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Abstract: Breast cancer detection is a crucial topic in the healthcare sector. Breast
cancer is a major reason for the increased mortality rate in recent years among
women, specifically in developed and underdeveloped countries around the
world. The incidence rate is less in India than in developed countries, but aware-
ness must be increased. This paper focuses on an efficient deep learning-based
diagnosis and classification technique to detect breast cancer from mammograms.
The model includes preprocessing, segmentation, feature extraction, and classifi-
cation. At the initial level, Laplacian filtering is applied to identify the portions of
edges in mammogram images that are highly sensitive to noise. Subsequently,
segmentation is done using modified adaptively regularized kernel-based fuzzy
C means (ARKFCM). Feature extraction is accomplished using the morphologi-
cal, texture, and moment invariants. The corresponding feature values are pro-
vided as inputs to a deep neural network (DNN) model that classifies the
normal and abnormal portions in the mammogram images. The performance of
the proposed model is validated with the Mammographic Image Analysis Society
(MIAS) database. The efficiency of the proposed classifier is experimentally
proved by comparing the various classifiers with respect to their statistical perfor-
mances. On an applied database, the proposed model offered a maximum classi-
fication with the highest accuracy level of 99.13%.
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1 Introduction

Breast cancer is a widespread disease among women, with a significant increase in its mortality rate. A
survey in 2012 found that around 25.2% of women globally were directly affected by breast cancer. An
earlier study by the American Cancer Society stated that around 246,660 females and 2,600 males would
be identified with persistent breast cancer in 2016 [1]. The study was proved correct, and the number of
patients has been increasing rapidly. Therefore, to increase human lifespans, the disease must be predicted
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at an earlier stage, which would increase the survival rate by up to 90% [2]. Regular monitoring and primary
detection are necessary to avoid further adverse developments in breast cancer. There are various methods to
detect cancer, including mammography, ultrasound, X-ray, and positron emission tomography (PET). X-ray
mammography utilizes lower amounts of X-ray energy to create the pixels of the disease. These images are
helpful in early diagnosis. Many reviews have underscored the threat of exposure to radiation [3,4]. Mostly,
women at the age of 40 years are observed to face more difficulty during ordinary mammography screening
procedures than elderly women. A study on mammogram results stated that 1,212 of 10,000 women showed
false positives for breast cancer at the age of 40 years. The injurious impacts of mammography include
overtreatment, unwanted and persistent follow-up testing, and stress related to false-positive test results.
Moreover, X-ray mammography necessitates the encoding of the breast as it lies flat during the
examination process, which causes pain. Distinguishing tumors from mammogram images is a complex
process [1–4] because of the similar appearances of the cancer and the massive cell growths that appear
white in color in the mammogram pixels and the fatty cells that are black in color. In Fig. 1, tiny cancer
cells are noticeable in the fatty breast; At the same time, the formed breast tissue in the heterogeneous
large breasts has a possible 4 cm tumor.

Ultrasound employs sound waves to view the internal structure of the body. It has a frequency greater
than 20 kHz. A transducer is fixed on the skin; this transmits ultrasound pulses inside the body to detect
echoes so as to create ultrasound images. It protects the body from harmful effects of radiation and can
differentiate cancerous from non-cancerous tumors. However, ultrasound is used only as an alternative
when the results of a mammogram are unclear. The magnetic resonance image (MRI) employs radio
waves and robust magnetic fields to produce images of the internal body. This method uses various levels
of absorption energy for different kinds of cells. When applied to delicate tissues such as the breast, the
contrast liquid is used to generate clear images. The MRI is conventionally used in detection to provide
additional estimations of the reasonable findings. It is used prior to surgical procedures, such as breast
consuming lumpectomy or mastectomy. Therefore, MRI is effective and adaptable technique for primary
tumor detection. PET uses injected combinations of radioactive materials and glucose, which undergoes
synthetization inside the human body. This study develops an efficient deep learning-based diagnosis and
categorization of breast cancer in mammograms.

Figure 1: Sample breast cancer image

748 IASC, 2021, vol.27, no.3



The proposed model has four levels: Preprocessing, segmentation, feature extraction, and classification.
Laplacian filtering is applied in the initial level to identify portions of the edges in the mammogram images.
Segmentation takes place with the help of modified adaptively regularized kernel-based Fuzzy-C-means
(ARKFCM), an effective machine learning (ML) process that localizes objects in a complicated template.
The corresponding feature values are provided as inputs to a classification model, a deep neural network
(DNN) that classifies normal and abnormal regions in mammogram images. The MIAS database is
employed to evaluate the effectiveness of the proposed machine diagnostic system.

2 Literature Survey

Techniques for the auto-prediction of clusters of mammary calcifications have been discussed in the
literature. In classification, the spatial features of these lesions were considered. Taking into account the
appearance of breast microcalcification (MC) as a local high-intensity variable, this study developed a
method focused on the application of an effective mammogram threshold function, which was
subsequently used for the regular extraction of lesions. Netsch et al. [5] proposed an alternate scheme for
detecting the MC pipeline with multiple resolutions, and an alternate machine learning technique was
deployed for predicting the micro-calcifications on the basis of the Laplacian scale-space. The application
of SVM to design a detection algorithm was also investigated [6]. In a few scenarios, these models were
found to attain the best sensitivity levels. For example, a method achieved sensitivity of up to 94%,
although some methods suffered from problems of false-positives [7]. It is a disadvantage of the direct
impact of greater heterogeneity in breast cells that should be considered in order to minimize the lack of
true positive in multiple mammograms.

A deeper local search algorithm for parameterized and approximation-based algorithms was developed
[8]. A method using a convolutional neural network (CNN) and an extreme learning machine (ELM) model
was presented for ECG analysis [9]. Two efficient lightweight networks were presented to attain the
maximum traffic sign detection rates with the minimum number of trainable model parameters [10]. A
new model to concatenate transfer edges was presented [11]. The character interval allowed for the
representation of successive characters to minimize transfer edge counts. A model-based grammatical
evolution (MGE) [12] was based on the terms and conditions of previous grammar models (a finite state
transition system). The features and issues of finite state automata were investigated to enhance non-
deterministic finite automata by minimizing a conversion edge to reduce memory utilization [13]. Two
Dense-MobileNet models, Dense1-MobileNet and Dense2-MobileNet, were developed to eliminate the
parameter count and limit computational complexity [14]. Real-time images searched for and obtained
online were segmented, where feature extraction was accomplished by the DenseNet architecture [15]. A
continuous object tracking scheme based on the spatial and conventional features of a CNN was
investigated [16].

Minimization of tracking effects due to changes in the scale ratio was discussed [17]. The HPCA
algorithm was used to extract features and reduce dimensionality-based issues. Zhao et al. [18]
investigated the methods of enhancing packet classification accuracy in software, specifically in the
OpenFlow protocol in software-defined networking (SDN). The packet classification algorithm used in
this research exhibits a more effective performance than the other approaches. A face image method
combining a Gabor filter, local binary pattern, and local phase quantization was proposed [19]. As a
result of the inherent drawbacks in classical approaches, recent research has stressed nonlinear approaches
based on the CNN. These tools have been found useful in the elimination of handcrafted characteristics,
generation of autofeature extractions, and evaluation. CNN architecture has achieved state-of-the-art
performance using individual studies employing deep learning [20]. Later, Wang et al. [21] designed the
mammogram analysis as a bipartite pattern describing a methodology for detecting the MC that contains
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2sub networks. The first network performs on the local image windows, and the second network connects the
image background. These networks filtered the features from the mammograms simultaneously and provided
the requirements collectively in a completely distributed and linked layer for classifying the instance window
with or without the MC.

3 Proposed Method

Fig. 2 shows a block diagram of the presented model, whose procedures are explained below.

3.1 Preprocessing

The MIAS database is employed to evaluate the effectiveness of a machine diagnostic system. This
benchmark database is easily accessed for all types of studies. Once the mammogram images are
acquired, the Laplacian filter can be utilized for preprocessing due to its simplicity and ability to
eliminate noise. This is a smoothing operator that can transform noisy images to noiseless images; hence,
there is a chance to directly obtain objects from raw mammogram images. It plays a significant role in
detecting the boundaries of obtained images. The Laplacian formula is

G0 i; jð Þ ¼ Gr i;jð Þ X e�
i2 þ j2

2r2
; (1)

where i denotes the horizontal axis, j indicates the vertical axis, and σ is the standard deviation.

3.2 Image Segmentation

Segmentation is performed on preprocessed images obtained from mammograms. An efficient model
based on ARKFCM is used to portion cancerous and non-cancerous parts of mammogram breast images.
ARKFCM is stronger in collecting the parameters used to decrease operational charges; hence, it provides

Figure 2: Overall process of proposed model
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extended decisions for the overlapping database. An altered ARKFCM scheme deploys and employs
differences in the grayscales with respect to neighborhood factors to estimate the local contextual data.
These modified models comprise Euclidean distances appropriately replaced by the correlating operation.
The common template for the modified ARKFCM technique is represented as

Gxy ¼
X

c 2 Nxx6¼k Wxkð�uxyÞm �c ix; vy
� �� �

; (2)

where Gxy represents the changed fuzzy factor, wxK is the fuzzy factor of i, C is the correlation function, m is
a weight exponent of the regularization corresponding to the degree of fuzziness, uxy is the membership value
for each pixel x in the yth cluster, and 1-C(ix-vy) is the correlation metric function.

3.3 Determination of Wavelet Coefficients Using DWT

Segmented mammogram images are used in calculations concerning wavelet coefficients with the help
of DWT. By applying a square-shaped function will assist in the creation of a family of wavelets. It utilizes a
fuzzy denoising rule that offers shifting sub-bands, extended directional sensitivities, and lower
redundancies. The multiresolution procedure estimates the original texture of the mammogram using the
zoom in and zoom out patterns. The first step is to decompose the image into sub-images, so as to
preserve both the lower- and higher-frequency levels. This property helps DWT to extract texture-based
data. The square integrable function f(i), the corresponding wavelet transform that is organized as an
inner product f and a real-valued function ψ(i), is

w f s; sð Þ½ � ¼ f ;wk
s;t

� �
¼

Z 1

�1
f ið Þwk

s;t ið Þdi; (3)

where wk
s;t ið Þ ¼

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

swk
s;t i�sð Þ

p =s

�
represents the wavelet family, and s ε t, τ, and k ε {h,v,d}, respectively,

represent the scale, orientation parameters, and translation. Orientation parameters v; dv, d, and h denote
the vertical, diagonal, and horizontal directions, respectively. Dyadic wavelet decomposition can be
reached when s ¼ 2x and τ = 2x, n, y, n. The subsequent wavelet decomposition applies dyadic wavelets
executed by the employment of an accurate reconstruction filter bank. Based on the wavelet function ψ(i)
and scaling function (i), the wavelet and scaling family can be formed as

Ψ k
y;n ið Þ ¼ 1ffiffiffiffiffi

2x
p Ψ k i� 2y:n

2y

� �
(4)

’k
yY; ið Þ ¼ 1ffiffiffiffiffi

2x
p ’k i� 2y:n

2y

� �
: (5)

Orthonormal-based subspaces are relevant to the resolution 2y. Wavelet atoms are organized by
scaling and three parental atoms: ψh , ψv, and ψd. These mother atoms are validated as a tensor product of
the 1D ψ(i) and (i):

’ ið Þ ¼ ’ i1ð Þ’ i2ð Þ;Ψ h ið Þ ¼ Ψ i1ð ÞΨ i2ð Þ (6)

Ψ v ið Þ ¼ ’ ix1ð ÞΨ i2ð Þ;Ψ d ið Þ ¼ Ψ i1ð Þ’ i2ð Þ: (7)

Digital filter banks consist of low-pass (h) and high-pass (g) filters. The organization of the wavelet
comprises of a number of filter, categorized based on the resolution. In case of 2-dimensional images,
DWT is processed with the help of independent wavelet functions. The vertical and horizontal
mammogram images are single in nature, they are operated in a dimensional wavelet transform for
establishing a two-dimensional wavelet coefficient. The actual mammogram image A2y+1, with resolution
of 2y+1, is decompressed as a four-sub-band image in the frequency domain. Between these sub-bands,
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only three images, Dh
2xf ;D

v
2xf ;D

d
2xf , represent the mammogram images at a resolution of 2y in the horizontal,

vertical, and diagonal directions, respectively. Followed by an approximation image, A2yf is identified in the
coarse resolution; hence, the entire mammogram image A2y+1 is represented as

A2yþ1f ¼ Dh
2xf þ Dv

2xf þ Dd
2xf þ A2yf : (8)

The decomposed mammogram sub-image is observed as a 2D orthogonal wavelet presentation.
Simulation of the decomposing wavelets in a mammogram image results in four orthogonal sub-bands,
low-high (LH), low-low (LL), high-high (HH), and high-low (HL), corresponding to the sub-images
Dh

2f ;D
v
2f ;D

d
2x f , and A2yf, respectively.

3.4 Feature Extraction

It offers an effective outcome in Computer Aided Diagnosis (CAD) quality. Feature extraction
determines the parameters that are to be separated among the ROI features [22].

3.4.1 Morphological Features
Morphological features are noticeable by humans, and straight features can be described only by

radiologists. These are meant to handle various types of shapes. Since the MCC morphology with respect
to the physical shape determines the existence of ROI, it is important for the presented diagnostic model
to identify morphological organizations that can remain invisible.

3.4.2 Moment Invariant
Moment variants have been used as features for processing images, which is done by calculating the

seven invariant moments based on the rotation of the images. Moment invariants fx, 1≤ X≤ 7, are
helpful in performing tasks such as image scaling and rotating mechanisms. It is validated across the
structure of the boundary and the inner region. The main objective of feature selection is to reduce the
number of features by deleting the predicted information. In this research, the Fisher score is used to
decrease the characteristics and increase accurate detections. Consequently, classification is the final stage
in the CAD system and is used to select the important features, which are used to classify abnormal
lesions into cancerous and non-cancerous types. The classification models utilized to recognize the
classes of images are KNN, ANN, and SVM. In this work, automatic and conventional schemes of ANN
are projected. A different model of SVM is developed to classify results with the help of quadratic, linear,
and radial basis function (RBF) kernels.

3.5 DNN-Based Classification

Once the feature extraction is completed, classification commences on the feature vectors. The
classification process is described as a boundary among the various classes with respect to the measured
characteristics. In such a case, the DNN classification process will have undergone classification of usual
and unusual mammogram images, such as benign and malignant types [23]. In the absence of sharing
data, DNN must be considered for classification procedures. Data flow from the input layer to the output
layer can be witnessed during the absence of the looping function. The DNN classification model assists
in the execution of the dividing operation whenever the probability of a missing value is lower. The DNN
model permits the implementation of a single layer at an unsupervised pretraining level. It allocates a
classification score f(i) at the time of prediction. All input data samples i = [i1, ……..iN] are observed as
a forward pass. Normally, f is the function, which includes a sequence of layers for computing (Txy):

Txy ¼ XxWxy; Ty ¼
X

x
Txy þ by;Xy ¼ g ty

� �
; (9)
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where the input of the layer is represented is defined as ix, the output layer is iy, wxy represents the model
parameters, and g(Ty) realizes the matching function. Layer-wise propagation decomposes the
classification process output f(i) by means of the relevance’s rx attribute for all the input element ix that
involves in the classification decision is defined as

f ið Þ ¼
X

x
rx (10)

where ry > 0 denotes positive evidence that supports the classifying solution, and rx < 0 is negative evidence;
otherwise, it is termed neutral evidence, although the relevant attribute rx is validated as

ry ¼
X

y

TxyP
x Txy

: (11)

The general structure of the DNN is portrayed in Fig. 3. The DNN has the capability of investigating the
unknown characteristics of the coherent inputs. It offers a hierarchical feature training model. A maximum
level of features is retrieved from the lower-level features using greedy layer-wise unsupervised pretraining
information. The main objective of the DNN is to manage the difficult operations that can be represented in a
higher-level abstraction.

4 Performance validation

Experiments were conducted using the freely available MIAS dataset (http://www.mammoimage.org/
databases/). Experimental results were analyzed using a set of performance measures consisting of
sensitivity, specificity, accuracy, and F-score. Fig. 4 shows the sample original mammogram images and
the preprocessed images. The figure clearly shows that the images were properly preprocessed for
discarding unwanted details.

Fig. 5 shows the sample preprocessed mammogram images along with the segmented images. From the
figure, it is clear that the images were properly segmented.

4.1 Results Analysis on Normal and Abnormality Classification

Tab. 1 shows the classifier results under various features with respect to the performance measures.
Fig. 6 shows the accuracy analysis of the various models. In the presence of the energy features, the NN
classifier offers poor classification of concerned features and attains the lowest accuracy level of 58.80%

Figure 3: DNN architecture
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and F-score of 50.69%. The NB model achieves an accuracy level of 92.20% and F-score of 92.16%. The
SVM model exhibits moderate classification, with an accuracy level of 92.40% and F-score of 93.06%. The
DNN model provides effective classification, attaining the best accuracy level of 93.80% and F-score of
93.50%. In the presence of the homogeneity feature, the NN classifier offers poor classification, attaining
the lowest accuracy level of 58.80% and an F-score of 37.12%. The SVM model exhibits better results,
with an accuracy level of 94.40% and F-score of 94.91%. The NB model shows moderate classification, with
an accuracy level of 97.40% and F-score of 97.42%. The DNN model shows effective classification, with the
best accuracy level of 97.80% and F-score of 97.85%.

Figure 4: (a) (c) Original, (b) (d) Pre-processed images

Figure 5: (a) (c) Pre-processed mammogram image, (b) (d) Segmented image

Table 1: Comparison of the diverse models under the Normal & the Abnormal Classifications

Features Model Accu. (%) Sens. (%) Spec. (%) F-score (%)

Energy NN 58.8 96.8 59.2 50.69

SVM 92.40 85.20 99.60 93.06

NB 92.20 92.40 92.00 92.16

DNN 93.8 96.8 90.8 93.5

Homogeneity NN 55.8 97.6 44.8 37.12

SVM 94.40 88.80 97.04 94.91

NB 97.40 97.20 97.60 97.42

DNN 97.8 97.6 99.04 97.85
(Continued)
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With the HOG feature, the NN classifier offers poor classification, with the lowest accuracy level of
48.40% and F-score of 51.51%. The NB model achieves somewhat better results, with accuracy
of 71.60% and an F-score of 69.28%. The SVM model shows moderate classification, with accuracy of
72.60% and an F-score of 69.70%. The DNN model provides effective classification, with the best
accuracy level, 92.40%, and an F-score of 92.74%. With hybrid features, the NN classifier offers poor
classification, with an accuracy level of 42.80% and F-score of 39.10%. Next is the NB model with an
accuracy level of 96.60% and F-score of 96.49%. The SVM model shows moderate classification, with
accuracy of 98.00% and F-score of 98.11%. The DNN model provides effective classification, with the
best accuracy level, 98.80%, and an F-score of 98.85%. With the proposed features, the DNN
classification model achieves the best accuracy level, 99.13%, and an F-score of 99.15%.

4.2 Result Analysis on Malignant and Benign Classification

Tab. 2 shows the classifier results with respect to the malignant and benign classifications under various
measures. Fig. 7 shows the accuracy analysis of the various models. Under the presence of an energy feature,
the NB classifier offers poor classification, with the lowest accuracy level, 50.20%, and an F-score of

Table 1 (continued).

Features Model Accu. (%) Sens. (%) Spec. (%) F-score (%)

HOG NN 48.4 88.4 61.6 51.51

SVM 72.60 80.80 64.40 69.70

NB 71.60 78.00 65.20 69.28

DNN 92.4 88.4 96.4 92.74

Hybrid features NN 42.8 97.6 45.2 39.1

SVM 98.00 96.00 100 98.11

NB 96.60 97.60 95.60 96.49

DNN 98.8 97.6 100 98.85

Proposed DNN 99.13 98.06 100 99.15

Figure 6: Accuracy analysis under various features of the normal and the abnormal classifications
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55.81%. The NN model achieves somewhat better results, with an accuracy level of 51.40% and F-score of
42.60%. The SVM model shows moderate classification, with an accuracy level of 54.20% and F-score of
44.95%. DNN provides effective classification, with the best accuracy level, 58.80%, and F-score of 59.25%.

Table 2: Comparative analysis of the diverse models under the Benign and the Malignant Classifications

Features Classifiers Accu. (%) Sens. (%) Spec. (%) F-score (%)

Energy NN 51.4 56.8 56.4 42.6

SVM 54.20 69.90 38.80 44.95

NB 50.20 26.40 74.00 55.81

DNN 58.8 56.8 60.8 59.25

Homogeneity NN 49.2 54.4 39.2 30.81

SVM 52.20 37.60 66.80 53.86

NB 52.00 32.00 72.00 56.24

DNN 56.8 54.4 59.2 57.51

HOG NN 49.0 38.4 53.6 39.67

SVM 45.20 57.60 32.80 32.06

NB 42.60 38.00 47.20 42.37

DNN 47.0 38.4 55.6 50.16

Hybrid NN 52.0 58.4 64.4 52.4

SVM 53.20 58.00 48.40 48.75

NB 47.60 28.00 67.20 51.95

DNN 59.60 58.40 60.80 59.61

Proposed DNN 86.90 84.30 87.23 87.12

Figure 7: Accuracy analysis under various features of the benign and the malignant classifications
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In the presence of a homogeneity feature, the NN classifier offers poor classification, with 49.20%
accuracy, and an F-score of 30.81%. The NB model is somewhat better, with an accuracy level of
52.00% and F-score of 56.24%. The SVM model exhibits moderate classification at an accuracy level of
52.20%, with an F-score of 53.86%. The DNN model provides effective classification with the best
accuracy level, 56.80%, and an F-score of 57.51%.

In the presence of the HOG feature, the NB classifier offers poor classification, with an accuracy level of
42.60%, and an F-score of 42.37%. The SVM model is somewhat better, with an accuracy level of 45.20%
and F-score of 32.06%. The DNN model shows moderate classification, with an accuracy of 47.00% and
F-score of 50.16%. The NN model demonstrates effective classification, with the best accuracy, 49.00%,
and an F-score of 39.67%.

In the presence of the hybrid features, the NB classifier offers poor classification, with the lowest
accuracy level, 47.60%, and an F-score of 51.95%. The NN model achieves better results, with an
accuracy level of 52.00% and an F-score of 52.40%. The SVM model exhibits moderate classification,
with an accuracy level of 53.20% and F-score of 48.75%. The proposed DNN model provides a
maximum accuracy of 86.90% and anF score of 87.12%.

4.3 Comparison with Recently Proposed Methods

To further assess the performance of the proposed model, a comparative analysis with recently presented
techniques was performed, with results as shown in Tab. 3 and Fig. 8. From the table, it is seen that the poorest
results were realized by the weighted association rule-based classifier, with accuracy of 89.68%. NN achieved
better results, with an accuracy level of 95.98%. The SVM model had manageable results, with an accuracy
level of 96%. The modified ARKFCM-DNN performed competitively, with an accuracy level of 98.80%.

Table 3: Comparison of presented model with state of art methods

Classification approach Accuracy (%)

NN 95.98%

SVM 96%

RBFNN 93.98%

Weighted association rule based classifier 89.685%

Modified ARKFCM-DNN 98.80%

Proposed 99.13%
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5 Conclusion

We developed an efficient DL-based diagnosis and categorization technique to identify breast cancer in
mammograms. The model has the four levels of preprocessing, segmentation, feature extraction, and
classification. At the initial level, Laplacian filtering is applied to identify portions of the edges in
mammogram images that are highly sensitive to noise factors. Subsequently, segmentation takes place
with the help of the modified ARKFCM. Corresponding feature values are provided as inputs to a DNN
classification model, which perfectly classifies normal and abnormal regions in mammogram images. The
MIAS database was employed to evaluate the effectiveness of the proposed machine diagnostic system.
On the applied database, the presented model offered the best classification of the concerned features,
with an accuracy level of 99.13%. The model can be implemented in real-time scenarios.
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