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Abstract: Amyotrophic lateral sclerosis (ALS), also called Lou Gehrig’s disease, is an irreversible disease that is caused by the

degeneration and death of motor neurons. Approximately 5–10% of cases are familial ALS (fALS), and the other cases are

sporadic ALS (sALS). Gene mutations have been identified both in fALS and sALS patients. In this study, we discuss the four

ALS-related genes, C9orf72, SOD1, FUS, and TARDBP, and review the microRNAs (miRNAs) that are associated with ALS

and other neurological disorders from the literature. A phylogenetic analysis is used to explore potential miRNAs that can be

taken into account when studying the difference in pathology for ALS induced by the four genes and other neurological

diseases such as frontotemporal dementia, spinal muscular atrophy, and narcolepsy. We found several miRNAs that can

be taken into account to study the difference in pathology between ALS and other neurological disorders.

Introduction

Amyotrophic lateral sclerosis (ALS) is an irreversible disease
that may begin with limb weakness or with difficulty
swallowing or speaking and gradually lead to the loss of
voluntary muscle movement. This disease was discovered in
the 19th century (Rowland, 2001; Visser et al., 2008). It is
also called Lou Gehrig’s disease because the American
baseball player Lou Gehrig was diagnosed with ALS in the
1930s. Not all ALS patients experience the same disease
course, but progressive paralysis is commonly experienced.
The mean survival time with ALS is less than five years, but
14% of the cases live longer than five years (Mateen et al.,
2010). The motor neurons in the brain are called upper
motor neurons, and those in the spinal cord are called lower
motor neurons. Motor neurons control muscle movement.
The upper motor neurons transmit nerve impulses to lower
motor neurons, and the lower motor neurons send nerve
signals to muscles. In ALS, both the upper motor neurons
and the lower motor neurons degenerate or die and stop
sending messages to the muscles.

Approximately 5–10% of cases, called familial ALS
(fALS), are inherited from family members, and they are
caused by genetic mutations (Kurland and Mulder, 1955).
Around 90% of patients are called sporadic ALS (sALS).

Gene mutations have been identified in fALS and sALS
patients (Sreedharan et al., 2008; Vance et al., 2009;
DeJesus-Hernandez et al., 2011; Chen et al., 2013),
especially the mutations of the four genes chromosome 9
open reading frame 72 (C9orf72), superoxide dismutase 1
(SOD1), fused in sarcoma (FUS), and TARDBP. Genetic
defects occur in about 20–30% of fALS cases (Maruyama et
al., 2010). Among those, 20% are caused by a mutation in
the SOD1 gene, 4–5% are the results of mutations in
TARDBP and FUS genes, more than 30% are associated
with C9orf72 mutations, and the rest are associated with
other known or unknown genes (Chen et al., 2013). Most
sALS cases are caused by unknown factors. A small fraction
of sALS is caused by the four genes C9orf72, SOD1, FUS,
and TARDBP (Turner et al., 2013). Besides gene mutations,
environmental factors contribute to disease liability
(Oskarsson et al., 2015).

In addition to gene mutations involved in the pathology of
ALS, microRNA (miRNA) biomarkers have been identified for
ALS. A miRNA is a small single-stranded non-coding RNA that
functions in the epigenetic control of gene expression (Wu et al.,
2010). miRNAs were shown to be linked to many diseases,
including cancer, periodontal disease, neurodegenerative diseases,
hematological diseases, and autoimmune diseases (Alevizos and
Illei, 2010; Lee et al., 2011; Grasedieck et al., 2013; Maciotta
Rolandin et al., 2013; Hsieh et al., 2014; Wang, 2016a; Takuse
et al., 2017; Ricci et al., 2018; Taguchi and Wang, 2018a; Taguchi
and Wang, 2018b; Chen and Wang, 2020b; Wang, 2020).
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Dysregulation of miRNAs might play an important role in the
pathogenesis of multiple forms of human ALS (Emde et al.,
2015). In this study, miRNA biomarkers for ALS and other
neurological diseases are discussed. Then, we cluster these
miRNA biomarkers to find potential miRNAs that can be
used to investigate the difference of pathology between ALS
and other neurological diseases.

The method used in this study is first to find miRNA
biomarkers from the literature for ALS and other
neurological diseases, respectively. These neurological diseases
include frontotemporal dementia, Parkinson’s disease,
Alzheimer’s disease, spinal muscular atrophy, Prader–Willi
syndrome, Niemann–Pick disease, neurofibromatosis,
narcolepsy, Friedreich’s ataxia, and ataxia-telangiectasia.
Then, we cluster the biomarker sequences for ALS and
neurological diseases by plotting phylogenetic trees based on
different evolutionary models. Since a large proportion of
fALS can be linked to one of the four genes (Turner et al.,
2013), we explore potential miRNAs to study the difference
in pathology for ALS induced by these four genes and other
neurological diseases. The phylogenetic tree is one of the
useful tools of the phylogenetic analysis (Graur and Li, 2000;
Wang and Hung, 2012), which has been successfully used in
finding cancer miRNA biomarkers (Wang, 2016b). The
phylogenetic tree combined with the microarray analysis can
increase the accuracy of the miRNA biomarker prediction of
cancer compared with the method only using microarray
analysis (Wang, 2016b).

Four genes related to ALS
Many genes were shown to be associated with ALS. In this
study, we mainly focus on the four genes C9orf72, SOD1,
FUS, and TARDBP. We briefly describe these genes.

The C9orf72 gene is located on the short arm of
chromosome 9, open reading frame 72. The protein is
abundant in neurons of the brain and motor neurons of the
spinal cord. The mutation of C9orf72 was found to be
associated with both ALS and frontotemporal dementia
(FTD) (DeJesus-Hernandez et al., 2011; Renton et al., 2011;
Majounie et al., 2012). The mutation is a hexanucleotide
repeat expansion of the six nucleotides GGGGCC. Healthy
subjects carry 2-10 hexanucleotide GGGGCC repeats in the
C9orf72 gene, while more than a few hundred repeats
represent a risk for ALS. Mutations in C9orf72 account for
20–40% of fALS. It occurs more often in patients older than
50 years old.

The SOD1 gene is located on chromosome 21. SOD1 is
an enzyme that can destroy free superoxide radicals in the
body. In 1993, genetic mutations in the SOD1 gene were
found to be linked to fALS (Rosen et al., 1993). This is the
first discovery of a genetic link to ALS. More than 160
different disease-associated mutations have been found in
SOD1. Toxic effects caused by the mutations in the SOD1
gene are involved in ALS pathogenesis (Sangwan and
Eisenberg, 2016).

The FUS gene is located on chromosome 16. The RNA-
binding protein fused in sarcoma/translocated in sarcoma
(FUS/TLS) is encoded by the FUS gene. Mutations in the
FUS/TLS gene were discovered to cause fALS (Kwiatkowski
et al., 2009; Vance et al., 2009). Mutations in FUS account for

5% of fALS (Shang and Huang, 2016). In addition, FUS is
related to FTD for sporadic cases or familial cases (Neumann
et al., 2009; Zhou et al., 2014; Bradfield et al., 2017).

TARDBP is a gene located on chromosome 1, which
encodes TAR DNA-binding protein 43 (TDP-43).
Frontotemporal lobar degeneration is associated with tau,
TDP-43, or FET protein accumulation (Mackenzie and
Neumann, 2016). TDP-43 proteinopathy is associated with
chronic traumatic encephalopathy (CTE) (McKee et al., 2010;
Jayakumar et al., 2017). The abnormalities of TDP-43 are
correlated with the clinical features of Alzheimer’s disease
(Tremblay et al., 2011). Evidence suggests a pathophysiological
link between TDP-43 and ALS (Sreedharan et al., 2008).
Mutations in TARDBP account for 5% of fALS.

MicroRNA biomarkers
Several ALS miRNA biomarkers related to C9orf72, SOD1,
FUS, and TARDBP were discussed in the literature. From a
regulatory network analysis, TDP-43 and C9orf72 are
possible targets of miR-142-3p (Matamala et al., 2018). In
cerebrospinal fluid samples of sALS patients, five TDP-43
binding miRNAs, miR-132-5p, -132-3p, -143-3p, -143-5p
and -574-5p, were significantly dysregulated (Freischmidt et
al., 2013). Downregulation of miR-132-5p/3p and miR-574-
5p/3p was evident in TARDBP, FUS, and C9ORF72, but not
SOD1 mutant patients (Freischmidt et al., 2013). Let-7b
levels are significantly reduced in both FUS and C9ORF72
mutant immortalized lymphoblast cell lines (Freischmidt et
al., 2013). The survival time of SOD1-G93A mice was
significantly extended by treatment with anti-miR-155
compared with control cases (Koval et al., 2013). Mature
miR-206 was increased in fast-twitch muscles in the SOD1-
G93A mice model (Toivonen et al., 2014). miR-124a is
reduced in the spinal cord tissue of SOD1-G93A mice
(Morel et al., 2013). miR-27a was highly expressed in ALS
subjects compared with healthy control subjects (Butovsky
et al., 2012b).

In addition to miRNAs related to the four genes, we also
discuss miRNAs that may not directly relate to these four
genes but are shown to be associated with ALS. These
miRNA biomarkers were predicted in Taguchi and Wang
(2018b) and other studies, including miR-1290, miR-1246,
miR-181a-5p, miR-4701, miR-4485, miR-455, miR-26a,
miR-23a, miR-146a* and miR-1825. miR-1290 and miR-
1246 were down-regulated in sALS (Wakabayashi et al.,
2014). The receiver operator characteristic (ROC) curve
analyses indicated that miR181a-5p may be used as a
prognostic and disease progression biomarker of sALS
(Benigni et al., 2016). miR-4701 and miR-4485 had
significantly different expression levels in sALS patients
compared with healthy controls (Chen et al., 2016). The
expression levels of miR-455 and miR-26a are different in
ALS and controls (Jensen et al., 2016). ALS patients had
lower levels of skeletal muscle peroxisome proliferator-
activated receptor γ coactivator-1α (PGC-1α) mRNA
compared with healthy control subjects, and miR-23a had a
reduction in PGC-1α levels (Russell et al., 2013).
Furthermore, miR-146a* could contribute to the selective
suppression of low molecular weight neurofilament (NFL)
mRNA observed in sALS (Campos-Melo et al., 2013).
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miR-1825 was significantly down-regulated in sALS patients’
plasma (Takahashi et al., 2015).

Furthermore, several miRNA biomarkers were
suggested in other studies. Overexpressing miR126-5p in
SOD1-G93A mice muscles inhibits the neurodegenerative
process that might identify a non-cell-autonomous
neurodegeneration process in ALS (Maimon et al., 2018).
miR-374b-5p, miR-206, and miR-143-3p of sALS patients
were shown to be decreased compared to controls (Waller
et al., 2017). miR-206 and miR-424 are potential
prognostic markers in spinal onset ALS (de Andrade et al.,
2016). miR-132 and miR-125b were upregulated in ALS
patients (Kovanda et al., 2018). In addition to miR-206,
miR-143-3p, and miR-132, which were mentioned above as
related to the four genes, miR126-5p, miR-374b-5p, and
miR-424 are potential biomarkers that can be investigated
in a future study.

Materials and Methods

miRNA biomarkers of ALS and other neurological disorders
To investigate the relationship between ALS and other
neurological diseases through miRNA biomarkers, we also
discuss miRNA biomarkers for other neurological disorders.

Tab. 1 lists miRNA biomarkers of ALS caused by the four
genes and other neurological disorders, such as Williams
syndrome, Parkinson’s disease, Alzheimer’s disease, etc. We
select these neurological disorders listed in Tab. 1 because,
from our analysis, we can determine at least one miRNA
biomarker for each of these neurological disorders such that
these miRNAs can be used to investigate the difference in
pathology between these neurological diseases and ALS. In the
results section, we discuss more details of this analysis result.

For the diseases in Tab. 1, since FTD is closely related to
ALS and both share some common miRNA biomarkers, we
discuss miRNA biomarkers of FTD here. A validation study
confirmed the downregulation of miR-663a, miR-502-3p,
and miR-206 in FTD patients (Grasso et al., 2019); a
mechanism involving miR-124 and AMAPRs was identified
in regulating social behavior in FTD (Gascon et al., 2014);
miR-132 significantly differentiates frontotemporal lobar
degeneration with TDP-43 inclusions (FTLD-TDP) and
control brains (Chen-Plotkin et al., 2012); and qRT-PCR
analyses showed that miR-922, miR-516a-3p, miR-571,
miR-548b-5p, and miR-548c-5p were significantly
dysregulated in cerebellar tissue samples of progranulin
(PGRN) mutation carriers for FTLD-TDP patients (Kocerha
et al., 2011).

TABLE 1

miRNA biomarkers for several neurological disorders and amyotrophic lateral sclerosis (ALS) related to the four genes

Disease miRNA References

Amyotrophic
lateral sclerosis

miR-142-3p, miR-132-5p/3p,
miR-574, let-7b, miR-155, miR-206, miR-124a, miR-27a,
miR-143-3p/-5p

(Butovsky et al., 2012a; Freischmidt et al., 2013; Koval et
al., 2013; Morel et al., 2013; Toivonen et al., 2014;
Matamala et al., 2018)

Frontotemporal
dementia

miR-663a, miR-502-3p, miR-206, miR-124, miR-132,
miR-922, miR-516a-3p, miR-571, miR-548b-5p, miR-
548c-5p

(Kocerha et al., 2011; Chen-Plotkin et al., 2012; Gascon et
al., 2014; Grasso et al., 2019)

Parkinson’s
disease

miR-133b,miR-92a-3p,miR-16-5p, miR-615-3p,miR-877-
3p, miR-100-5p, miR-320a, miR-877-5p, miR-23a-3p,
miR-484, miR-23b-3p, miR-15a-5p, miR-324-3p, miR-
19b-3p, miR-505-3p

(Kim et al., 2007; Khoo et al., 2012; Heman-Ackah et al.,
2013; Prajapati et al., 2015; Hoss et al., 2016; Leggio et al.,
2017; Chen et al., 2018; Taguchi and Wang, 2018a)

Alzheimer’s
disease

miR-107, miR-9, miR-124a, miR-125b, miR-128, miR-
26b, miR-144, miR-29, miR-34, miR-181, miR-106, miR-
146a, miR-132, miR-153

(Kim et al., 2007; Lukiw, 2007; Wang et al., 2008; Absalon
et al., 2013; Cheng et al., 2013; Banzhaf-Strathmann et al.,
2014; Gupta et al., 2017)

Spinal muscular
atrophy

miR-9, miR-206,miR-132,miR-183,miR-335-5p, miR-431,
miR-375

(Kye et al., 2014; Wang et al., 2014; Bhinge et al., 2016;
Wertz et al., 2016; Magri et al., 2018)

Prader–Willi
syndrome

miR-24-3p, miR-122, miR-23a-3p, miR-764, miR-1264,
miR-1912

(Zhang et al., 2013; Magri et al., 2018; Pascut et al., 2018)

Niemann–Pick
disease

miR-196a, miR-98, miR-143, miR-155 (Ozsait et al., 2010; Pascut et al., 2018; Pergande et al.,
2019)

Neurofibromatosis miR-29c, miR-34a, miR-214, miR-10b, miR-204, miR-21,
miR-486-3p

(Chai et al., 2010; Gong et al., 2012; Sedani et al., 2012;
Masliah-Planchon et al., 2013)

Narcolepsy miR-188-5p, miR-4499, miR-1470, miR-4455, miR-30c,
let-7f, miR-26a, miR-130a

(Holm et al., 2014; Mosakhani et al., 2017)

Friedreich’s ataxia miR-886-3p,miR-15a-5p, miR-26a-5p, miR-29a-3p, miR-
223-3p, miR-24-3p, miR-128-3p, miR-625-3p, miR-130b-
5p, miR-151a-5p, miR-330-3p, miR-323a-3p, miR-142-3p

(Mahishi et al., 2012; Dantham et al., 2018; Seco-Cervera
et al., 2018)

Ataxia
telangiectasia

miR-18a, miR-421 (Hu et al., 2010; Guibinga et al., 2012; Wu et al., 2013)
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Phylogenetic tree analysis
We adopted a phylogenetic tree analysis to find potential
miRNAs that could be used to investigate the difference in
pathology between other neurological diseases and ALS
induced by the four genes. These miRNA biomarkers were
clustered based on the phylogenetic tree analysis. Since the
similarity of two nucleotide sequences can be measured
using different evolutionary models, we plotted phylogenetic
trees based on different evolutionary models using the
MATLAB software (Mathworks, 2014).

To perform this method, we needed to find miRNA
biomarkers of ALS and other neurological disorders,
respectively. The miRNA biomarkers are listed in Tab. 1. To
plot the phylogenetic tree of these miRNAs, we used the
stem-loop sequences of these biomarkers because they may
provide more information than the mature -5p sequence
and mature -3p sequence. The stem-loop sequences can be
accessed from the miRBase (http://www.mirbase.org/)
(Kozomara and Griffiths-Jones, 2013). To classify these
miRNA sequences, we first needed to calculate the distances
for any two miRNA sequences. Next, we classified the
sequences such that sequences with a small distance can be
clustered into a group. In the study, we applied the
phylogenetic tree method to classify these sequences. Thus,
using the MATLAB software requires two steps: The first is
to select an evolutionary model to calculate the distance
between two nucleotide sequences; after calculating all the
distances of any two sequences, the second step is to find a
clustering method to build a tree.

The distance model method in the MATLAB software
includes the p-distance, Jukes–Cantor distance, alignment score
distance, etc. The clustering method (linkage function) in the
MATLAB software includes the median method, the single
method, and the average method, and so on. In this study, we
used the Jukes–Cantor distance (or the alignment score
distance) to calculate the distances and the median method (or
the average method) as the linkage functions to build a tree.

Results

miRNAs
We plotted the phylogenetic trees of the 9 ALS miRNA
biomarkers in Tab. 1 and each biomarker for other
neurological disorders. Fig. 1 shows the phylogenetic trees
based on the 9 miRNA biomarkers of ALS and miR-335,
which is a biomarker of spinal muscular atrophy. Figs. 1a and
1b were plotted based on the Jukes–Cantor distance and the
average linkage function method, and the alignment score
distance and the median linkage function method, respectively.
From Fig. 1a, miR-335 is in another branch of the tree based
on the Jukes–Cantor distance. In addition, except for the
biomarker miR-155 of ALS, miR-335 is also in a separate
branch of the tree in Fig. 1b, based on the alignment score
distance. miR-155 is a biomarker of ALS related to the SOD1
gene. We present more discussions of miR-155 in the
discussion section. From this phylogenetic tree analysis, we
found that miR-335 may be a useful biomarker to discriminate
spinal muscular atrophy and ALS. As a result, miR-335 can be
a potential miRNA to investigate the difference in pathology
between spinal muscular atrophy and ALS.

Fig. 2 shows the phylogenetic trees of miR-1470
(narcolepsy miRNA biomarker) and the 9 ALS miRNA
biomarkers. From Figs. 2a and 2b, miR-1470 is in a separate
branch of the two trees. Thus, miR-1470 may be a potential
miRNA for investigating the difference in pathology
between narcolepsy and ALS.

Fig. 3 shows the phylogenetic trees of miR-548b (FTD
miRNA biomarker) and the 9 ALS miRNA biomarkers.
Unlike miR-335 and miR-1470, which are always in a
separate branch of the trees, in Fig. 3a, miR-548b cannot
be clustered to a different group. In Fig. 3b, miR-548b is
in a separate branch of the tree compared with the other 8
ALS biomarkers, excluding miR-155. Since miR-548b is
clustered in a separate group in one of the two trees,
we may consider that miR-548b is a potential miRNA
for investigating the difference of pathology between
FTD and ALS.

In addition to the three miRNAs, miR-335, miR-1470,
and miR-548b in Figs. 1–3, Tab. 2 lists other miRNAs of
Tab. 1 that have the potential to be used in investigating the
difference of pathology between the other neurological

FIGURE 1. (a) The phylogenetic tree of miR-335 and the 9 ALS
miRNA biomarkers based on the Jukes–Cantor distance and the
average linkage method. (b) The phylogenetic tree of miR-335 and
the 9 ALS miRNA biomarkers based on the alignment-score
distance and the median linkage method.
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FIGURE 2. (a) The phylogenetic tree of miR-1470 and the 9 ALS
miRNA biomarkers based on the Jukes–Cantor distance and the
average linkage method. (b) The phylogenetic tree of miR-1470
and the 9 ALS miRNA biomarkers, based on the alignment score
distance and the median linkage method.

FIGURE 3. (a) The phylogenetic tree of miR-548b and the 9 ALS
miRNA biomarkers based on the Jukes–Cantor distance and the
average linkage method. (b) The phylogenetic tree of miR-548b
and the 9 ALS miRNA biomarkers based on the alignment-score
distance and the median linkage method.

TABLE 2

Potential miRNAs for investigating the difference of pathology between other neurological diseases and ALS induced by the four genes

Disease miRNA

Frontotemporal dementia miR-548b, miR-548c

Parkinson’s disease miR-133b

Alzheimer’s disease miR-29, miR-181

Spinal muscular atrophy miR-335, miR-375

Prader–Willi syndrome miR-24

Niemann–Pick disease miR-98

Neurofibromatosis miR-10b

Narcolepsy miR-4499, miR-1470, miR-4455

Lesch–Nyhan syndrome miR181a

Friedreich’s ataxia miR-886, miR-29a, miR-24

Ataxia telangiectasia miR-18a
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disorders of Tab. 1 and ALS. For each miRNA in Tab. 2, either
one of the two trees or both trees shows that the miRNA is in a
separate branch of the tree. Fig. S1 provides the trees in which
the miRNAs are in a separate branch based on the Jukes–
Cantor distance and the average linkage method. Fig. S2
provides the cases for the alignment score distance and the
median linkage method.

In Figs. 1b and 3b, a SOD1 biomarker, miR-155, is alone
in a separate branch. In addition to these two Figs., this
phenomenon frequently occurs in the phylogenetic trees of
other miRNAs, listed in Tab. 2.

Validation
To confirm these identified miRNAs, we use the Human
MicroRNA Disease Database (HMDD) to provide a
validation of these results. HMDD is a database that
provides experiment-supported evidence for human miRNA
and disease associations (Huang et al., 2018). We use
HMDD to validate our results from three aspects. The first
one is to check whether the miRNAs listed in Tab. 2 are
associated with ALS. Since the miRNAs listed in Tab. 2 are
used to classify ALS with the other diseases, they should not
be associated with ALS. We uploaded the miRNAs listed in
Tab. 2 to HMDD. For the 18 miRNAs, none of them are
associated with ALS in HMDD. Therefore, we validate that
the selected miRNAs are not ALS-related miRNAs.

The second aspect is to check whether the selected
miRNAs are associated with the corresponding diseases
listed in Tab. 2. In HMDD, we have confirmed that miR-
548b and miR-548c are associated with FTD, miR-133b is
associated with Parkinson’s disease, miR-29 and miR-181
are associated with Alzheimer’s disease, miR-335 is
associated with spinal muscular atrophy, and miR-18a is
associated with ataxia-telangiectasia. Therefore, 7 of the
selected miRNAs are confirmed to be related to their
corresponding diseases, but not ALS.

The third aspect is to check the miRNAs listed in Tab. 1.
The result is presented in Tab. 3. The second column of Tab. 3
lists miRNAs that are confirmed in HMDD to be related to the
diseases but not ALS; the third column of Tab. 3 lists the

miRNAs in the second column that are selected by the
phylogenetic method. From Tab. 3, it can be seen that there
are many miRNAs selected by this method. Therefore, this
phylogenetic tree method can select miRNAs that may be
potential to be used in studying the difference of pathology
for ALS and other neurological diseases. This also reveals
that these identified miRNAs listed in Tab. 2 have the
potential to be used for studying the difference of pathology
for ALS and their corresponding neurological diseases (Fig. 4).

In addition, the above mentioned phylogenetic trees were
plotted based on the stem-loop sequences. We can compare
the stem-loop sequence analysis result with the 3p- or 5p-
miRNA sequence analysis result using the 7 selected
miRNAs of the third column in Tab. 3. But the 3p- or 5p-
miRNA sequence of miR-206 can not be obtained from
miRBase. Thus, we use the other 8 miRNA biomarkers of
ALS in the 3p- or 5p- miRNA sequence analysis. Compared
with the stem-loop sequences, the 3p- or 5p- miRNA
sequences analysis only selected the 3 miRNAs, miR-335,
miR-548c, and miR-133b, among the 7 miRNAs. Figs. S3
and S4 show the phylogenetic trees of the 3p- or 5p-
miRNA sequences analysis for these 3 miRNAs. More
comparisons of the stem-loop sequence and 3p- (or 5p-)
miRNA sequence will be investigated in a future study.

Discussion

Phylogenetic tree analysis has been widely used in the study of
miRNAs. Phylogenetic tree-informed miRNA analysis has
uncovered conserved and lineage-specific miRNAs in
Camellia during floral organ development (Yin et al., 2016);
the phylogenetic analyses highlighted the potential of
miRNAs to become an invaluable tool to resolve previously
intractable nodes within the tree of life (Tarver et al., 2013),
and the evolution of the two disease resistance-related
miRNAs, miR-482 and miR-1448, was inferred using the
phylogenetic analyses (Zhao et al., 2012). The phylogenetic
age of miRNAs was computed in a study that concluded
that older miRNAs were significantly more likely to be
associated with disease than younger miRNAs (Patel and

TABLE 3

miRNAs related to the corresponding disease but not ALS from the Human MicroRNA Disease Database (HMDD), and miRNAs
selected by the phylogenetic tree method

Disease miRNA related to the corresponding disease but not ALS Selected miRNAs by the method

Frontotemporal dementia miR-922, miR-516a-3p, miR-571, miR-548b-5p, miR-548c-5p miR-548b-5p, miR-548c-5p

Parkinson’s disease miR-133b, miR-19b-3p miR-133b

Alzheimer’s disease miR-107, miR-29, miR-181, miR-153 miR-29, miR-181

Spinal muscular atrophy miR-206, miR-335-5p, miR-335

Prader–Willi syndrome – –

Niemann–Pick disease miR-196a –

Neurofibromatosis – –

Narcolepsy – –

Friedreich’s ataxia hsa-miR-625-3p, hsa-miR-330-3p, hsa-miR-323a-3p, hsa-miR-142-3p –

Ataxia telangiectasia miR-18a miR-18a
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Capra, 2017). Furthermore, a combination of the phylogenetic
tree analysis with a bioinformatics method can increase the
accuracy of miRNA cancer biomarker prediction compared
with only using the bioinformatics method alone (Wang,
2016b). The phylogenetic relationship of the miRNA
biomarkers has been used to investigate the association
between anti-NMDA receptor encephalitis and vaccination
(Wang, 2017). In addition, the phylogenetic analysis has been
used to explore the association between anti-NMDA receptor
encephalitis and tumors based on miRNA biomarkers (Wang,
2019) and the association between two diseases (Chen and
Wang, 2020b). These studies showed that phylogenetic
analysis is a useful tool to explore miRNA functions.

Compared with the 9 ALS miRNA biomarkers, the
miRNAs listed in Tab. 2 can be clustered to a separate
group of the tree or be clustered with miR-155 to a separate
group of the tree either using the alignment-score distance
or the Jukes–Cantor distance. Thus, these identified
miRNAs may be taken into account when studying the
difference in the mechanisms for these diseases. Among
these ALS miRNA biomarkers, miR-155 related to the
SOD1 gene is different from the other biomarkers because it
is often in a separate branch of the trees. There are several
situations, such as miR-155, alone in a separate branch, or
miR-155, with a disease biomarker in a separate branch.

Therefore, more studies into the miR-155 regulatory
mechanism may be useful in understanding the difference of
pathologies for ALS and other neurological disorders.

In addition, miRNA studies can be used to investigate the
comorbidities of diseases (Wang, 2019; Chen andWang, 2020a;
Chen and Wang, 2020b; Wang, 2020). I might use miRNA
biomarkers to explore the comorbidities of ALS in a future
study. Neurological disorders and cancer were shown to be
the comorbidities of ALS in the literature. FTD was shown to
be associated with ALS in many studies. ALS is developed in
about 15% of patients with FTD (Van Mossevelde et al.,
2017). The repeat expansion of C9orf72 is a major cause of
FTD and a cause of other neurodegenerative diseases,
including ALS (Dobson-Stone et al., 2013). As a result, the
hexanucleotide repeat expansions of the C9orf72 gene link
FTD to ALS (Renton et al., 2011; Benigni et al., 2016). Mouse
models of C9orf72 hexanucleotide repeat expansion to relate
these two diseases were explored (Liu et al., 2016; Batra and
Lee, 2017; Ji et al., 2017).

The ALS drug, Riluzole, was found to be an anti-cancer
drug in various cancers, including breast cancer, brain tumor,
prostate cancer, osteosarcoma, and melanoma (Akamatsu et
al., 2009; Le et al., 2010; Dolfi et al., 2017; Liao et al., 2017;
Sperling et al., 2017). ALS might be inversely associated with
cancer because a lower risk of cancer was observed in ALS
patients, but a higher risk of ALS was observed in cancer
patients compared with controls (Fang et al., 2013; Freedman
et al., 2013). A microarray and survival analysis showed that
ALS is related to cancer (Taguchi and Wang, 2017).

Conclusion

ALS is a complex disease, and its pathogenesis remains
unknown. Several genetic factors, including C9orf72, SOD1,
FUS, and TARDBP, have been discovered to be associated
with ALS. Genes related to ALS may also be associated with
other neurological disorders such as FTD. miRNA biomarkers
of ALS and other neurological disorders have been discussed
in the related literature. To the best of our knowledge, there
have not been any studies exploring the difference of
pathology between two neurological disorders using their
miRNA biomarkers based on the phylogenetic tree analysis.

In this study, we applied the phylogenetic tree to analyze
miRNA biomarkers of ALS and other neurological diseases.
Using this method, we found a number of miRNAs that can be
taken into account when studying the difference of pathology of
ALS induced by the four genes and other neurological disorders
such as frontotemporal dementia, Parkinson’s disease,
Alzheimer’s disease, spinal muscular atrophy, Prader–Willi
syndrome, Niemann–Pick disease, neurofibromatosis,
narcolepsy, Friedreich’s ataxia, and ataxia-telangiectasia. In
addition to these neurological disorders, this method can be
used to explore the difference in pathology between ALS and
other diseases. This may provide a useful direction in exploring
the pathology of diseases based on miRNA biomarkers.
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FIGURE 4. The flowchart of finding miRNAs that are potential to be
used in studying the difference of pathology for ALS and another
neurological disorder.
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Supplementary Materials

FIGURE S1. Phylogenetic tree based on Jukes-Cantor distance and the
average linkage method.

FIGURE S2. (continued)
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FIGURE S2. Phylogenetic tree based on alignment-score distance and the median linkage method.
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FIGURE S3. Phylogenetic tree for 3p- or 5p- miRNA sequences based on Jukes-Cantor distance and the average linkage method.

FIGURE S4. Phylogenetic tree for 3p- or 5p- miRNA sequences based
on alignment-score distance and the median linkage method.
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