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Abstract: In this paper, an automatic sleep scoring system based on electroence-
phalogram (EEG) and electrooculogram (EOG) signals was proposed for sleep
stage classification and depression detection. Our automatic sleep stage classifica-
tion method contained preprocessing based on independent component analysis,
feature extraction including spectral features, spectral edge frequency features,
absolute spectral power, statistical features, Hjorth features, maximum-minimum
distance and energy features, and a modified ReliefF feature selection. Finally, a
support vector machine was employed to classify four states (awake, light sleep
[LS], slow-wave sleep [SWS] and rapid eye movement [REM]). The overall accu-
racy of the Sleep-EDF database reached 90.10 ± 2.68% with a kappa coefficient
of 0.87 ± 0.04. Furthermore, a depression recognition method was developed to
distinguish the patients with depression from healthy subjects. Specifically,
according to the differences in sleep patterns between the two groups, REM
latency, sleep latency, LS proportion, SWS proportion, sleep maintenance and
arousal times were employed in this study. Sleep data from 12 healthy individuals
and 19 patients with depression were applied to the system. The accuracy of the
recognition results reached 95.24%, thus verifying the feasibility of our approach.

Keywords: Sleep stage; multimodal signals; depression detection; independent
component analysis; ReliefF

1 Introduction

Sleep is the primary function of the brain and plays an essential role in an individual’s performance,
learning ability and physical movement. Sleep staging is the gold standard for analyzing human sleep.
The aim of sleep staging is to identify the sleep stages that are vital in diagnosing and treating sleep
disorders. Traditionally, doctors evaluate the quality of patient sleep through manual sleep staging, but it
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takes considerable time and experience. Therefore, automatic sleep stage classification is vital for simplifying
this task [1]. Sleep experts assess sleep quality using polysomnography (PSG), including electrooculogram
(EOG), electroencephalogram (EEG), electromyogram (EMG), electrocardiogram (ECG) and other signals
that are recorded from sensors attached to different parts of the body. The PSG signal is divided into
30 seconds each epoch, and the result can be classified into different sleep stages according to sleep
standards such as the Rechtschaffen and Kales (R&K) standard [2] and the American Academy of Sleep
Medicine (AASM) standard [3]. However, doctors examine PSG recordings, including multiple signal
channels and score sleep stages, visually, which is labor intensive, time consuming and prone to human
error. An automatic sleep staging system with high accuracy can help doctors simplify this task.

Similar to the field of emotion recognition, the methods of pattern recognition are always considered for
data acquisition and preprocessing, feature extraction, and classification [4–7]. At present, a critical step in
the EEG-based sleep stage classification task is to extract features for improving the accuracy. Several EEG-
based features have been successfully extracted and applied in sleep staging such as spectral features,
statistical features, etc. However, simply combining features into feature vectors may not improve
accuracy and increases the computational overhead in classification. For the high-dimensionality issue in
EEG, not all of these features carry significant information about sleep staging. Feature selection
algorithms are used to identify the features that provide the highest effect. Identification of the
classification algorithm that provided the highest accuracy rates was possible with the features selected in
the last stage. Therefore, as Şen pointed out, feature selection has a significant impact on the performance
of sleep staging [8].

In recent years, a number of studies have attempted to develop methods to automate sleep stage scoring
using single channels based on the public dataset Sleep-EDF. Akara et al. proposed a deep learning model
that combines a convolutional neural network and a bidirectional long short-term memory network,
DeepSleepNet, for automatic sleep stage scoring based on raw single-channel EEG signals. The overall
accuracy of this method reached 82.00%, and Cohen’s kappa coefficient was 0.76 [9]. SleepEEGNet is
composed of deep convolutional neural networks and was proposed by Mousavi et al. using single-EEG
channels; this model achieved good annotation performance, with an overall accuracy of 84.26% and a
kappa coefficient of 0.79 [10]. Ghimatgar et al. used relevance and redundancy analyses for sleep stage
classification with a single-EEG signal, and the method yielded an overall accuracy of 83.52%, with a
kappa value of 0.75 [11]. In addition, the EOG signal is often selected for sleep staging. Rahman et al.
extracted various moment-based and entropy-based features from the discrete wavelet transform (DWT)
bands of EOG signals, and the accuracy was 83.00% [12]. Phan et al. combined EEG and EOG methods
to perform sleep stage classification, and they obtained an overall accuracy of 82.30% using the multitask
1-max CNN method [13]. The classification accuracy considerably varies among the automatic sleep
stage classification methods reported in the literature, ranging from 70% to 84%, and the sensitivity and
specificity remain lower than 90%. However, the multimodal physiology data providing more information
may be helpful to pattern recognition [14]. Therefore, studies of automatic sleep staging are still in their
infancy, and more effective and accurate methods are needed.

Many EEG sleep studies have reported that EEG sleep data is an objective indicator that can correctly
classify patients with depression and normal controls [15]. Depressed patients usually have short sleep time,
reduced amounts of stage III and IV sleep, and increased amounts of intermittent awakening. Recently,
reduced REM sleep latency has proved to be one of the robust features of sleep in depressed patients
[16]. However, few scholars have focused on sleep staging for depressed patients. Schaltenbrand et al.
used depressed patient sleep data in an automatic sleep stage classification system and obtained an
accuracy of 81.54% [17]. Overall, diagnosing depression has always been a problem in the medical
profession. Relatively accurate sleep staging contributes to the diagnosis of depression, as determined
from the 24-item Hamilton Depression Rating Scale (HAMD): no depression (0–7); mild depression
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(8–20); moderate depression (20–35); and severe depression (≥35) [18]. Cai et al. identified depression
through a machine learning method using EEG signals and obtained a maximum accuracy of 79.27%
[19]. Numerous studies have indicated a remarkable relationship between healthy and depressed patients,
including changes in EEG signals in slow-wave sleep and rapid eye movement (REM) sleep [16,20].
Therefore, it is feasible to detect depression through sleep staging, although it is challenging.

In this study, we proposed an automatic sleep staging method based on EEG-EOG signals. First,
different dimensional features from the time domain, frequency domain, and time-frequency domain were
extracted. Then, a modified independent component analysis (ICA)-ReliefF method was proposed for
feature selection. Finally, the sleep stages were classified with a support vector machine classifier. The
proposed sleep staging method achieved an average accuracy of 90.10% for the Sleep-EDF dataset.
Compared with the most recent benchmark approach, our proposed method improves the accuracy of
sleep staging classification. Furthermore, we distinguished the patients with depression from healthy
controls using the results of sleep staging. The experimental results yielded an average accuracy of
95.24%, indicating that sleep staging analysis can contribute to convenient, quick and accurate depression
detection.

2 Materials and Methods

2.1 Materials

2.1.1 Sleep-EDF
Sleep-EDF, a public dataset based on sleep research, includes information about two sets of subjects

from two studies: sleep recordings for healthy subjects (SC) and sleep telemetry data for subjects with
mild difficulty falling asleep (ST) [21]. Each PSG recording contains 2-channel EEG signals from Fpz-Cz
and Pz-Cz, 1 EOG (horizontal) signal, 1 EMG signal, 1 oronasal respiration signal and 1 body
temperature. All EEG and EOG signals have the same sampling rate of 100 Hz, and the other signals’
sampling rate is 1 Hz. These recordings were manually classified into sleep stages, including W (Wake);
REM; 1, 2, 3, and 4 M (Movement time); and ? (not scored), by sleep experts according to the R&K
standard. In this work, we selected 38 sleep records and labeled recordings collected at sleeping times
(ignoring movement times) for 20 subjects (age 28.7 ± 3.0) from SC. In addition, we merged S1 and
S2 into light sleep (LS) and merged S3 and S4 into slow-wave sleep (SWS). W, LS, SWS and REM are
the four stages of sleep in the system.

2.1.2 Acquisition of Sleep Data for Healthy Subjects and Patients
The raw sleep data, provided by a hospital, are from 12 healthy subjects and 19 depressed patients. All

depressed subjects were diagnosed by a physician as having mild to severe depression based upon a
structured clinical interview, with severity as defined by the HAMD Rating Scale. For these patients, we
collected 32 PSG channel signals that were obtained under the same conditions. In this study, we used
information from two channels, EEG (C3, O1) and EOG (E1), as the input data for the automatic sleep
stage classification system. The same sampling rate of 256 Hz was used for each channel. For the healthy
subjects, we obtained the 30-channel EEG and 2-channel EOG signals. Five channels (FC3, T3, C3, C2,
and CP3) and 1 EOG channel were used in this work. The sampling rate for each channel was 250 Hz. The
collected data were manually divided into four classifications (W, LS, SWS and R) by experienced doctors.

2.2 Data Processing and Algorithm

For our proposed automatic sleep staging system, sleep staging included three progressive steps:
preprocessing, feature extraction, and feature selection and classification. The goal of staging is to
translate sleep activity into meaningful information through a series of well-designed components.
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Initially, the user’s brain activity is recorded to generate the polysomnographic signals that are used to
evaluate the automatic sleep stage classification scheme. As shown in Fig. 1, after the data are recorded, a
preprocessing phase is implemented with the ICA method, including filtering and artifact rejection, to
enhance the PSG signal. Then, the resultant signals are transformed through feature extraction to derive
informative attributes that are used in the classification stage. In addition, feature selection is performed
prior to the classification stage to reduce the number of features that are derived from the input features.
Finally, the extracted attributes are passed to classifiers to categorize human sleep stages. For depression
detection, distinguishing between healthy subjects and depressed patients was based on the method
shown in Fig. 2. Some features extracted from the labels were manually extracted by experts via visual
inspection, and then the feature vector was input into the support vector machine (SVM) classifier to
distinguish between patients and healthy subjects.

2.2.1 Preprocessing
In this part, all of the EEG and EOG channels were displayed with a 0.3–35 Hz bandpass filter, and then

the input sleep data were segmented into sets of 30 seconds per epoch because the sleep recordings were
scored by experts according to the AASM standard. ICA, developed from blind signal separation
technology, is a multichannel signal processing method. This approach is very popular among researchers
who work in areas such as signal processing and speech recognition. The initial learning rate was set to
0:00065=loge channelsð Þ. In the preprocessing stage, the signals both use EEG and EOG channels
(3� frames), so the initial learning rate is set to 5:91655� 10�4. The ICA training process is stopped
when the learning rate is less than 10�6 or the number of steps reaches 512. Finally, three independent

Figure 1: Flowchart of sleep stage classification using multimodal signals

Figure 2: Depression detection algorithm
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denoising signals are obtained. ICA is a widely used preprocessing technique that has been applied in a wide
area of research and therefore will not be discussed in detail. The details are given in the description of Bell
and Sejnowski’s algorithm for the ICA study of EEG analysis [22].

2.2.2 Feature Extraction
Sleep stage classification is typically performed by identifying the features extracted from cerebral

rhythms, which contain time-based, frequency-based, and entropy-based features. For depression
detection, the features extracted from the sleep stage labels have been used to distinguish between
depressed patients and healthy people in many studies.

Spectral features: Spectral features were originally described in [23] and were first used for EEG signal
analysis in [24]. Spectral features attempt to capture classification related information from the magnitude
spectrum of the signal based on fast Fourier transformation. Each filtered epoch was divided into eight
groups without overlapping, and we used the average value as the final spectral feature.

Spectral edge frequency features: The spectral edge frequency (SEF) is the frequency below which a
certain fraction of the signal power is contained. The difference between that frequencies is generally denoted
as SEFxx, where xx is the fraction of the signal power for which the edge frequency is calculated [25]. The
spectral edge frequency at 50% (SEF50), shown in Eq. 1, is the frequency below which half of the signal
power is present. This value is equivalent to the median frequency of the signal. SEF95 is shown in Eq. 2:Xx

i¼1
aij j2 ¼ 0:5�

XN

i¼1
aij j2 (1a)

SEF50 ¼ freq xð Þ (1b)
Xx

i¼1
aij j2 ¼ 0:95�

XN

i¼1
aij j2 (2a)

SEF95 ¼ freq xð Þ (2b)

SEFd ¼ SEF95� SEF50 (3)

where ai is the Fourier transform coefficient.

Absolute spectral power: In the field of sleep staging, the absolute spectral power (AP) is used to
extract REM features. A repeated-measures analysis of variance showed a significant sleep stage effect
for alpha band power, and alpha band power was significantly elevated in phasic REM sleep compared
with that in sleep stage 4 [26]. Therefore, we set f1 ¼ 8Hz, f2 ¼ 16Hz and then expressed the
corresponding formula as follows:

AP ¼ 20� log
Xn f2ð Þ

i¼n f1ð Þ aij j2
� �

(4)

where n fið Þ is the index of the Fourier transform coefficient corresponding to the frequency fi.

Statistic features: As physiological signals, sleep EEG, EOG, EMG, respiration and temperature
signals can also be analyzed by statistical analysis [27,28]. The features contain the mean, standard
deviation and some parameters of the first/second derivative of the raw signals. There were 6 features for
each epoch in this study.

Hjorth features: The Hjorth parameter reflects the statistical property of a signal in the time domain
and includes three components: activity, mobility, and complexity [29]. The activity parameter is
associated with the high-frequency components of the signal. The mobility parameter is defined as the
square root of the ratio of the variance of the first derivative of the signal to that of the signal. The
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complexity parameter indicates how similar the shape of a signal is to that of a pure sine wave. The
expressions of these parameters are as follows [30]:

Activity ¼ r2x (5)

Mobility ¼ rx0

rx
(6)

Complexity ¼
rx00=rx0
rx0=rx

(7)

where rx, sx0 , and sx00 are the standard deviations of x nð Þ, x0 nð Þ and x00 nð Þ, respectively.
Maximum-Minimum Distance (MMD): The MMD feature is based on the distance formula derived

from the Pythagorean Theorem [1]. The idea behind this feature is to find the distance between the
maximum and minimum points in each subwindow. The subwindow is set to � ¼ 100 if the number of
samples in an epoch is less than 10,000. If number of samples is greater than 10,000 and less than
100,000, then � ¼ 1000 and so on. This rule must be taken into consideration for all epochs. Eq. (8)
represents how the number of samples in a sliding window or the wavelength is determined.

� ¼ 100 if n, 10;000
10 log nð Þ�1 if n � 10;000

�
(8)

where n is number of samples in an epoch. To compute the MMD feature, first the maximum and minimum
values are found with their indices in each sliding window. Then, the distance between the maximum point
and minimum point are calculated using the Pythagorean distance formula:

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dx2 þ Dy2

p
(9)

where Dx indicates the x-axis (time) difference of the maximum and minimum points and Dy refers to the
y-axis (amplitude) difference of the maximum and minimum points in each subwindow. Last, (10) is
carried out to find the sum of the distance sequences in each sliding window:

MMD ¼
Xw

i¼1
dij j (10)

where w refers to the total number of subwindows in an epoch.

EnergySis (Esis): The basic idea of this feature is to assume that the signal has speed and energy [1].
According to (11), the speed (velocity) of the signal can be measured by using the frequency and wavelength
parameters. The frequency (f ) is calculated by finding the midpoint of the pass-frequency for each band. The
wavelength (�) of the EEG waveform is determined as mentioned earlier in (8). Then, the obtained velocity
(v) is multiplied by each squared amplitude (X) modulus of the sample. Finally, the total Esis is calculated as
described in (12).

v ¼ f � � (11)

Esis ¼
XN

i¼1
X2

i

�� ��� v (12)

where N refers to the length of the epoch.

REM latency: REM latency is the time between lying down and reaching the REM stage. Investigations
have shown that REM latency is an important feature of primary depression because it is significantly longer
than that for healthy controls [31–33].
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Sleep latency: Sleep latency is the time from lying down to the appearance of W, and it is the sleep
symptom most complained about by depressed patients [34].

LS proportion: The proportion of LS to the total sleep time is the LS proportion. The N1 and
N2 periods for depressed patients are relatively short compared to those of healthy subjects [35].

SWS proportion: The proportion of SWS to the total sleep time is the SWS proportion. The shortening
of SWS due to the suppression of the mechanisms responsible for regulating NREM sleep can also reflect
symptoms of depression [20].

Sleep maintenance: Sleep maintenance reflects the proportion of time required to fall asleep to the
amount of time spent in bed, which may play an important role in the development of depressive
disorders [35,36].

Arousal times: Arousal times, the number of awakenings throughout the night, could reflect the quality
of sleep, and significant increases in awakenings for depressed patients have been reported [37].

2.2.3 Feature Selection
The feature selection process, which is an important part of pattern recognition and machine learning,

reduces computation costs and increases classification performance. All original features are not always
useful for classification or for regression tasks since, in the distribution of the dataset, some features may be
irrelevant/redundant or noisy and reduce the classification performance. ReliefF is the supervised feature
weighting algorithm of the filter model. This determines the extent to which feature values discriminate the
instances among different classes and is used in estimating the quality of the features according to this
criterion. The ReliefF algorithm has the advantage of dealing with noisy and unknown data [38,39]. For the
sleep stage classification task, the ReliefF algorithm outputs a weight to indicate the corresponding
relevance of each sleep feature. In this study, the Chebyshev distance measure is used instead of the
Manhattan distance measure for identifying the nearest miss and nearest hit instances, which is enough to
attain accurate neighborhood selection and better prediction and it completely reduces the curse of
dimensionality problem. The weight of the ReliefF algorithm is calculated using the following formula:

W ¼ W � diff xij; near hitij
� �2 þ diff xij; near missij

� �2� �
=m (13)

m defines the sample size (randomly selected from a subset of the training set), and diff xij; near hitij
� �

is the
difference between values of the attribute within the randomly selected j distance and near hitij value of the
attribute within the closest training sample in the same class. In parallel, diff xij; near missij

� �
is described as

value of the closest training sample from a different class. For a useful attribute, xij and near hitij values are
expected to be very close to each other. If an attribute is not useful, both differences are expected to take
almost the same distribution. All the features are first ranked using the modified ReliefF method, and they
are added to the features vector in turn according to their weights for classification.

2.2.4 Classification
In the small sample classification in the field of pattern recognition, K-means is a common method in

unsupervised learning [40,41], while SVM is the most common method in supervised learning. SVMs,
the method that has been successfully applied to classification in various domains of pattern recognition,
are used for classification in this paper. The SVM is a linear discriminant that maximizes the separation
between two classes based on the assumption that it improves the classifier’s generalization capability
[42,43]. In this study, there are two parts using the SVM. The first part is to achieve sleep staging with
Sleep-EDF and acquisition sleep data. The other part is to distinguish the subject between healthy
subjects and patients with depression. The SVM classifier with the linear kernel based on the LIBSVM
toolbox [44] was used to classify the data, and the remaining parameters are set to default values [45].
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2.2.5 Performance Evaluation Methods
K-fold cross-validation has been widely used in automatic sleep staging [8]. The data set is first divided

into k subclusters in a k-fold cross-validation test. Moreover, (k − 1) times subclusters are used in training,
whereas 1 subcluster is used for testing. The process is continued until all subclusters are left outside training
and tested. The success achieved in the tested data sets provides the reliability and validity degree of the
employed method. The average testing success for the k-times data set is obtained to arrive at a single
validity value.

3 Experiments and Results

Three experiments were conducted in this study, including two experiments involving automatic sleep
staging with the Sleep-EDF data set and acquired sleep data and one involving depression detection. For each
experiment, we used the proposed machine learning method for feature extraction and classification with an
SVM. In this study, the experiments were developed in a MATLAB environment (MATLAB and Signal
Processing Toolbox Release 2019b) with an Intel(R) Core(TM) i5-4210M 2.60 GHz CPU and 12 GB of
installed RAM on the Windows x64 platform.

3.1 Experiment I: Sleep Staging with Sleep-EDF

This experiment was designed to evaluate the performance of our automatic sleep staging system using
the public data set Sleep-EDF. Sleep data for 38 subjects from Sleep-EDF were independently applied to the
system in this experiment. Data of equal proportions in each period were extracted as the training set, and the
remaining data were regarded as the testing set.

As shown in Fig. 1, we first preprocessed 3 EEG and EOG channel signals with ICA and set the initial
learning rate to 5:91655� 10�4. Then, we extracted the features of all the signals to form a feature vector,
including spectral features, spectral edges frequency features, statistical features, Hjorth features, etc. The
ReliefF method was used for ranking features. Finally, we evaluated the system using 4-fold cross-
validation based on an SVM and obtained the overall accuracy. To compare the performance of single-
channel and multimodal signal methods, we established a control experiment using Fpz-Cz only. In this
case, there was no ICA preprocessing step with only a single signal.

For Fpz-Cz, the average overall accuracy was 77.88 ± 6.86%, with a kappa coefficient of 0.70 ± 0.09,
as shown in Tab. 1. The average accuracies of the W, LS, SWS and REM stages were 77.32%, 62.96%,
91.10% and 80.16%, respectively. The highest accuracy was 88.78%, and the lowest accuracy was
62.28%. For the multimodal signals, the overall accuracy and kappa coefficient reached 90.10 ± 2.68%
and 0.87 ± 0.04, which can be seen in Tab. 2. The average accuracies of the W, LS, SWS and REM
stages were 96.83%, 80.18%, 91.59% and 91.79%, respectively. The accuracies of the subjects for the
W, LS and REM periods were significantly higher than those using a single channel (p < 0.01, paired
t-test), especially in the W period, as shown in Fig. 3. The overall accuracy was higher than 90% for
more than half of the subjects, and all the kappa coefficients were higher than 0.8. Additionally, the
lowest accuracy was higher than 80%.

Although the accuracy for LS is relatively low, potentially because LS is a transitional phase between
being awake and other sleep states and displays similar EEG patterns as those for REM, most sleep staging
methods have similar problems. Moreover, the accuracy of W and LS is much higher than the former
method. The overall accuracy for multimodal signals is 11.62% higher than that for single-channel
signals, which reflects the effectiveness and reliability of the proposed method with multimodal signals
and ICA preprocessing.
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Table 1: Results of sleep staging with Sleep-EDF for Fpz-Cz

Subject W LS SWS REM Overall Kappa

SC4001E0 82.99 60.24 89.35 86.90 79.87 0.73

SC4002E0 89.07 74.43 93.76 86.58 85.96 0.81

SC4011E0 76.26 62.23 96.72 83.24 79.61 0.73

SC4012E0 73.37 59.39 95.10 78.93 76.70 0.69

SC4021E0 62.14 52.57 88.53 72.33 68.89 0.58

SC4022E0 79.02 55.78 89.02 65.19 72.25 0.63

SC4031E0 80.00 68.20 91.02 94.17 83.35 0.77

SC4032E0 74.70 68.34 92.92 83.26 79.80 0.73

SC4041E0 71.88 50.29 92.04 67.20 70.36 0.60

SC4042E0 68.32 47.30 95.55 70.86 70.51 0.60

SC4051E0 45.40 57.57 93.13 76.13 68.06 0.56

SC4052E0 44.21 67.79 97.13 68.89 69.50 0.58

SC4061E0 91.26 74.02 96.49 93.34 88.78 0.85

SC4062E0 83.01 68.91 98.94 85.25 84.03 0.78

SC4071E0 87.50 68.59 94.19 84.91 83.80 0.78

SC4072E0 81.24 66.19 93.78 85.06 81.57 0.75

SC4081E0 77.67 56.62 86.42 77.11 74.45 0.66

SC4082E0 85.43 61.62 84.94 74.38 76.59 0.69

SC4091E0 87.88 68.28 88.97 79.11 81.06 0.75

SC4092E0 87.85 76.10 97.33 87.20 87.12 0.83

SC4102E0 59.39 48.46 93.49 64.99 66.58 0.54

SC4111E0 78.68 26.21 68.48 75.76 62.28 0.49

SC4112E0 86.12 64.83 80.45 87.39 79.70 0.72

SC4121E0 68.14 72.48 93.51 81.52 78.91 0.72

SC4122E0 56.71 63.88 90.88 77.59 72.26 0.62

SC4131E0 79.86 74.15 99.08 81.99 83.77 0.78

SC4141E0 88.12 79.47 92.99 91.34 87.98 0.84

SC4142E0 67.42 81.77 93.93 75.78 79.73 0.73

SC4151E0 88.91 67.98 94.61 91.88 85.85 0.81

SC4152E0 96.13 70.35 90.25 88.35 86.27 0.82

SC4161E0 83.12 67.76 88.85 71.79 77.88 0.70

SC4162E0 74.08 59.80 92.73 65.04 72.91 0.63

SC4171E0 86.84 66.12 77.23 84.67 78.71 0.71

SC4172E0 82.91 51.56 90.18 81.97 76.65 0.69

SC4181E0 70.24 50.60 80.33 76.05 69.31 0.59

SC4182E0 68.63 50.05 89.63 72.76 70.27 0.60
(Continued)
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Table 1 (continued).

Subject W LS SWS REM Overall Kappa

SC4191E0 86.60 67.77 99.30 92.92 86.65 0.82

SC4192E0 86.99 64.95 90.39 84.18 81.63 0.76

Average 77.32 62.96 91.10 80.16 77.88 0.70

Table 2: Results of sleep staging with Sleep-EDF for multimodal signals

Subject W LS SWS REM Overall Kappa

SC4001E0 96.68 79.36 87.27 97.02 90.08 0.87

SC4002E0 97.52 81.77 94.07 93.53 91.72 0.89

SC4011E0 97.57 86.02 97.64 96.04 94.32 0.92

SC4012E0 95.94 81.85 95.89 92.11 91.45 0.88

SC4021E0 98.20 74.46 85.80 92.62 87.77 0.83

SC4022E0 98.10 82.70 88.34 93.32 90.62 0.87

SC4031E0 97.13 81.12 91.33 93.99 90.89 0.88

SC4032E0 97.99 85.49 95.74 93.76 93.25 0.91

SC4041E0 93.97 69.04 94.28 92.33 87.40 0.83

SC4042E0 96.32 71.13 93.41 86.44 86.83 0.82

SC4051E0 92.45 80.44 92.06 96.57 90.38 0.87

SC4052E0 94.67 82.49 93.68 91.04 90.47 0.87

SC4061E0 95.57 88.60 96.23 94.19 93.65 0.92

SC4062E0 97.54 88.02 99.36 94.61 94.88 0.93

SC4071E0 98.65 86.27 95.44 94.25 93.65 0.92

SC4072E0 98.59 79.99 93.85 91.94 91.10 0.88

SC4081E0 96.61 74.74 85.53 92.27 87.29 0.83

SC4082E0 97.08 78.45 83.82 90.29 87.41 0.83

SC4091E0 97.78 79.83 90.06 92.07 89.94 0.86

SC4092E0 97.37 83.38 96.40 93.05 92.55 0.90

SC4102E0 95.77 80.67 97.75 86.31 90.13 0.85

SC4111E0 96.93 74.50 80.27 92.87 86.14 0.81

SC4112E0 97.91 78.92 82.73 93.43 88.25 0.84

SC4121E0 98.03 84.67 93.40 88.33 91.11 0.88

SC4122E0 95.79 84.65 93.17 86.82 90.11 0.87

SC4131E0 97.99 85.21 95.50 93.04 92.93 0.90

SC4141E0 96.96 86.53 94.75 95.97 93.55 0.91
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3.2 Experiment II: Sleep Staging with Raw Sleep Data

To validate the effectiveness of our method, we performed sleep staging experiments on healthy subjects
and patients with depression based on the automatic sleep staging system that was optimized in Experiment I.
Sleep data for 19 depressed patients and 12 healthy subjects were used in this experiment, and the data
spanned an entire night. Feature vectors were extracted from the sleep data of subjects through
preprocessing and feature extraction. Then, sleep staging was performed using the vectors through the
SVM classifier.

For the patients with depression, we obtained an average overall accuracy of 78.62 ± 6.71%with a kappa
coefficient of 0.71 ± 0.09, as shown in Tab. 3. The accuracies of W, LS, SWS and REM were 75.45%,

Table 2 (continued).

Subject W LS SWS REM Overall Kappa

SC4142E0 98.15 87.85 94.80 93.48 93.57 0.91

SC4151E0 97.86 83.11 93.94 92.14 91.76 0.89

SC4152E0 99.01 84.93 92.93 92.41 92.32 0.90

SC4161E0 96.12 76.79 89.46 86.42 87.20 0.83

SC4162E0 96.51 72.91 87.70 91.51 87.16 0.83

SC4171E0 96.51 78.62 77.01 93.45 86.40 0.82

SC4172E0 97.28 71.05 88.26 87.39 86.00 0.81

SC4181E0 99.05 78.22 84.30 89.64 87.80 0.84

SC4182E0 99.11 68.68 94.01 87.83 87.41 0.83

SC4191E0 93.74 79.56 98.91 89.70 90.48 0.87

SC4192E0 91.15 74.86 91.30 85.73 85.76 0.80

Average 96.83 80.18 91.59 91.79 90.10 0.87

Figure 3: Box-whisker plots of Experiment I and p value with t-test

IASC, 2021, vol.28, no.1 63



70.52%, 90.36% and 78.11%, respectively. Notably, the accuracy for elderly subjects was relatively low, and
that for teenagers was higher than the average value.

For the healthy subjects, the overall accuracy reached 69.23 ± 5.55%, and the kappa coefficient was 0.58
± 0.08, as shown in Tab. 4. In particular, the accuracy of Wwas higher than 80%, but the accuracies of LS and
REM were relatively low.

Table 3: Details of the depressed patients and results of the sleep staging experiments

Subject Age Sex Score Diagnosis W LS SWS REM Overall Kappa

1 12 F 0 MDE 97.59 77.36 86.43 89.43 87.70 0.83

2 19 F 21 DE 96.01 76.58 74.21 92.11 84.73 0.79

3 70 F 1 DE 56.36 68.10 73.48 60.61 64.64 0.52

4 32 F 30 DE 54.14 55.24 96.14 63.13 67.16 0.55

5 30 F 40 DE 64.50 61.39 98.61 70.24 73.69 0.64

6 35 F 45 DE 71.75 69.83 99.89 58.15 74.93 0.64

7 16 F 36 MDE 84.66 81.19 84.44 90.74 85.26 0.80

8 28 M 35 DE 87.97 70.85 87.17 72.89 79.72 0.73

9 16 F 48 DE 90.16 77.69 92.61 91.23 87.92 0.84

10 16 F 33 DE 67.24 68.80 93.36 82.82 78.05 0.70

11 55 F 25 DE 64.12 60.15 86.79 71.38 70.61 0.60

12 35 M 34 MDEx 69.45 61.52 99.78 68.27 74.81 0.66

13 52 F 15 MDE 80.06 63.51 87.48 83.99 78.76 0.71

14 16 F 20 DE 80.04 82.81 99.13 81.80 85.95 0.81

15 34 F 18 DE 76.75 76.21 98.10 86.23 84.32 0.79

16 15 F 20 DE 80.27 64.63 81.54 76.80 75.81 0.68

17 17 F 1 DE 74.58 68.49 97.06 79.73 79.96 0.72

18 28 F 7 DE 83.51 76.91 83.37 86.81 82.65 0.77

19 16 F 48 MDE 54.45 78.68 97.23 77.79 77.04 0.69

Average 29 – 25 – 75.45 70.52 90.36 78.11 78.62 0.71

DE: Depressive episode. MDE: Major depressive episode with psychotic symptoms. MDEx: Major depressive episode without psychotic symptoms.

Table 4: Details for healthy subjects and the results of sleep staging experiments

Subject Age Sex W LS SWS REM Overall Kappa

1 24 F 83.14 56.91 82.13 48.82 68.23 0.57

2 24 F 76.01 64.13 85.12 54.96 70.05 0.59

3 24 M 84.59 63.74 84.20 72.36 76.22 0.68

4 24 M 83.38 49.42 74.77 61.69 67.32 0.56

5 24 M 85.92 60.11 83.74 67.70 74.37 0.65
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The accuracy for the LS period was relatively low for healthy subjects. In addition, the accuracy in
Experiment II was lower than that in Experiment I with Sleep-EDF.

3.3 Experiment III: Depression Detection

To explore the feasibility of depression detection, we established an experiment to differentiate patients
with depression and healthy subjects. The labels of patients and healthy subjects, which were manually
classified by a sleep expert, were regarded as input data and added to the depression detection system.
Ten labels for 4 healthy subjects and 6 depressed patients were randomly selected as the training set, and
the other labels were regarded as the test set. For the label data, features were acquired, including the
REM latency, sleep latency, LS proportion, SWS proportion, sleep maintenance time, arousal time, etc.
Finally, the SVM classifier was used to classify patients. As reported in Tab. 5, among the test set
consisting of 21 subjects (13 depressed patients and 8 healthy subjects), 20 subjects were classified
correctly, so the accuracy was 95.24%. The true positive rate (TPR), false positive rate (FPR), true
negative rate (TNR) and false negative rate (FNR) were 100%, 7.69%, 92.31% and 0%, respectively.
Moreover, the F-score reached 94.12%, which suggests that the proposed method is effective.

TPR and FPR are appropriate measures for evaluating the performance of depression detection. The
receiver operating characteristic (ROC) curves depict the relation between the TPR and FPR. We used the
extracted features to obtain the ROC curve. As shown in Fig. 4, the areas under the ROC curve are both
close to 1. The conventional parameters of sleep stage labeling are summarized in Tab. 6. The depressed
patient group showed several of the well-known pathognomonic sleep changes, such as decreases in the
LS stage percentage, sleep latency, sleep efficiency and arousal times and increases in the REM latency
and SWS stage percentage.

Table 4 (continued).

Subject Age Sex W LS SWS REM Overall Kappa

6 24 M 87.79 46.93 84.55 65.95 71.67 0.61

7 25 M 89.57 39.11 81.23 46.68 65.79 0.53

8 25 M 79.64 52.78 80.83 51.73 70.01 0.59

9 24 M 72.08 51.81 61.09 46.02 57.48 0.43

10 24 M 80.65 60.99 58.11 62.13 66.02 0.53

11 24 M 73.67 54.00 78.35 51.56 65.50 0.50

12 24 M 88.94 59.34 88.23 76.92 78.06 0.69

Average 24 – 82.11 54.94 78.53 58.88 69.23 0.58

Table 5: Confusion matrix for depression detection

Health (algorithm) Depression (algorithm) Summary (algorithm)

Health (expert) 8 1 9

Depression (expert) 0 12 12

Summary (expert) 8 13 21
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4 Discussion

This work provides a comprehensive survey of automatic multimodal signal processing techniques
applied for sleep stage identification. The automatic sleep stage classification system analysis procedure
was divided into four essential parts: preprocessing, feature extraction, feature selection and classification.
The survey offers valuable information for researchers to determine the effectiveness of methods based
on multimodal signals, and the performance and efficiency of various methods are discussed. In this
study, we evaluated the proposed automatic sleep staging algorithm using the public dataset Sleep-EDF
and sleep data acquired for healthy subjects and patients with depression. For Sleep-EDF, we obtained a
relatively high overall accuracy using multimodal signals, reaching 90.10 ± 2.68%, and the kappa
coefficient was 0.87 ± 0.04. For the sleep data obtained for patients with depression, the accuracy was
78.62 ± 6.71%, which indicates the effectiveness of the proposed system. In addition, an algorithm for
depression detection was proposed. The accuracy of depression recognition was 95.24%, with an F-score
of 94.12%. This finding indicates that the proposed method has certain advantages over other methods in

Figure 4: ROC curve of depression detection using different features

Table 6: Conventional sleep patterns for controls and depressed patients

Feature Depression Health p value

Sleep latency (stages) 4.89 ± 12.44 33.42 ± 25.66 <0.01

REM latency (stages) 466.63 ± 194.49 70.83 ± 56.73 <0.01

LS proportion (%) 7.95 ± 5.30 21.08 ± 7.59 <0.01

SWS proportion (%) 54.86 ± 18.73 23.18 ± 10.06 <0.01

Sleep maintenance (stages) 86.83 ± 10.07 94.31 ± 4.42 <0.05

Arousal times 24.21 ± 18.72 50.33 ± 32.34 <0.01
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terms of accuracy and feasibility; therefore, this research can be considered an important step toward a fully
automated, convenient and efficient sleep quality evaluation system.

The proposed automatic sleep staging system took approximately 30 minutes to complete a sleep staging
task for one subject. However, it takes hours for experts to perform manual sleep stage classification.
Therefore, the proposed method is efficient compared to the current methods applied in practice.
Although we used multimodal signals, several channels, including EEG and EOG, were used in the
system. This method can be effectively applied in clinical practice. In Experiment I, the method with
multimodal signals yielded an accuracy increase of greater than 10% over that for a single-channel signal
(77.88 ± 6.86%). In particular for the LS period, its accuracy improved dramatically, though it has always
been regarded as the most difficult period to be classified. Thus, the proposed effective multimodal signal
automatic sleep staging method is highly reliable for use in automatic sleep staging systems. However,
the accuracy of sleep staging of healthy subjects in Experiment 2 was not quite as good compared with
that of patients. As pointed out in most clinical studies, there is a decrease of total sleep time and stage
SWS and an increase of stage W in depressed patients in comparison with the healthy controls, and that
increasing the difficulty of sleeping staging for the healthy subjects. Furthermore, the physiologic systems
in a healthy state generate activity fluctuations on many time scales, which would also influence the
accuracy of sleep staging to some extent [46].

All of the methods listed in Tab. 7 utilized the Sleep-EDF dataset, and only the best accuracy is
presented. As shown, the accuracy of the proposed method was 90.1%, and our proposed method
achieved nearly the highest accuracy reported. There are a few factors that may contribute to the high
performance of our result. First, the multimodal signals were used in this system and they could provide
more information of sleep data. In other aspects, multimodal signals are suitable for ICA preprocessing to
decrease noise in the signals. Second, the application of the ReliefF feature selection in sleep staging
system is also an important factor. The ReliefF algorithm is used to evaluate the relevance of features to
labels. Highly relevant features can commendably reflect the discrimination of samples from different
classes and the similarity of samples from the same class. The trained classifier used ReliefF with the
Chebyshev distance measure to capture more valid information from the new feature vector, thereby
enlarging its ability to perform pattern recognition.

Table 7: Accuracy obtained in the proposed method and with previous methods based on Sleep-EDF

Work Input signals Primary method Sleep stages Accuracy &
kappa

Sotelo et al.
[47]

Fpz-Cz + Pz-Oz PCA + k-means 5(W, S1, S2,
S3/S4, REM)

80.0%, 0.67

Imtiaz et al.
[48]

Fpz-Cz + Pz-Oz Decision trees based
state machine

5(W, S1, S2,
S3/S4, REM)

82.2%, 0.75

Tsinalis et al.
[49]

Fpz-Cz + Pz-Oz Complex Morlet
Wavelets + L-BFGS

5(W, S1, S2,
S3/S4, REM)

78.9%, 0.71

Supratak et al.
[9]

Fpz-Cz CNN + BiLSTM 5(W, S1, S2,
S3/S4, REM)

82.0%, 0.76

Chen et al.
[50]

Fpz-Cz Wavelet + SVM 4(W, S1/S2,
S3/S4, REM)

86.8%, 0.83

Michielli et al.
[51]

Fpz-Cz mRMR + LSTM 4(W, S1/REM,
S2, S3/S4)

90.8%, -

Our work Fpz-Cz + Pz-Oz + EOG +
EMG + Resp + Temp

ICA + ReliefF + SVM 4(W, S1/S2,
S3/S4, REM)

90.1%, 0.87
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The accuracy variations for different patients may be because depressed patients’ sleep patterns are
different from those of healthy subjects, as noted in many studies. The sleep efficiency of depressed
individuals is obviously lower than that of healthy patients. Patients displayed abnormally small
autocorrelations during the LS and SWS stages in comparison to healthy controls [46]. Sleep latency and
REM latency are important variables that contribute to the distinction between healthy and depressed
people [15,52]. Additionally, there is enough evidence provided by other parameters, such as sleep
maintenance and REM activity, to indicate the differences between healthy and depressed individuals
[53]. In other words, physiological systems in a healthy state generate activity fluctuations on many time
scales, and disease states are associated with a breakdown of this traditional temporal structure. Although
the numbers of healthy and depressed subjects studied were relatively small, an accuracy rate of up to
95.24% was achieved, indicating that the proposed method provides a viable way to automatically
recognize depression with computers.

The limitations of this study are primarily related to data acquisition and the proposed methodology. The
raw sleep data collected, especially for healthy subjects, may have too much noise to yield high-accuracy
results in sleep staging analyses. In addition, the sleep stage labels used for depression detection were not
manually divided by experts because the accuracy of the results of Experiment II was not high enough to
support depression recognition.

Future work will consider artificial neural networks to enable us to efficiently improve the performance
of automatic sleep staging [54]. Additionally, we will further explore the difference between the sleep
patterns of patients with depression and healthy people and attempt to automatically detect them.
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