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Abstract: In this paper, the formation control problem of a group of unmanned air
vehicle (UAV) quadrotors is solved using the Takagi–Sugeno (T–S) multi-model
approach to linearize the nonlinear model of UAVs. The nonlinear model sof the
quadrotor is linearized first around a set of operating points using Taylor series to
get a set of local models. Our approach’s novelty is in considering the difference
between the nonlinear model and the linearized ones as disturbance. Then, these
linear models are interpolated using the fuzzy T–S approach to approximate the
entire nonlinear model. Comparison of the nonlinear and the T–S model shows
a good approximation of the system. Then, a state-feedback controller is synthe-
sized utilizing the parallel distributed compensation (PDC) concept. The linear
quadratic regulator (LQR) controller is used to stabilize the system and obtain
the desired response. This is followed by the formation control of a set of quad-
rotors using the leader–follower method. In this strategy, the potential field meth-
od is utilized to obtain the ideal shape formations. An attractive potential is
generated such that the followers are attracted towards the leader, and a repulsive
potential is generated that repels adjacent quadrotors to avoid collisions. Simula-
tions are performed to evaluate the proposed method’s effectiveness in obtaining
the desired shape formation for different cases. From the simulation results, we
can see that the proposed formation control results in a good tracking response.

Keywords: Multi-models; nonlinear systems UA quadrotor; fuzzy logic control;
formation control

1 Introduction

Unmanned air vehicles (UAVs) have attained significant attention and progress in the past decade due to
their innumerous advantages and applications. A UAV is an airborne robot that can fly autonomously or
semi-autonomously without a pilot on board. The tasks that are needed to be performed by the UAVs are
given through a control system that may be mounted on the vehicle or somewhere else. UAVs consist of
multivariable nonlinear dynamics whose complexity depends on the required operation and objectives.

Due to their reliability, UAVs can replace manned aerial vehicles in many areas, such as civilian
communities, agriculture, and military. In the military, UAVs are utilized to convey various loads, such as
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radars, sensors, cameras, or weapons. In addition, UAVs can be utilized for observation and exploring
unfriendly environments [1]. Outside of the military, UAVs are valuable for several applications, such as
watching regular assets, home security, scientific research, and search and rescue operations.

The concept of “Divide and Conquer” is generally used to solve complex problems in day-to-day life.
The problem can be divided into several more manageable parts, which, when solved individually and
combined, can give the solution to the entire problem. A similar concept can even be used in controlling
nonlinear systems. The complex nonlinear model can be divided into a set of locally linearized models
and then interpolated to obtain the overall system. This method is called the multi-model approach
(MMA), also known as Takagi–Sugeno (T-S) modeling [2]. The interpolation of all the individual models
is done using fuzzy logic.

Recently, the utilization and control of groups of UAVs to accomplish certain tasks cooperatively has
attracted much interest from researchers in related fields. This is a direct result of the advantages acquired
from utilizing numerous vehicles as opposed to utilizing a more elaborated single vehicle. Comparing the
outcome of performing a task with a team of UAVs with that of a single vehicle, one can realize that the
overall performance of multiple UAVs is more efficient and safer.

The formation of a multi-UAV is a combination of the study of both quadrotors and synchronization. It
has received considerable interest from both autonomous systems and control groups. Cooperative
coordination can be described as a set of UAVs assigned to follow a predefined path of flight while
obtaining useful information through their sensors and maintaining a prescribed formation structure. The
trajectory of the flight could be a set of coordinates that the UAVs must follow or a prescribed region of
fly within certain boundaries (see, e.g., [3,4] and the references therein).

There has been much research and contribution to quadrotor UAVs. One of the earliest works is by Samir
Bouabdallah in [1,5], where he formulated the dynamics of the quadrotor model and presented briefly
different control techniques applied to it. The dynamics modeling, simulation, and system identification
has also been addressed in other papers like [6,7]. The application of a simple proportional-integral-
derivative (PID) controller for the quadrotor is given in Jithu et al. [8]. Attitude control techniques using
observers are given in Xu et al. [9].

Many nonlinear techniques have been employed on the quadrotors to stabilize the system. In Mistler
et al. [10], a feedback linearization method was developed to control the quadrotor and track a predefined
trajectory. Voos [11] developed a control structure based on feedback linearization and its decomposition
into a nested structure. A backstepping method was proposed by Altug et al. [12] in which the positions
and the yaw angle were kept constant while the pitch and the roll angle regulate to zero to stabilize the
quadrotor. Zuo [13] employed the backstepping technique with command-filtered compensation. Sliding
mode techniques were developed in Xu et al. [14], and a combination of sliding mode control and
backstepping technique has been considered in Bouadi et al. [15]. Stabilization of the attitude of the UAV
based on the compensation of the Coriolis and gyroscopic torques has been studied in Tayebi et al. [16].

Applications of fuzzy theory in control systems are widely seen in the literature. The T–S model, which
uses the MMA for the quadrotor, is shown in Takagi et al. [2]. The concept of approximation based on
multiple models is not new. Since Johansen and Foss’s work and publications on this topic, the MMA
has obtained significant attention [5]. Initially, certain authors tried to represent nonlinear systems using
piecewise linear approximations [17], which use local models and switching. A few years later, Takagi
et al. [2] presented the multi-experts approach that combines different experts via activation functions
(where an expert is a model describing the local behavior of a system).

Cooperative control of multiple UAVs, known as formation control, is an important issue in real
applications and research. When the formation changes its shape from the mission requirements, it is
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necessary to control the relative position, attitude, and speed between UAVs to avoid a collision. The most
common formation method used is the leader–follower technique.

In the leader–follower method, an individual is selected to be the leader, and the others are followers
[18]. Rarely, in some situations, multiple agents are considered leaders [19]. The followers must locate
themselves and maintain a desired position relative to the leader [20]. Control frameworks with the
leader–follower methodology show satisfactory performance. Simplicity and reliability are the
characteristics of this technique. Nonetheless, the disadvantage of this technique is that the leader does
not receive feedback from the followers.

Leader–follower formation control strategies have been examined generally, including different
procedures like PID control approach [21] and decentralized control based on the linear quadratic
regulator (LQR) [22]. The leader–follower approach was investigated in Guerrero et al. [23], where a
nonlinear controller was designed by combining nested saturations with consensus control to achieve the
formation of mini rotorcrafts. Turpin et al. [24] reported a formation where the vehicles track a given
trajectory. The quadrotors can change the formation shape safely as per determinations. Shape vectors
prescribe the formation and keep the relative separations and direction between the quadrotors. In Ru
et al. [25], a multi-model predictive control technique was used on the leader–follower formation of the
quadrotor flying in two dimensions by using fuzzy logic. A simplified nonlinear model is used in this study.

In this paper, a complete dynamic model was used, and a new technique was used to obtain the linear
models. The difference between the linear model obtained from the Taylor series linearization method and
the actual nonlinear system at an operating point was added to the linear system and considered a
disturbance when designing the controller. Satisfactory results were obtained.

The paper is organized as follows. Section 2 presents the mathematical model of the UAV. Section 3 is
devoted to the linearization and the T–S modeling of the quadrotor. The formulation of the fuzzy controller
with the LQR technique is summarized in Section 4. The leader–follower formation is described in Section 5.
Section 6 presents the simulation results obtained in this study. Section 7 concludes the paper.

2 Quadrotor Dynamics and Mathematical Modelling

The quadrotor consists of four rotating propellers driven by four DC motors that govern the vehicle’s
motion. The quadrotor’s orientation is determined by the Euler angles, which are the roll angle (φ), pitch
angle (θ), and yaw angle (ψ). The dynamics of the quadrotor can be explained in Fig. 1. The system
consists of the inertial frame Rb and the body frame Rm as shown. The forces appearing on the quadrotor
are the roll, pitch, and yaw torques and the total thrust force.

Figure 1: Quadrotor dynamics
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The transformation matrix used for the transformation of the system from the inertial or ground frame to
the body frame in terms of the Euler angles is:

R ¼
cwch s’shcw� swc’ c’shcwþ sws’
swch s’shswþ cwch c’shsw� s’cw
�sh s’ch c’ch

0
@

1
A (1)

where s(x) and c(x) represent sin(x) and cos(x), respectively.

Now, by considering the Euler angles of rotation and Newton–Euler or Lagrange method of developing
models, the equations of motion are derived in terms of the translational and rotational parameters, which are
[φ, Ө, ψ, x, y, z]. Thus, the set of nonlinear equations obtained are:

€’ ¼
_h _w Iy � Iz
� �
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where l is the length of each arm, and m is the mass of the quadrotor. Ix, Iy, and Iz are the moments of inertia
around x, y, and z axes, respectively. u1, u2, u3, and u4 are the control inputs.

The control inputs are related to the angular velocities of the rotors by the following relation:
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�r ¼ x1 � x2 þ x3 � x4

where b is the thrust, and d is the drag parameter. ωi is the angular velocity of the ith rotor.

3 Quadrotor Takagi-Sugeno Modelling

In this section, the T–S models for the UAV will be generated by first linearizing the nonlinear model
given in Eq. (2). Details of the linearization are provided in subsection 3.1. The T–S model for the UAV is
formulated in Subsection 3.2. Subsection 4.3 present the validation of the T–S model.

3.1 Linearization

The linearized model is obtained using the T–S representation, which involves the MMA. It is based on
the “Divide and Conquer” rule. According to the MMA, the complete nonlinear complex system is divided
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into several simpler linear sub-systems. The solutions of these sub-systems, when combined, should give
the solution of the complete system. Generally, the complex system is divided into linear models that
describe the system’s dynamics in different regions of the operating space. The entire system can be
achieved by interpolation.

For convenience, the nonlinear model of the quadrotor is represented in state-space form as follows:

_x tð Þ ¼ A xð Þx tð Þ þ B xð Þu tð Þ (4)

_y tð Þ ¼ C xð Þx tð Þ þ D xð Þu tð Þ
The state, input, and output vectors are:

x tð Þ ¼ ’ _’ h _h w _w x _x y _y z _z
� �T

u tð Þ ¼ u1 u2 u3 u4ð ÞT (5)

y tð Þ ¼ ’ _’ h _h w _w x _x y _y z _z
� �T

To obtain the state matrices A, B, C, and D, the Taylor series linearization process is used.

The behavior of the nonlinear system about an operating point (xi,ui) can be approximated by a linear
time-invariant system (LTI system). We use the Taylor series of the first order to obtain:

_x tð Þ ¼ Ai x tð Þ � xið Þ þ Bi u tð Þ � uið Þ þ f xi; uið Þ (6)

which can be written as:

_x tð Þ ¼ Aix tð Þ þ Biu tð Þ þ di (7)

where:

Ai ¼ @f x; uð Þ
@x

���� x ¼ xi
u ¼ ui

; Bi ¼ @f x; uð Þ
@u

���� x ¼ xi
u ¼ ui

(8)

di ¼ f xi; uið Þ � Aixi � Biui

Therefore, by performing the above derivation, the matrices Ai and Bi are obtained as:

Ai ¼

0 1 0 0 0 0 0 0 0 0 0 0
0 a1 0 a2 _wþ a3 0 a2 _h 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 a5 þ a4 _w 0 a6 0 a4 _’ 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 a7 _h 0 a7 _’ 0 a8 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
a9 0 a10 0 a11 0 0 a12 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
a13 0 a14 0 a15 0 0 0 0 a16 0 0
0 0 0 0 0 0 0 0 0 0 0 1
a17 0 a18 0 0 0 0 0 0 0 0 a19

0
BBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCA

(9)

where,
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Ix
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� �
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Ix
�r
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where,

b1 ¼ l

Ix
; b2 ¼ l

Iy
; b3 ¼ l

Iz
; b4 ¼ l

m
c’shcwþ s’swð Þ;

b5 ¼ l

m
c’shsw� s’cwð Þ; b6 ¼ l

m
c’chð Þ

The matrix C(x) is taken as an identity matrix, and D is taken as zero.

3.2 Takagi–Sugeno Model Design

To build the T–S model, we use r ¼ 9 locally linearized models. These models are interpolated using the
T–S fuzzy logic. The architecture and formulation of the model are described in Fig. 2 below.
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The linearized models are given as:

_xm tð Þ ¼
Xr
i¼1

li n tð Þð Þ Aixm tð Þ þ Biu tð Þ þ dið Þ

ym tð Þ ¼ Cxm tð Þ (11)

where r is the number of local linear models, x, y, and u are the state, output, and input vectors, respectively.
A and B are the state and input matrices, ξ(t) is the fuzzy decision variable, and li n tð Þð Þ is the normalized
activation function.

The activation function determines the degree of activation of the individual local model. It shows
the amount of contribution of each local model to the entire system. The properties of the activation
function are as follows:

Pr
i¼1

li n tð Þð Þ ¼ 1

0 � li n tð Þð Þ � 1

8<
: (12)

Different types of activation functions can be used in fuzzy theory, such as Triangular, Sigmoidal, and
Gaussian. In this work, we use the Gaussian activation function, which is defined as follows:

li n tð Þð Þ ¼ xi n tð Þð ÞPm
i¼1 xi n tð Þð Þ ; xi n tð Þð Þ ¼

Ym
j¼1

Mij ni tð Þð Þ (13)

where m is the dimension of the decision variables vector ξ(t). Mij is the membership functions defined based
on the Gaussian fuzzy rules as follows:

Mij ni tð Þð Þ ¼ exp � ni tð Þ � ci;j
� �2

2r2i;j

 !
(14)

where ci;j represents the member function center, and ri;j determines the member function width. The
individual models are defined around the operating points as follows:

� Three models are defined around the roll angle, φ = −300, 00, 300

Figure 2: Takagi–Sugeno architecture for multi-models
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� Three models are defined around the pitch angle, θ = −300, 00, 300

� Three models are defined around the yaw angle, ψ = −600, 00, 600

The decision variable vector is taken as,

n tð Þ ¼ ’ h wð ÞT (15)

3.3 Validation of the Takagi-Sugeno Model

To validate the T–S model, we use a pseudo-random binary signal (PRBS) as input to both the nonlinear
model given in Eq. (2) and the T–S model given in Eq. (11). Then, we simulate the two systems in parallel,
and the results are compared.

The amplitude of the PRBS can be very low, but it must be above the residual noise. If the signal to noise
ratio is too low, it is necessary to increase the simulation’s duration to get a good estimate of the parameters.
A typical value of the amplitude of the PRBS is 0.5%–5% of the value of the operating point on which it is
applied, namely:

APRBS ¼ weq � 0:005 � weq (16)

where

weq ¼
ffiffiffiffiffiffi
mg

4b

r
The PRBS can be generated in MATLAB Simulink using the predefined function block. The signals are

generated as shown in Fig. 3.

Figure 3: PRBS input signals
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The parameters of the quadrotor used in the simulations are taken from [2] and given in Tab. 1
as follows:

The simulation of the nonlinear and the T–S models with PRBS inputs are carried out in MATLAB
using all the parameters described. The behavior of all the states with the given inputs is obtained
as shown in Fig. 4.

Therefore, it can be observed that the T–S model gives a good approximation of the dynamics of the
nonlinear quadrotor model within a range of operating points assumed.

4 Controller Design

In this work, because we use the T–S system, the parallel distributed compensation (PDC) technique
is used to develop the control law for multi-models. In PDC, the control design utilizes the multiple-
model approach to mirror the structure of the T–S model. Consider the T–S model that has been
discussed earlier:

_xm tð Þ ¼
Xr
i¼1

li n tð Þð Þ Aixm tð Þ þ Biu tð Þ þ dið Þ

ym tð Þ ¼ Cxm tð Þ (17)

Now, we define the control law u(t) as follows:

u tð Þ ¼ r tð Þ �
Xr
i¼1

li n tð Þð Þ Kixm tð Þð Þ (18)

where r(t) is the desired states function, and Ki is the state-feedback gain of the ith model. Thus, the closed-
loop system becomes:

_xm tð Þ ¼
Xr
i¼1

Xr
j¼1

li n tð Þð Þlj n tð Þð Þ ðAi � BiKjÞxm tð Þ
þBir tð Þ

� �
(19)

Notably, the controller parameters, such as Ai, Bi, and activation functions, are respectively the same as
the parameters of T–S models.

The quadrotor is a MIMO system that cannot be controlled easily by simple pole placement techniques.
Therefore, optimization techniques are essential to stabilize the system and reach the desired states. The

Table 1: Quadrotor parameters

Parameter Description Value Units

m Mass of the Quadrotor 0.486 Kg

l Length of the arm 0.225 m

Ix Moment of inertia along x-axis 4.856 E-3 Kg.m2

Iy Moment of inertia along y-axis 4.856 E-3 Kg.m2

Iz Moment of inertia along z-axis 8.801 E-3 Kg.m2

b Lift coefficient 2.923 E-5 N/rad/s

d Drag coefficient 1.12 E-6 N/rad/s
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solutions of optimal control provide an automated design technique in which only the figure of merit is
required [9]. The most widely used method is LQR optimization because of its good efficiency. In this
work, we use the LQR technique to obtain the state-feedback gains of the controller described in Eq. (18).

Figure 4: States of the quadrotor nonlinear model vs. T–S model
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Consider a general plant with the state-space equations and control law as follows:

_x tð Þ ¼ Ax tð Þ þ Bu tð Þ
y tð Þ ¼ Cx tð Þ þ Du tð Þ (20)

u tð Þ ¼ r tð Þ � Kx tð Þ
Now, to obtain the gain K, we define a cost function such that it is the sum of the penalties of the states

and the input. These penalties represent how far the system is from the desired response. This can be
represented as:

J ¼
Z 1

0
xT tð ÞQx tð Þ þ uT tð ÞRu tð Þ� �

dt (21)

This cost function J is now minimized to reduce the penalties of the controller. This implies Q and R, are
both selected as positive definite matrices. The gain K is calculated as:

K ¼ R�1BTP (22)

where P is obtained by solving the algebraic Riccati equation:

ATP þ PA� PBR�1BTP þ Q ¼ 0 (23)

Now, the same procedure can be applied to our T–S state feedback controller. All the gains can be
calculated as:

Ki ¼ R�1BT
i P

AT
i P þ PAi � PBiR

�1BT
i P þ Q ¼ 0 (24)

where i ¼ 1; 2; . . . ; r, and r is the number of T–S models.

5 Formation Control

5.1 Leader–Follower Formation Scheme

Consider a system consisting of one leader quadrotor and N follower quadrotors. It is assumed that all
these quadrotors have identical models and controllers, as discussed before. The T–S model for each
quadrotor can be represented as:

_xj tð Þ ¼
Xr
i¼1

li n tð Þð Þ Aixj tð Þ þ Biuj tð Þ þ di
� �

yj tð Þ ¼ Cxj tð Þ (25)

j =0,1, 2,…,N are the number of quadrotors.

Now, the state feedback LQR controllers for the quadrotors are given as:

uj tð Þ ¼ rj tð Þ �
Xr
i¼1

li n tð Þð Þ Kixj tð Þ
� �

j ¼ 0; 1; 2; . . . ;N (26)

where rj tð Þ is the reference trajectory for each quadrotor, and Ki is the state feedback gains calculated
using LQR.
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To obtain the leader-follower formation, the reference signal for the leader r0(t) is selected as per our
desired required response. However, the reference signals for the followers, rj(t), j = 1,2,…,N are defined
as the trajectory of the leader with some offsets. This can be represented as:

rj tð Þ ¼ x0 tð Þ þ xjOFF (27)

where x0 tð Þ is the current state vector of the leader, and xjOFF is the offset for all the states of the jth follower
with respect to the leader. Therefore, the control law for each follower becomes:

uj tð Þ ¼ x0 tð Þ þ xjOFF �
Xr
i¼1

li n tð Þð Þ Kixj tð Þ
� �

; j ¼ 1; 2; . . . ;N (28)

Therefore, the closed-loop system for each follower becomes:

_xj tð Þ ¼
Xr
i¼1

Xr
k¼1

li n tð Þð Þlk n tð Þð Þ ðAi � BiKiÞxj tð Þ
þBi x0 tð Þ þ xjOFF

� �� �
(29)

It should be noted that all the parameters of the fuzzy functions and the states are identical for all the
quadrotors. Additionally, in practice, the control of only the positions (x, y, z) is performed, and the rest
of the states of the quadrotors are set to track the leader. This means that the offsets are present only for
the position states of the reference signals.

5.2 Potential Fields Technique for Shape Formation

Potential fields technique is used to obtain cooperative control of the quadrotors. Each follower has
information on the positions of the leader and adjacent followers. Using this information, an attractive
and a repulsive potential force is applied on each follower to obtain the desired shape formation. The
followers are attracted towards the leader via the attractive potential. The repulsive potential repels
adjacent followers and keeps them at a specified distance d. Therefore, two potential field functions are
defined based on this concept: one is Uatt, the attractive potential, and the other is Urep, the repulsive
potential. These functions are defined as follows:

Uatt ¼ 1

2
katt roi � Rð Þ2 (30)

Urep ¼
1

2
krep rij � d
� �2

rij, d

0 otherwise

8<
: (31)

where roi is the current distance between the leader, and the i
th follower, rij is the current distance between the

ith and the jth followers, R is the required distance between the leader and the followers, d is the desired
distance between each adjacent follower, and katt; krep are positive tuning constants.

Now, the forces associated with each potential are calculated as a negative gradient of the above
functions. The overall force applied on each follower is represented as:

F ¼ F0 þ Fij þ Da (32)

where

F0 ¼ �rUatt (33)
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and

Fij ¼ �rUrep (34)

The control scheme described above can be illustrated as shown in Fig. 5.

The center and the repulsive potentials are obtained by applying the gradient, as discussed above. After
computation, they are obtained as follows:

F0 ¼ �katt
1

roi
roi � Rð Þ Pi tð Þ � P0 tð Þð Þ (35)

Fij ¼ �krep
1

rij
rij � d
� �

Pi tð Þ � Pj tð Þ
� �� Pj tð Þ � Pi tð Þ

� �� �
(36)

where P’s are the position vector of the quadrotors defined as:

P0 ¼ x0 y0 z0 w0½ �T for the leader, Pi ¼ xi yi zi wi½ �T , and Pj ¼ xj yj zj wj

h iT
for adjacent followers i,j.

6 Simulation Results

The entire control scheme explained in the previous sections is implemented using MATLAB to perform
the simulations. Consider one leader quadrotor and three follower quadrotor agents, n = 3. The followers are
required to form a circle of radius R, with the center being the leader. This implies each follower is at a
distance of R from the leader. Additionally, each adjacent follower quadrotor should be at a distance d
from each other. Let R = 1.5 m and n = 3, which implies d = 2Rsin(pi/n) = 2.598 m. The leader must
follow a desired reference trajectory, and the agents follow the trajectory of the leader along with the
formation constraints to produce their paths that satisfy the desired shape formations.

The simulations are carried out for four cases. The first case is when the leader moves linearly only in x
direction. The second case is when the leader moves in x-y directions. The third case is when the leader
moves in x-y-z direction to showcase the responses for each plane. In the fourth case, the leader is set to
move in a sinusoidal path. To validate the proposed T–S model and control system, the control method is
applied to the nonlinear model of the quadrotor.

6.1 Motion in x Direction

The leader and follower quadrotors are first set to their initial hovering positions, z = 2. The leader then
moves in x direction, and the followers follow the leader while keeping the desired formation. The initial
position of the leader is taken as (1,0,2) and that of the three followers as (0.5,−1.4,2), (0.1,1.2,2), and
(2.5,0.2,2), respectively, for each follower. The leader’s final position is then set to (7,0,2), where the
motion is in steps of 1. The simulation results can be seen in Fig. 6.

Figure 5: Control scheme of a follower quadrotor using potential fields
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6.2 Motion in x-y Direction

The leader and follower quadrotors are first set to their initial hovering positions. The leader then moves
in x-y direction, and the followers follow the leader while keeping the desired formation. The initial position
of the leader is taken as (1,0,2) and that of the followers as (0.5,−1.4,2), (0.1,1.2,2) and (2.5,0.2,2),
respectively, for each follower. The leader’s final position is then set to (7,6,2), where the motion is in
steps of 1. The simulation results can be seen in Fig. 7.

6.3 Motion in x-y-z Direction

The leader and follower quadrotors are first set to their initial hovering positions. The leader then moves
linearly in the x-y-z plane, and the followers follow the leader while keeping the desired formation. The initial
position of the leader is taken as (1,0,2) and that of the followers as (2.2,0.8,1.8), (−0.3,0.7,2.1) and

Figure 6: The group movement along the full path (different views)

Figure 7: The group movement along the full x-y path (different views)
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(1,−1.5,1.7), respectively, for each follower to form a 3D polygon. The leader’s final position is then set to
(7,6,8), where the motion is in steps of 1. The simulation results can be seen in Fig. 8.

6.4 Sinusoidal Motion

The leader and follower quadrotors are first set to their initial hovering positions. The leader is then set to
move in a sinusoidal path, and the followers follow the leader while keeping the desired formation. The initial
position of the leader is taken as (1,0,2) and that of the followers as (2.2,0.8,1.8), (−0.3,0.7,2.1), and
(1,−1.5,1.7), respectively, for each follower to form a 3D polygon. The leader then moves in the form of
a sinusoidal trajectory, which is the form of rðtÞ ¼ Asinðwt þ fÞ for each coordinate x, y, and z. The
different views of the simulation results can be seen in Figs. 9–12.

Figs. 9–12 show the different views of the complete trajectory of the group of quadrotors for the
sinusoidal motion. From the results, we see that we can obtain the desired tracking and formation responses.

Figure 8: The group movement along the full x-y-z path

Figure 9: 3D view of the group movement for a sinusoidal reference trajectory
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Therefore, from all the simulation results, it can be concluded that the proposed formation control
scheme works efficiently with the nonlinear model of the quadrotor. It provides a smooth tracking of the
group of quadrotors for a detheired formation flight.

Figure 10: x-y view of the group movement for a sinusoidal reference trajectory

Figure 11: y-z view of the group movement for a sinusoidal reference trajectory
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7 Conclusion

In this paper, a cooperative flight control framework is designed for a fleet of an arbitrary number of
UAVs. Our approach’s novelty is in considering the difference between the nonlinear model and the
linearized ones as disturbance. These local linear models are then interpolated using the Gaussian
membership functions from fuzzy theory to approximate the entire nonlinear model. Then a nonlinear
state-feedback controller is synthesized using the PDC. The controller gains are obtained by the LQR
optimization to stabilize the system and obtain the desired response. This is then followed by the
formation control of a set of quadrotors using the leader–follower method. The potential field technique is
used to obtain the desired shape formation. An attractive potential is generated to attract the followers
towards the leader, and a repulsive potential is generated to repel adjacent quadrotors to avoid collisions.
Simulations are performed to obtain the desired shape formation for different cases. It is observed that the
new method of linearization and the formation control proposed gives a good tracking response, and we
can achieve the required formation. The obtained results are smoother than those reported in Saif et al. [4].
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