MVB fusion to the plasma membrane and
exocytosis. Their average diameter is 100 nm. In the realm of
exosome research, nanoparticle tracking analysis (NTA) has
been recognized as one of the methods for exosome
characterization (Kalluri and LeBleu, 2020).

Isolation, culture, and identification of bone marrow
mesenchymal stem cells
Fresh bone marrow was used to isolate the mononuclear cells.
The cells were then placed in a T75 flask, and the culture
medium used was the human MesenCult proliferation kit
(STEMCELL Technologies Canada). When the confluence
reached 90%, cell passage was accomplished with 0.25%
trypsin, usually on the 14th day.

The surface markers of the cultured MSCs were detected by
flow cytometry (BD Biosciences, USA). The MSCs were positive
for CD73, CD90, and CD105 and negative for CD34, CD45, and
CD14 (eBiosciences, USA) (Mushahary et al., 2018), and suitable
isotypic controls were used to characterize the MSCs.

Differentiation analysis
MSCs differentiate into adipogenic and osteogenic lineages
(Malvicini et al., 2019). A total of 2 × 105 cells were seeded per
well in six-well plates containing an osteogenic induction
medium, the OriCell� Adult Bone Marrow Mesenchymal Stem
Cell Osteogenic Induction and Differentiation Kit (Cyagen), for
21 days; the medium was changed every three days for
osteogenic differentiation. On the 21st day, the cells were fixed
for 1 h with paraformaldehyde and then stained with Alizarin
Red S solution at room temperature for 30 min. An adipogenic
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induction medium, the OriCell�Human Bone Marrow
Mesenchymal Stem Cell Adipogenic Differentiation Basal
Medium (Cyagen), was used for adipogenic differentiation. A
total of 2 × 105 cells were plated per well in six-well plates
containing the full lipid-induced differentiation medium. For
each cycle, MSCs were induced to differentiate in medium A
for 72 h and then cultured in medium B for 24 h. After 3–5
induction cycles (21 days), the cells were dyed with an oil red
solution at room temperature for half an hour.

miRNA transfection
miR-103-3p mimic, inhibitor, and negative control (mir-NC)
were synthesized by Ribo Biotechnology Company,
Guangzhou, China. When the MSCs passed to the third
generation and reached 60%–70% confluence, Lipofectamine
3000 Transfection Reagent (Thermo Scientific, Waltham,
MA, USA) was used to transfect human bone marrow
MSCs with miR-103-3p mimic, miR-103-3p inhibitor, and
mir-NC all labeled by fluorescent. The transfection working
solution was discarded after 48 h, and the MSCs were
washed three times with phosphate buffer saline (PBS).

Gene expression analysis
After routine culture for one week, total RNAwas extracted from
the cells using the miRNeasy Mini Kit (Qiagen, Germany). The
extracted RNAwas reverse transcribed into cDNA using miRNA
1st strand cDNA synthesis kit AG11717 (Accurate Biology,
Hunan, China) following the manufacturer’s instructions. The

RNA expression levels of PPARG, RUNX2, and miR-103-3p
were determined using quantitative polymerse chain reaction
(qPCR). The reference gene for miR-103-3p was U6. The
qPCR cycling conditions were as follows: 95°C for 30 s
followed by 40 cycles of 95°C for 5 s and 60°C for 30 s.

Statistical analysis
GraphPad Prism 7.0 (GraphPad Software, San Diego, CA) was
used to perform statistical analysis and prepare graphs. The
means of the two samples were compared by independent-
sample or paired-sample t test, depending on the specific situation.

Results

miR-103-3p expression in exosomes generated from the bone
marrow of patients with myelodysplastic syndrome
Exosomes were extracted from the BM supernatant of MDS
patients, and the exosomal RNA was used for qPCR to
detect the expression level of our target microRNA. The
expression of miR-103-3p was noticeably reduced (0.52-fold,
ΔΔCт = 1.994458422) in exosomes from bone marrow
plasma of 34 patients with MDS compared with healthy
controls (P ≤ 0.01) (Fig. 1A).

Several methods, including electron microscopy, flow
cytometry, and western blot analysis, have been used to
characterize exosomes (Mateescu et al., 2017). Herein,
electron microscopy revealed exosome structures in all the
samples (Fig. 1B). As shown by NTA, exosomes were basically

TABLE 1

Baseline demographics and disease characteristics

Healthy individuals (n = 10) Patients with MDS (n = 34)

Sex, n (%)
Male
Female

6 (60%)
4 (40%)

21 (61.8%)
13 (38.2%)

Median age (years) 31 (25~42) 56 (22~71)

WHO classification, n (%)
MDS-SLD
MDS-MLD
MDS-EB-1
MDS-EB-2
MDS 5q-
MDS-U
MDS-RS

3 (8.8%)
5 (14.7%)
7 (20.1%)
9 (21.4%)
2 (5.9%)
5 (14.7%)
3 (8.8%)

IPSS-R risk group, n (%)
Very low
Low
Intermediate
High
Very high

6 (17.6%)
7 (20.6%)
9 (26.5%)
7 (20.6%)
5 (14.7%)

Hematology, median (min, max)
Hemoglobin (g/L)
Leukocyte count (109/L)
Platelet count (109/L)
Neutrophil count (109/L)

149 (134~154)
5.69 (3.43~7.57)
248 (192~286)
3.25 (1.45~4.93)

72 (44~152)
2.54 (0.62-6.96)
78 (5~362)
1.51 (0.32-4.22)

Notes: MDS-SLD (MDS with single lineage dysplasia); MDS-MLD (MDS with multilineage dysplasia); MDS-EB-1
(MDS with excess blasts-1); MDS-EB-2 (MDS with excess blasts-2); MDS 5q-(MDS with isolated del(5q)); MDS-U
(MDS, unclassifiable); MDS-RS (MDS with ring sideroblasts); WHO, the world health organization; RAEB,
refractory anemia with an excess blast; IPSS-R, revised International Prognostic Scoring System.
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in the distribution range of 30–200 nm (Fig. 1C). The measured
average particle size of the exosome was 189.4 ± 2.6 nm.

The expression of miR‑103-3p in mesenchymal stem cells
derived from bone marrow
MSCs express CD90, CD73, and CD105, but not CD34, CD14,
or CD45, and are plastic-adherent in culture. MDS-MSCs
collected from five samples (P3) expressed >90% CD105,
CD90, and CD73 surface markers, and did not express
CD45, CD34, and CD14 surface markers (Fig. 2A). In early
passage (P3), both MDS-MSCs (n = 5) and NOR-MSCs
(n = 5) had typical fibroblast-like morphology (Fig. 2B).

Analysis of the database GSE139471 by GEO-2R (https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139471)
revealed that the reduction ofmiR‑103-3p was the highest and
was statistically significant in MDS-MSCs among the 384
microRNAs tested, and quantitative real-time-polymerase
chain reaction (qRT-PCR) demonstrated a noticeable
decrease in expression of miR‑103-3p (0.55-fold, ΔΔCт =
3.201984678) in BM MSCs of 19 MDS patients, compared
with healthy donors (P ≤ 0.01) (Fig. 2C).

Inhibition of adipogenic differentiation due to high expression
of miR‑103-3p and enhanced osteogenic differentiation of
myelodysplastic syndrome-mesenchymal stem cells
To determine miRNA transfection concentration and
overexpression in MDS and downregulated in NOR, we

tried transfecting with gradient concentrations (50, 100, 160
nM) miRNA to find the concentration with the highest
transfection success rate by measuring fluorescence signal
and a transfection concentration of 160 nM of the mimic
achieved the highest transfection success rate, that is, more
than 90% (Fig. 3A).

To evaluate whether the aberrant expression ofmiR-103-
3p could affect the function of MSCs in MDS, the miR-103-3p
mimic was transfected along with Lipo3000 into 16
MDS-MSCs. After transfection, there was a noticeable
improvement in the expression of miR‑103-3p in MDS-
MSCs (average fold change 7722.52, P ≤ 0.05) (Fig. 3B).
Meanwhile, we transfected the inhibitor of miR-103-3p into
five NOR-MSCs.

Additional testing was needed to confirm the impact of
miR-103-3p on osteogenic differentiation of MDS-MSCs.
Therefore, we overexpressed miR-103-3p in MDS-MSCs and
downregulated miR-103-3p in NOR-MSCs. Adipogenic
differentiation was significantly inhibited in the MDS-MSCs
+mimic group and enhanced in the NOR-MSCs+inhibitor
group (Fig. 3D). The opposite was observed for adipogenic
differentiation. Meanwhile, the Oil O Red staining revealed
decreased lipid content in the MDS-MSCs+mimic group,
while alizarin red staining revealed a significant reduction in
the formation of mineralized nodules in the NOR-MSC
+inhibitor group (Fig. 3C). For lipid formation, staining in
MDS-MSCs was stronger than NOR-MSCs, and weaker in

FIGURE 1. (A) Expression of miR‑103-3p in exosomes derived from the bone marrow plasma samples from 10 healthy controls and 34
patients with MDS ****P ≤ 0.01. (B) Under the electron microscope, exosome structures were observed in all samples. (C) The measured
average particle size of the samples was 189.4 ± 2.6 nm, and exosomes were basically in the distribution range of 30–200 nm.
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bone formation than NOR-MSCs (Figs. 3C and 3D). These
data indicated that the high expression of miR-103-3p
significantly impeded the advancement of adipogenic
differentiation of MDS-MSCs. Overexpression of miR-103-3p
inhibited osteogenic differentiation of hMSCs. Following the

overexpression of miR-103-3p in MDS-MSCs, there was a
significant increase in the expression of RUNX2, whose activity is
associated with osteoblast differentiation (Narayanan et al., 2019).
However, the expression of PPARG, an indispensable factor of
adipogenesis whose pathway promotes the formation of

FIGURE 2. (A) Phenotypic characterization of bone marrow-mesenchymal stem cells (BM-MSCs) from control (NOR-MSCs) and those of
myelodysplastic syndrome (MDS) (n = 5, P3). (B) Both MDS-MSCs (n = 5) and NOR-MSCs (n = 5) showed typical fibroblast-like morphology
in the early passage (P3). (C) The expression of miR‑103-3p was obviously decreased in the bone marrow of MSCs of patients with MDS,
n = 19, ****P ≤ 0.01.
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adipocytes (Meyer et al., 2016), decreased slightly (Fig. 3E).
Under decreased miR-103-3p expression in NOR-MSCs,
the opposite phenomenon was observed (Fig. 3F).

Discussion

One of the many types of endogenous non-coding, short,
small RNAs, known as miRNAs, control the expression of
certain genes posttranscriptionally by limiting protein
translation or speeding up the degradation of messenger
RNA. The main RNA-induced silencing complex is formed
by complementary binding with 3′UTR of the target gene
mRNA (Bartel, 2004). Over 60% of the human genome
contains potential miRNA-binding sites, so the powerful
potential of miRNA cannot be ignored (Friedman et al.,
2009). We demonstrated that miR-103-3p was poorly
expressed in exosomes and MSCs derived from the patients
with MDS. However, the knowledge of the pathogenetic role
of miR-103-3p in MDS is still lacking. MDS-MSCs may

secrete miRNA into microvesicles, a newly discovered
method for communication and control between cells (Chen
et al., 2010). Therefore, we first detected the expression level
of miR-103-3p in exosomes of MDS BM supernatant and
observed its reduced expression. Then, the same results were
observed when we detected the level of miR-103-3p
expression in MDS-MSCs. These results prove that the
decrease in miR-103-3p levels in bone marrow was due to the
release of MSC-derived exosomes into the BMME. Next, we
discussed the role ofmiR-103-3p in MDS-MSCs in the BMME.

MDS is characterized by ineffective hematopoiesis, which
results in considerable morbidity and mortality. MDS-MSCs have
been shown to support hematopoiesis through physiological
processes, although their role in the pathophysiology of MDS is
still unknown. MDS-derived MSCs have much less osteogenic
differentiation ability, as evidenced by cytochemical staining
and lower expression levels of Osterix and osteocalcin (Geyh
et al., 2013). In contrast, MDS-MSCs have a higher proclivity
to adipogenic differentiation (Wu et al., 2017). Therefore,

FIGURE 3. (Continued)
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through the differentiation experiment to explore the effect of
miR-103-3p on the hematopoietic microenvironment of MDS,
we could verify the effect of miR-103-3p on the differentiation
ability of MDS-MSCs.

Our findings show that downregulation of miR-103-3p
markedly decreased calcium deposition and increased lipid
content. However, there was a significant increase in
calcium deposition and a decrease in lipids in MDS-MSCs
transfected with the miR-103-3p mimic. Silencing of miR-
103-3p by an inhibitor increased the amount of lipids and
decreased calcium deposition. Overexpression of miR-103-3p
promoted the expression of the osteoblastic marker RUNX2
and decreased the expression of the adipogenic marker
PPARG compared with the cells treated with mimic NC on
day 21 after being differentiated. These data suggest that the
low expression of miR-103-3p suppressed the osteogenic
differentiation of MDS-MSCs and promoted adipogenic
differentiation. Histological stainings showed significantly
reduced calcium deposition in MDS-MSCs compared with
that in NOR-MSCs, while there were significantly more
lipid droplets in MDS-MSCs than in NOR-MSCs, which is
in agreement with various earlier studies (Geyh et al., 2013;
Wu et al., 2017). Osteoblasts support hematopoietic
progenitors and comprise a crucial component of the HSC
niche (‘endosteal niche’) (Arai et al., 2004; Calvi et al., 2003;
Shiozawa et al., 2008; Taichman and Emerson, 1994), and
adipogenic differentia which leads to ineffective hematopoiesis
(Shiozawa et al., 2008). However, after the after the level of
miR-103-3p in MDS was further reduced, the lipid-forming
ability of MSCs was weakened, and the osteogenic ability was
enhanced. Therefore, we believe that the function of MSCs is

improved toward hematopoietic, which is beneficial to the
hematopoietic microenvironment of MDS and enhancing the
expression of miR-103-3p can enhance the hematopoietic
support capacity of MSCs.

In summary, miR-103-3p is poorly expressed in plasma
exosomes and MSCs derived from bone marrow of patients
with MDS. Promoting the expression of miR-103-3p could
stimulate osteogenic differentiation and inhibit adipogenic
differentiation of MDS-MSCs in vitro, which can explain the
invalid hematopoiesis of MDS. miR-103-3p has not been studied
earlier for its role in MDS, and no evidence of hematopoietic
association has been reported. Although the specific mechanism
is not yet clear, the relationship between miR-103-3p, MDS-
MSCs, and exosomes is worth further studies, and abnormal
miRNA expression from MDS-MSC-derived exosomes can be
considered a new therapeutic approach for the treatment of MDS.

Conclusion

The results showed that the expression level of mir-103-3p in
MDS exosomes and mesenchymal stem cells was significantly
reduced, and mir-103-3p could significantly affect the
differentiation function of MDS-MSCs in vitro, but the
effect of mir-103-3p on hematopoietic needs further study.
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FIGURE 3. (A) At160 nM concentrations of the miR-103-3p mimic and the inhibitor, the transfection rate of myelodysplastic syndrome-
mesenchymal stem cells (MDS-MSCs) was more than 90%. (B) After the transfection, the expression of miR‑103-3p obviously increased in
MDS-MSCs. (C) To compare the degree of differentiation of the cells in each of the groups (as in the figure above), oil red and alizarin red
staining were conducted. Compared with the NC group, the alizarin red color in the MDS-MSC+mimic group as greatly enhanced, whereas oil
red staining was significantly reduced. (D) Compared with the NC group (control), the NOR-MSC+inhibitor group showed much less
calcification. The density of lipid droplets increased considerably. (E) Quantitative real-time polymerase chain (qRT-PCR) analysis of
mRNA expression levels of RUNX2 in MDS-MSCs and NOR-MSCs transfected with the miR-103-3p mimic or inhibitor. n = 6, *P ≤ 0.01.
(F) Q-PCR analysis of mRNA expression levels of PPARG (coding for peroxisome proliferation-activated receptor γ) in MDS-MSCs and
NOR-MSCs transfected with the miR-103-3p mimic and the miR-103-3p inhibitor. n = 6, * P ≤ 0.01.
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