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Abstract: Tea (Camellia sinensis [L.] O. Kuntze.) is an important cash crop,
which mainly uses tender shoots and young leaves for manufacturing. Due to
the marketing characteristic that earlier made tea has higher price, the time of
the breaking of winter dormancy buds in spring is extremely important in tea
industry. Strigolactones are a group of carotenoids-derived metabolites which reg-
ulates bud outgrowth, shoot branching, tiller angle and environmental stress
responses. The role of strigolactones in tea plant was briefly summarized in the
current review, with an emphasis of the association of strigolactones on bud eco-
dormancy and shoot branching. The involvement of strigolactones on the bio-
synthesis of the tea characteristic metabolites flavonoids, caffeine and theanine
were also discussed. Moreover, recent advances on the biosynthesis of strigolac-
tones and its regulation by microRNAs and environmental stresses were also pre-
sented. This review provides a basis for future investigations underlying the
mechanisms of strigolactones on bud winter dormancy and tea secondary
metabolism.
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1 Introduction

Tea (Camellia sinensis [L.] O. Kuntze.) is used for producing a non-alcoholic beverage consumed
worldwide with unique flavor and health benefits [1]. The quality of processed tea is basically determined
by the secondary metabolisms constituents in tea leaves, include flavonoids and alkaloids (the main
contributors determining tea flavour and astringency), amino acids (the main contributors towards the
umami taste of tea infusions) [2–4]. As an evergreen perennial crop, tea plants initiate shoot elongation
and undergo winter dormancy in late autumn in each annual growth cycle to resist against environmental
stresses, especially low temperatures, for survival during the winter. When environmental conditions are
suitable in the early spring, the buds break dormancy and begin a new growth cycle. Tea yield largely
depends on newly sprouted shoot tips with two unfolded leaves, which are generally harvested for green
tea processing. Bud outgrowth activity has long been a target of breeding selection, because it
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significantly affects crop yields by affecting both tiller number and inflorescence complexity [5]. Bud
dormancy release time is pivotal in influencing spring tea price and yield [6]. However, winter dormancy
molecular mechanisms are not well elucidated so far.

The relationship between winter dormancy and plant hormones has been intensively uncovered. The
changes in the level of active gibberellins (GAs) is associated with induction of growth cessation
primarily regulated by circadian clock [7]. Numerous genes related to hormone metabolism or signaling
are differentially expressed in transcriptome studies of dormant bud in Euphorbia esula [8]. In addition to
the well-known isoprenoid phytohormones such as cytokinins (CK), abscisic acid (ABA),
brassinosteroids (BR) and gibberellic acid (GA), strigolactones, a group of carotenoids-derived
metabolites, suppress shoot branching [9], bud development in addition to several additional biological
functions [10,11]. Moreover, association of ABA in strigolactone pathway could facilitate to control buds
paradormancy [12]. Additionally, auxin regulated strigolactone depletion is a significant aspect for
branching after shoot apices removal [13,14]. These findings offer more understanding about the
mechanism of tea winter dormancy. This mini-review focuses on the possible involvement of
strigolactones in tea winter dormancy and the biosynthesis of some secondary metabolites.

2 Strigolactones and Winter Dormancy

Strigolactones are derived from β-carotene; their biosynthetic pathway has gradually been elucidated
(Fig. 1): First, β-carotene isomerase catalyzes the 9-cis/all-trans isomerization of β-carotene, followed by the
stereospecific C9′-C10′ cleavage of 9-cis-β-carotene mediated by carotenoid cleavage dioxygenase 7
[CCD7, MORE AXILLARY GROWTH 3 (MAX3) in Arabidopsis, then, the transformation of intermediate
9-cis-β-apo-10′-carotenal into carlactone is mediated by CCD8 (MAX4 in Arabidopsis) [15–18]. In
addition, several other proteins such as α/β-hydrolase (AtD14 in Arabidopsis, D14/D88/HTD2 in rice) and
F-box protein (MAX2 in Arabidopsis, D3 in rice) are involved in strigolactones signal transduction [13,17,18].

In biosynthesis, which is included carotenoid cleavage dioxygenases7 (CCD7, MAX3, RMS5, or
DAD3) [15] and CCD8 (MAX4, RMS1, D10 or DAD1) [17], and one cytochrome P450 monooxygenase
(MAX1) [15]. For strigolactones signal transduction, which is involving MAX2/RMS4/D3 [13], an F-box
leucinerich protein and DWARF14 (D14)/D88/HTD2, a member of the a/b-fold hydrolase superfamily [18].

Genes associated with strigolactones pathway, such as MAX genes in Arabidopsis and their orthologs in
Pisum sativum is tightly correlated with bud dormancy [16–19]. MAX2 plays a significant role in conferring
dormancy and boosting shoot growth [16,20]. Indeed,max2mutant exhibit reduced expression of dormancy-
associated gene 1/auxin-repressed protein (DRM1/ARP). MAX2 transcript levels were found being elevated
in endodormant crown buds in leafy spurge [8], further strengthening that strigolactones function in
ecodormancy induction. In the tillering dwarf Oryza sativa mutants d3, d10, d14, d17 and d27, axillary
meristems develop normally but with weakened ability of the dormancy in tiller buds [21]. Strigolactones
bind to α/β-hydrolase fold-containing proteins, which activates MAX2, ultimately leading to lateral bud
inhibition and dormancy [22]. In rice, TB1 (Teosinte branched 1)/FC1 (Fine Culm1) and D14 interact
with dormancy release marker MADS57 to regulate shoot branching [23]. In addition, MADS57 is a target
of miR444a, suggesting that MADS57 plays a role in the strigolactone signaling pathway. To further
investigate the regulation of tea winter dormancy, studies are required to detect interactions between tea
analogs of MAX2 in the strigolactones pathway and other strigolactones signals or miRNAs.

3 Strigolactones and Secondary Metabolite Biosynthesis

3.1 Strigolactones and Flavonoid Biosynthesis
Many genes associated with the biosynthesis of flavonoid metabolites are differentially expressed during

different phases of dormancy [8]. Chalcone synthase, flavone isomerase, theobromine synthase, caffeine
synthase and glutamate (or theanine) synthase, were found being expressed in a dormant tea bud. These
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genes and their encoded enzymes can protect plants from UV damage and are upregulated during dormancy
in raspberry and leafy spurge [24]. Flavonoid signaling pathway was found involved in maintaining of
underground adventitious bud paradormancy and paradormancy release in leafy spurge. This signaling
pathway together with the action of auxin, ABA, GA, CK, JA, ethylene and BR levels/signals, control
the dormancy and the initiation of shoot growth [14,25].

Some studies strengthened a framework among auxin, flavonoids and strigolactones. For example,
crosstalk modulates strigolactones and auxin levels [26], and flavonoid modulates auxin flow in stems
and buds (regulated by MAX1) helps regulating bud repression in Arabidopsis [27]. Flavonoids in tea
help determining its flavor and astringency [2]. In Arabidopsis, MAX1 directly or indirectly regulates the
11 flavonoid genes and transcription factor An2 [27]. One hypothesis is that in the absence of MAX1, the
flavonoid level is reduced, result in some auxin transporters derepression and subsequently increase auxin
transport in the bud, thereby controlling tea winter dormancy.

Figure 1: Major steps of strigolactones biosynthesis and signal transduction in plants.
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In biosynthesis, which is included carotenoid cleavage dioxygenases 7 (CCD7, MAX3, RMS5, or
DAD3) [15] and CCD8 (MAX4, RMS1, D10 or DAD1) [17], and one cytochrome P450 monooxygenase
(MAX1) [15]. For strigolactones signal transduction, which is involving MAX2/RMS4/D3 [13], an F-box
leucine-rich protein and DWARF14 (D14)/D88/HTD2, a member of the α/β-fold hydrolase superfamily [18].

3.2 Strigolactones and Theanine Biosynthesis
Defective glutamine synthetase (GS1;2) and NADH-dependent glutamate synthase 1 (NADH-

GOGAT1) lead to reduced bud outgrowth in rice but some studies have demonstrated that defective
GS1;2 results in reduction of tiller number in the GS1;2 mutant [28–30], likely due to increased
concentration of strigolactones. CsGS in tea, encoding glutamine synthetase (which is involved in
theanine biosynthesis) is downregulated (42% reduced expression) during winter dormancy [31]. Further
investigations are needed to determine how CsGS influences theanine biosynthesis and interacts with
strigolactones, consequently affecting tea winter dormancy.

3.3 Strigolactones and Caffeine Biosynthesis
Expression of the gene encoding caffeine synthase and caffeine content decrease during tea dormancy as

allantoin contents increase, indicating that caffeine degradation is activated or caffeine biosynthesis is
inhibited due to tea winter dormancy [32,33]. Indeed, differential expression of theobromine synthase and
caffeine synthase genes occurs during different phases of tea dormancy [34]. In addition, these genes alter
bud dormancy status by controlling auxin transport, which is mediated by MAX1 [24]. It is also known
that cytokinins can be transported through PUP1 (purine permease) transport system as adenine and
caffeine [35]. Further studies are needed to elucidate how the transport system functions during bud
dormancy and whether it interacts with strigolactones to regulate caffeine metabolism in tea.

4 Regulators of Strigolactone Functions

4.1 Regulated by miRNAs
Overexpression of miR156 increases branching in Brassica napus [36] and Arabidopsis [36,37] and

similar branching phenotype has been observed in loss-of-function max3 and max4 mutants [38],
suggesting a link between strigolactones metabolism and miR156 expression. Some of strigolactones
pathway genes such as MAX1, MAX3, MAX4 in Arabidopsis and D3, D10, D27 in rice holds target
fragments recognized by miR156a–g [39]. Osa-miR156 overexpressing in rice results in a reduced D27
transcript level but elevated D3 and D14 transcript levels, suggesting a feedback mechanism in
strigolactones pathway [40]. Altogether, these studies unveiling a new regulatory pathway of
strigolactones function by osa-miR156 to control dormancy [39].

In active and dormant tea buds, numerous tea miRNAs which are differentially expressed have been
detected [41]. An HXXXD-type acyl-transferase-like protein-coding gene, targeted by cs-miR414, is
involved in maintaining BR homeostasis [42]. Strigolactones (possibly regulated by cs-miRNA 164),
auxin (by cs-miRNA 397), CK (by cs-miRNA 1846), ABA (by cs-miRNA408) and GA (by cs-miRNA
1886) are also downstream products of regulatory gene network of cs-miRNAs [41]. Some target
transcripts have been identified being differentially expressed in a dormant bud-specific suppression
subtractive hybridization (SSH) library [34,43].

4.2 Regulated by Environmental Stress
Unfavorable external factors, such as nutrients, water and low temperature, would induce the growth to

dormancy and will quickly resume growth in the absence of these unfavorable factors [44]. In accordance
with the central roles of strigolactones in stress responses, strigolactones biosynthetic genes MAX1, MAX3
and MAX4 are influenced by drought, salt and ABA in Arabidopsis leaves, further supporting the notion
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that stress-mediated strigolactones homeostasis is essential for boosting plant resistance against
environmental stresses [45]. Application of strigol analogue GR24 improves drought tolerance in
Arabidopsis, demonstrating positive regulatory role of strigolactones for improving plant tolerance to
drought in both an ABA-dependent and ABA-independent manner [46]. So, we speculated that
strigolactones may play dominant roles in adaptation to abiotic stress in tea.

Nutrient starvation-induced phenotypes can be affected by the strigolactones biosynthetic pathway.
Moreover, the extreme branching phenotype associated with nitrogen application levels of the
strigolactone biosynthetic mutant max4 indicate that the influence of nitrogen limitation on branching is
mediated (at least in part) by strigolactones. Phosphorous deficiency, which is regulated by strigolactones,
affects tillering in rice [47]. GR24 application can increase wild-type pea nodule number and restore the
reduced nodule number to wild-type in the strigolactone-deficient rms1 mutant. The modified
strigolactones derivatives appliaction to enhance crops nodule growth would be a cost-effective way to
contribute to nitrogen-fixing and plant development [48]. It is interesting to find out whether
strigolactones are involved in the high ammonium utilization capacity in tea.

Strigolactones levels or signaling can be affected by light intensity [49]. strigolactones act downstream
of the phyB-dependent responses to different red-to-far red light (R: FR) ratios [50]. Arabidopsis phyB
mutants are defective in detecting R: FR ratios, and in high R: FR light, these mutants exhibit reduced
branching, whereas max2 mutants are highly branched [51]. Similar, In sorghum, both null mutation of
phyB and low R: FR ratios induced by shading and defoliation affect branching and upregulate the
expression of Sbtb1 (Teosinte branched 1), SbMAX2 and SbDRM1 [52], suggesting that phyB helps
determine whether buds become dormant or active via strigolactones. strigolactones might play a role in
determining growth status via a series of MAX2 or BRC (branched) of its biosynthesis or signaling to
preserve normal growth.

Strigolactones are positive regulators by controlling the expression of different stress or ABA-
responsive genes related to plant growth and environment stress responses in stress and diverse ABA
signaling pathways. Moreover, defective strigolactones signaling transmission also results in depressed
CK degradation oxidase (CKX) genes expression. Altogether, these results reveal that coordinated
network among strigolactones, ABA and CK regulates plants adaptation to different abotic stress [45].
strigolactones in conjunction with other phytohormones could favor nutrients and water assimilate by
promoting root development [49]. Therefore, the use of strigolactones derivatives could favor the
adaptation of the plant architecture to such as drought and phosphates abiotic stress [48].

Thus, we propose a model explaining the interactions between strigolactones and terpenoid hormones
(auxin, cytokinin, ABA, GA, BRs), secondary metabolism and abiotic stress in tea (Fig. 2). This model
will pave the way for uncovering the mechanism underlying secondary metabolism, growth and winter
dormancy regulation in tea. However, further investigations should be performed to obtain direct
evidence for the role of strigolactones biosynthesis and signaling in tea, especially in the regulation of tea
winter dormancy.
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5 Conclusions and Future Perspective

Strigolactones are crucial for efficient nutrient allocation in plants, especially under Pi and N deficiency.
Strigolactones also play essential roles in responsing to drought and salt environment. Moreover,
strigolactones can also stimulate seed germination and inhibit shoot branching. The observation that
strigolactone mutants exhibit weakened bud dormancy activity suggests that strigolactones play a
dominate role of dormancy in plants; Strigolactones, along with ABA, GA, BR, CK, ethylene and auxin,
may act directly on buds to coordinately regulate bud outgrowth and ddormancy. In tea, genes encoding
caffeine synthase and flavonoid synthase deferentially express in various dormancy phases. These
enzymes change bud development through regulating auxin flow, which is mediated by MAX1, a protein
involved in strigolactones biosynthesis or attributed to the same transport system as strigolactones.
Therefore, strigolactones may mediate secondary metabolism in tea during the winter dormancy period.

The regulation of dormancy and, more importantly, the control of growth activation at bud burst are
highly important for maintaining productivity and building biomass in perennial plants [53,54]. We have
merely begun to understand some aspects of the roles of strigolactones as a phytohormone, and its
interactions with secondary metabolism and abiotic stress tolerance in tea are yet to be elucidated. Doing
so will build a more complete picture of the role of strigolactones in the growth of perennial plants.
Further elucidating how strigolactones regulates the processes of dormancy, cold acclimation, and
freezing tolerance will help us develop crop plants that are better adapted to new and changing climates,
thus increasing tea yields and quality.
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Figure 2: A predicted functional network underlying winter dormancy in tea. The phytohormones
strigolactones and their integration with secondary metabolism and environmental stress regulatory
pathways may control the dormancy process in tea
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