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Abstract: The automated reconstruction of building information modeling (BIM)
objects from unstructured point cloud data for indoor as-built modeling is still a
challenging task and the subject of much ongoing research. The most important
part of the process is to detect the wall geometry clearly. A popular method is first
to segment and classify point clouds, after which the identified segments should
be clustered according to their corresponding objects, such as walls and clutter. To
perform this process, a major problem is low-quality point clouds that are noisy,
cluttered and that contain missing parts in the data. Moreover, the size of the data
introduces significant computational challenges. In this paper, we propose a fully
automated and efficient method to reconstruct as-built BIM objects. First, we pro-
pose an input point cloud preprocessing method for reconstruction accuracy and
efficiency. It consists of a simplification step and an upsampling step. In the sim-
plification step, the input point clouds are simplified to denoise and remove cer-
tain outliers without changing the innate structure or orientation information. In
the upsampling step, the new points are generated for the simplified point clouds
to fill missing parts in the plane and nearby edges. Second, a 2D depth image is
generated based on the preprocessed point clouds after which we apply a convo-
lutional neural network (CNN) to detect the wall topology. Moreover, we detect
doors in each detected wall using a proposed template matching algorithm. Finally,
the BIM object is reconstructed with the detected walls and doors geometry by
creating IfcWallStrandardCase and IfcDoor objects in the IFC4 standard. Experi-
ments based on residual house point cloud datasets prove that the proposed method
is reliable for wall and door reconstruction from unstructured point clouds. As a
result, with the detected walls and doors, 95% of the data is successfully identified.

Keywords: Building information modeling (BIM); point cloud; LiDAR;
convolutional neural network (CNN)

1 Introduction

The automated reconstruction of building information modeling (BIM) models is becoming increasingly
widespread in the architectural, engineering and construction (AEC) industry. At present, most existing
buildings are not maintained, refurbished or deconstructed with BIM [1,2]. BIM modelling in existing
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buildings is significant, especially for restoration, heritage documentation, maintenance, quality control and
project planning. Moreover, the existing documentation of a building often does not match the as-design
model of the building due to construction changes or renovations [3,4] The implementation of as-built
BIM models faces several challenges. For instance, information about the structural elements of buildings
is often sparse or non-existing due to scanner errors. The common procedure of the BIM model consists
of steps that describe the geometric structure of the building elements and reconstructs the described
elements in the BIM structure.

Currently, the scan-to-BIM process is mainly a labor-intensive manual process performed by modelers.
It uses a large number of unstructured point clouds as the input and manually designs all of the related objects
in the scene. This is a time-consuming procedure and thus automated methods have been presented to speed
up the process. We focus on the geometry of wall objects, which describe the basis of the building structure
and can be reliably identified in the input data.

Wall geometry methods focus on an unsupervised process from the input data. The interpretation of this
data is challenging due to the number of points, noise, clutter and the complexity of the structure [5].
Moreover, most point clouds are acquired by a laser scanner, and the common technique used in building
surveying is terrestrial laser scanning (TLS). In the resulting data, some important parts of the structure
are missing and occluded due to scanner errors and clutter. The method proposed in this paper deals with
these problems with a preprocessing step. These problems are often improved by integrating the sensor’s
position and orientation. However, our goal here is to work on sensor-independent data while considering
the inputs as unstructured. The emphasis of this work is to take large unstructured point clouds of
buildings as the input for the reconstruction of walls and their corresponding doors. More specifically, we
propose a big-data preprocessing mechanism with simplification and upsampling steps. In the
simplification step, we reduce input point clouds that denoise and remove some outliers without changing
the innate structure or the orientation information. In the upsampling step, we solve the problem of
missing parts in the data. We apply a 2D CNN method to detect the wall topology, and this step provides
more accurate results than other methods. The proposed method is able to reconstruct and define wall
topologies correctly even in highly cluttered and noisy environments. In addition to wall detection, we
propose a method that detects doors in the detected walls to construct the BIM model. The main
contributions of the proposed method are as follows:

� The proposed framework is fully automated. It takes only unstructured 3D point clouds collected by a
laser scanner as the input, and the output is a reconstruction of BIM objects in the IFC format. The
output can be edited in CAD (computer-aided design) programs.

� An efficient and accelerated preprocessing step that improves the accuracy of the wall geometry is
proposed. As a result, we generate a depth 2D image with clear wall candidate lines.

� We apply a state-of-the-art wireframe parsing network (L-CNN) for detecting wall topologies. It is
best suited for room and wall boundary detection from a 2D image.

� A door detection method in the corresponding walls is also proposed.

This paper is organized as follows. In Section 2, the background and related work are presented. Section
3 presents the proposed method, including the steps of data preprocessing, wall detection, door detection and
BIM reconstruction. In Section 4, experimental results and the implementation process are discussed,
including the evaluation metrics and datasets used. Finally, the concluding remarks follow in Section 5.

2 Background and Related Work

Automated BIM modelling from point clouds is a popular topic related to buildings. The most important
part of the BIM structure is the geometry of the wall objects, which describe the basis of the building
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structure. Many different approaches and algorithms have been studied for several years in an effort to define
the wall geometry from point clouds, and these methods have several procedures in common [6]. First, data
preprocessing is performed to create more structured data in order to reduce the processing time and achieve
more efficient results. In 2D methods, the initial point cloud is represented as a set of 2D raster images by
slicing the data or by projecting the points onto a plane [7,8]. In 3D methods, the initial point cloud is
regularized and compressed by an octree structure [9]. In both methods, the point cloud is segmented
subsequently. Typically, line segmentation methods are used in 2D methods such as RANSAC based
[7,10–12] and Hough transform based [13–15] methods, while plane segmentation methods are used in
3D methods [9,16–18]. RANSAC [19] is not only the line segmentation method but also the most
popular plane segmentation method. The basic RANSAC algorithm incurs a high computational cost
when used with very large point clouds. To find the largest plane, it checks all possible plane candidates
in the input data. Schnabel et al. proposed an efficient RANSAC algorithm that checks plane candidates
in subsets of the input data [20]. The plane candidates are defined until the probability of the largest
candidate is lower than a user defined threshold. The largest plane is continually detected until there are
no additional planes, with this action limited to covering the user-defined threshold [20]. Then, the point
cloud is classified. Each extracted segment is processed by a reasoning algorithm that computes class
labels such as walls, floors and ceilings for each observation. The input data is described by a set of
numeric values that encodes the corresponding characteristics. Typically, these features represent distinct
geometric and contextual information [21,22]. The classification algorithms that process the feature
vectors use either heuristics or more complex classification methods such as random forests (RF), neural
networks (NN), probabilistic graphical models (PGM), and support vector machines (SVM) [23–27].
Moreover, convolutional neural networks and conditional random fields (CRF) are presented for the
classification of the BIM geometry [28,29]. Finally, reconstruction algorithms create the correct BIM
geometry for each class based on the labelled dataset. This includes the associative clustering of the
labelled points or segments to encompass a single object. The individual components of the object are
also identified, e.g., the clusters that compose a single wall face of a wall. Once the input data is
interpreted, the necessary metric information is extracted to compute the object position, orientation and
dimensions. Several studies have attempted to reconstruct wall geometries using machine learning
techniques. Xiong et al. and Adan and Huber used machine learning to reconstruct planar wall
boundaries and openings [23,30]. Michailidis and Pajarola used Bayesian graph-cut optimization with cell
complex decomposition to reconstruct highly occluded wall surfaces [31].

During the preprocessing step, most existing methods use point cloud filtering algorithms in order to
remove noise and outliers, separately, such as a pass-through filter, a statistical outlier removal filter, or a
voxel grid filter. These algorithms reduce the amount of data and remove outliers, but they may miss and
change critical geometric features such as the position and the orientation. Point cloud simplification
algorithms are able to replace the aforementioned algorithms in both 2D and 3D methods. Moreover, only
one simplification algorithm can solve both noise and outlier problems. Many algorithms for the
simplification of point clouds have been introduced [32]. The grid-based simplification algorithm is more
efficient than other algorithms. However, it has a data quality problem when used with reduced data.
Pauly et al. proposed hierarchical and incremental clustering algorithms to create approximations of
point-based models. This involves data sampling to generate points of lower density [33]. However, some
critical geometric features can be missed upon any division. Lipman et al. [34] introduced the locally
optimal projection (LOP) operator, which is a parameterization-free projection operator, motivated by the
concept of the L1 median [35,36]. The concept of their method is that the subset of the input point cloud
is repeatedly projected onto the corresponding point cloud in order to reduce outliers and noise. However,
this creates non-uniform data, and if the input data is highly non-uniform, problems will arise when
estimating normal and projecting shape features. Huang et al. [37] solved this problem by introducing
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weighted locally optimal projection (WLOP), which creates a more distributed point cloud incorporating the
locally adaptive density weights of each point into the LOP.

The automated BIM process also faces the problem of a lack of information in the data. Point cloud
upsampling methods are used to address this problem. Jones et al. and Oztireli et al. [38,39] proposed a
bilateral normal smoothing method that smooths the input data by repeatedly projecting each point onto
an implicit surface patch fitted over its nearest neighbors. Bilateral projection preserves sharp features
according to the normal (gradient) information. Normals are thus required as the input. However, this
method can nonetheless produce erroneous normals near the edges. Huang et al. proposed an edge-aware
solution with two different projection operators. The first introduced a robust edge-aware projection
operator that creates a sample away from the edges. The second was a novel bilateral projection operator
that up-samples repeatedly to fill the edge regions [40].

The line segmentation step is a key aspect of 2D methods, and it highly depends on the quality of the
generated 2D image. Currently, traditional methods are utilized and perform well, with examples being such
as RANSAC [20], the Hough transform [41], the least-square (LS) method [42], and the efficient line
detection method [43]. Also, deep learning-based methods outperform when starting with images; specifically,
the wireframe parsing method is well suited for detecting wall topologies. Previous studies [44,45] solved the
wireframe parsing problem in two steps. First, a deep CNN generated pixel-wise junctions and line heat maps
from 2D images. Then, junction positions, line candidates, and the corresponding connections were defined
using a heuristic algorithm based on the generated heat map. These types of studies have been widely used in
line detection problems; however, the vectorization algorithm in this line of research is highly complex and
depends on heuristic solutions. Moreover, it occasionally produces inferior solutions. Zhou et al. proposed a
new end-to-end wireframe parsing solution called L-CNN that uses a single and unified neural network [46].

The detection of openings is also challenging in the area of building reconstruction. This mainly focuses
on building facades. Facades structures have specific characteristics, which include regularity, orthogonality
and regular patterns. Typically, the methods that rely on these characteristics must address the issue of
missing parts in facades. Böhm [47] proposed a method to complete missing parts in point clouds
acquired by terrestrial laser scanning, accomplished by repeatedly using the repetitive information often
present in urban buildings. Zheng et al. introduced another method with a similar goal, proposing a
method for completing holes in scans of building facades. Their method utilizes iteration to consolidate
incomplete data [48]. Previtali et al. proposed a method based on lattice schema. They assume that
elements on building facades are distributed in an irregular lattice schema. The lattice candidates are
defined using a voting scheme and the final lattice is defined by minimizing a score function [49].

The final step of BIM reconstruction is to define the relationships between the elements in a building.
Building elements are described by their topology. Topological data explain the element relationship
information; therefore, the locations and dimensions of building elements are described based on
geometrical information. Several researchers have proposed automatic methods for determining
topological relationships between objects. Nguyen et al. [50] proposed a method that analyzed the
topological relationships between building objects automatically. Belsky et al. [51] introduced a prototype
system that attempted to improve upon prior model files. They used geometric, topological, and other
main operators in collections of rule sets. Anagnostopoulos et al. proposed a semi-automatic method that
estimated the boundaries and adjacency of building objects in point cloud data and produced
reconstructed building objects in the IFC format as the output [52].

3 Proposed Method

In this section, we present our implementation of the proposed method. The proposed method takes
unstructured point clouds as the input, with the output being a set of walls with corresponding doors
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according to the as-built conditions of the building. We implemented our method in three steps. First, the
input data is preprocessed for efficiency and reliability of the algorithm, consisting of simplification and
upsampling steps. The simplification step reduces the number of points for efficiency, after which the
upsampling step fills in missing points on planes and at nearby edges for reliability. Second, the walls are
detected based on preprocessed point cloud using a 2D CNN method. Moreover, we detect doors in each
detected wall using a template matching method. Finally, BIM objects are reconstructed using the
information from the detected walls and doors. The proposed method is fully automated and implemented
using C++. Fig. 1 shows the overall flow of the proposed method. The details of each step are explained
in the following subsections.

3.1 Data Preprocessing

The input data are large unstructured point clouds collected by a laser scanner that contain noise,
outliers, and non-uniformities in the thickness and spacing due to acquisition errors or misalignments of
multiple scans. Therefore, the input point cloud must be preprocessed which has a crucial impact on the
final results. The output of this step is downsampled 3D point cloud, which is clearer and more
distributed. Two types of algorithms are utilized in this step: simplification and upsampling.

3.1.1 Simplification (Downsampling)
For input data downsampling, we use a point cloud simplification algorithm called WLOP instead of a

traditional point cloud filtering algorithm. WLOP not only simplifies the input data but also regularizes the
downsampled input point clouds, i.e., by denoising, outlier removal, thinning, orientation, and with a
redistribution of the input point clouds. Point cloud simplification aims to find a point cloud X with a
target sampling rate that minimizes the distance between the surfaces, as represented by X and the input
point cloud P.

Figure 1: Overview of the proposed method that automatically creates BIM objects from unstructured point
clouds
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WLOP takes unstructured point clouds P ¼ pj
� � 2 R3; j 2 J as the input. The output is a set of

projected points X ¼ xi 2 R3; i 2 I according to a fixed iteration number, where Xk is the k-th iteration,
k ¼ 0; 1…;m, and the next iteration Xkþ1 serves to minimize the following:
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are adaptive density weights which improve the traditional LOP by instilling

the ability to deal with nonuniformity.

The WLOP reduces the input points according to Eq. (1) without changing the innate structure or
orientation information; however, it introduces a computational cost problem. Thus, we propose an
accelerated WLOP algorithm that incurs a lower computational cost than the traditional WLOP algorithm.
First, we sample subset points from input data using a height histogram. Subsequently, we apply WLOP
to each sampled subset. According to our experiments, WLOP requires less than 28 seconds for fewer
than 200,000 points. If there are more than 200,000 sub-sampled points, we decrease the bin size until
each subset has fewer than 200,000 points. This speed-up method decreases the computational time of
traditional WLOP at least 2.5 times.

3.1.2 Upsampling
After the input data simplification process, we obtain the simplified 3D point cloud with less noise and

fewer outliers, with a more distributed point cloud as well. However, the remaining 3D point clouds still have
missing parts. In order to solve this problem, we propose two up-sampling methods. The first fill holes in the
planes via the following steps:

� Take the simplified 3D point cloud as the input and estimate the normal from the input data using a
basic principal component analysis (PCA). Using Eq. (2), the covariance matrix K with the nearest
neighbor k is calculated. Using Eq. (3), the plane-normal direction is estimated using the minimum
eigenvector in that set of neighbors. It only estimates unsigned normal directions, which may be
unreliable due to a thick point cloud and a non-uniform distribution.

� The estimated normals are oriented using the method proposed by Hoppe et al. [53].

� To extract all possible wall candidate planes based on 3D point cloud with oriented normals, the
efficient RANSAC approach is used with a regularization method that regularizes planes to make
them parallel and orthogonal.

� Finally, we obtain several wall candidates planes with distributed points. We calculate the bounding
boxes of each detected wall candidate plane and search for missing parts in the corresponding
bounding box. Then, new points are generated to fill in the corresponding missing parts; several
examples of this are presented in Fig. 2. Therefore, we need to check for doors in each wall using
Algorithm 1 while filling in missing parts on the planes. If a missing part is detected as a door, it
is not filled in with new points. The output of this step is 3D point cloud with the missing parts in
the data filled in along with the oriented normal.
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K ¼
Xk

i¼1
pi � p0ð Þ � pi � p0ð ÞT (2)

K � v1 ¼ h1 � v1 (3)

In these equations, p0 is the mean of the point clouds of a neighborhood of size k, and v1 and h are the
respective eigenvectors and eigenvalues.

The second method is to fill in missing parts close to edges. We use an edge-aware up-sampling method
introduced in earlier work [40]. The edge-aware up sampling method takes oriented 3D point cloud as the
input and then determines how carefully to resample points close to edges with reliable data. To do this, a
sequence of insertion operations is needed. During each insertion, the up-sampling method adds a new
oriented point that fulfills three objectives:

� The corresponding point lies on the underlying surface.

� The corresponding normal is perpendicular to the underlying surface at the point.

� After insertion, the points are more distributed in the local neighborhood.

We merge all planes obtained in the previous steps into one-point clouds and then apply the edge-aware
up-sampling method to fill in missing parts close to edges. Several examples are presented in Fig. 3. The
output of this step is 3D point cloud with the missing parts in the data filled in.

3.2 Wall Detection

After the preprocessing step, we have a more distributed and clearer 3D point cloud, which is the input of
this step. We then generate a 2D image using a method in our previous work [43]. We remove remaining
clutter from preprocessed point cloud when applying this method. Generally, the points at about 30cm on
the ceiling contain clearer data in buildings. In other words, clutter is mostly absent at this level of points
in buildings. Hence, we slice points at 30cm in the ceiling areas from the up-sampled point cloud. The
sliced points are then projected onto the x-y plane, and we create a 2D depth image from the projected
points. For wall topology detection, we use the L-CNN architecture, a type of CNN [46]. It takes a 2D
image as the input and contains four modules that undertake the following:

Figure 2: Example results of the filling in of missing parts in the detected plane: the yellow rectangle
describes the bounding box of the detected plane
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Algorithm 1: Door Detection for a Given Wall

Figure 3: Example results of filling in missing parts close to edges: the red and green rectangles describe
missing parts close to edges and the results after filling the points, respectively
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� The shared intermediate feature maps are generated by a feature extraction backbone network that
takes a 2D image as the input.

� The junction candidates are defined using a junction proposal module. Our generated image has clear
edges due to the use of an edge-aware upsampling method.

� Line proposals are defined using the junction candidates by a line sampling module.

� The proposed lines are defined by a line verification module.

The final outputs of L-CNN are the positions of the junctions and a connection matrix between those
junctions. Fig. 4 shows the overall flow of the L-CNN architecture.

3.3 Door Detection

After the wall detection step, we detect doors in the corresponding walls with Algorithm 1. Several
examples are presented in Fig. 5. We use the detected wall information as the input of this step, and the
output of this step is the detected door information. Door detection involves the detection of holes in the
wall plane that are the sizes of doors. If the doors are half opened, we remove such points as clutter in
the preprocessing step. When data is acquired using laser scanners, there are no door points left on the
floor. Based on this information, we scan all doors with the determined door template in each wall.
Instead of using Algorithm 1 for only one wall, we use this algorithm repeatedly with all detected walls.
The algorithm works as follows:

� Inputs are wall points, which are the results from the L-CNN network and the thresholds, i.e., the
maximum height of the door, maxHeight, and the maximum length of the wall line, maxWidth.

� Define the door candidates, doorprop (lines between 1 and 15 in Algorithm 1). First, the algorithm
calculates a bounding box of given wall, c. Then, every possible door candidate is checked based
on a predefined template according to the coordinates from (minz, minx) to (minz, maxx) with the
step size denoted as step. In this algorithm, the door has a predefined template with the width,
maxWidth, and height, maxHeight specified. As a result, we find all door candidates with
information that contains the starting point and number of error points in the door.

� Define actual doors from door candidates, doors (lines between 16 and 22 in Algorithm 1). First, the
algorithm calculates the minimum number of error points, doorpoints, using the maximum error

Figure 4: Overview of the L-CNN architecture for detecting wall topologies
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points of the detected doors,maxpoints, and a constant ratio of error points of per door, perdoorpoints.
Then, all door candidates are checked, and if a candidate door has fewer error points than doorpoints,
it is detected as a door.

3.4 BIM Reconstruction

The walls and doors are detected successfully with their positions, directions and altitudes by the
proposed method. However, they are still in the form of point clouds. The final step is to create actual
BIM objects based on the detected elements. A conversion phase is thus necessary to be able to integrate
the results into the BIM software. We chose the IFC format as the format for the output of our method.
The IFC format is a standardized object-based file format used by the AEC industry to facilitate
interoperability between building actors. In order to generate a file in the IFC format from a 3D geometry
of structural elements, we used the open-source library IfcOpenShell [54].

The reconstruction step computes the necessary parameters for the creation of the BIM geometry. In this
paper, generic IfcWallStandardCase entities are constructed based on the parameters extracted from the
detected walls. The extracted parameters include the direction, thickness, position and boundary of the
walls. As is common in manual modelling procedures, standard wall cases are created. This implies that
the reconstructed walls are vertical, have a uniform thickness and have a height equal to the story height.
The direction of the IfcWallStandardCase entities is derived from the detected wall lines. The wall plane
normal is computed orthogonally to the direction of the wall lines. We use the default thickness based on
our experimental result. The position is described as a line starting coordinate, and the boundary of wall
is described as a line length. The generic IfcDoor entities are constructed based on the parameters
extracted from the detected doors. The extracted parameters include the direction and position. The
direction of the IfcDoor entities is identical to that of the wall. This position is described as a starting
coordinate of the detected door. The output of this step is the computed BIM geometry of the detected
walls and doors in the IFC file format.

Figure 5: Example results of door detection: the black rectangles are door templates, the white rectangles
show the iteration of the door template matching method, and the green rectangles describe detected doors
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4 Experiments

The proposed method was experimentally tested on residential houses. We evaluated the quality of the
wall and door geometry outcomes using the recall, precision and F1 score metrics. This section explains the
experimental environment and the results.

4.1 Experimental Environment

We developed the proposed method while focusing on data from the second floor of a residential house
as collected by LIDAR (Velodyne HDL-32E) and tested the proposed method on the data of the first floor of
the residential house collected by the same scanner to prove that the proposed method works robustly even
for unseen data. This data is very noisy and contains numerous missing points in the walls, as it consists of
multiple rooms with various types of clutter, such as desks, chairs, and sofas, as presented in Fig. 6. The
proposed method used all of the point clouds as the input, as presented in Fig. 6. The first floor has
8,914,891 points and the second floor has 3,216,766 points. The details of each dataset are presented in
Tab. 1. We decreased nearly 99.9% of the number of input point clouds, denoised the data, removed
some outliers, and retrieved more structural data in the simplification step, as presented in Figs. 9a and
9c. Then, we up-sampled points in order to solve missing points in the downsampling step, as presented
in Figs. 9b and 9d.

We defined thresholds based on our experiments. Fig. 7 shows the threshold settings for the second floor
of the residual house. In detail, the percentage of points to store p and the neighbor size n_r are used in the
WLOP algorithm. The sharpness of the result, a, the value used to determine how many points will be
sampled near the edges, s, and the neighborhood size, e_r, are used in the edge-aware method. The
minimum number of points for planes, min_points, and the maximum Euclidean distance between a point

Figure 6: Input point clouds with two different views (isometric and top): (a) first floor of a residual house,
and (b) second floor of a residual house
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and a shape, e, are used in the efficient RANSAC. The point cloud grid size, grid_size, and the distance from
the ceilings to the slice points, c_height, are used in the depth image generation algorithm. The line
segmentation threshold, p, is used in the post process of the L-CNN. The maximum height of the door,
max_height, the maximum width of the door, max_width, and the ratio of the error points per door,
perdoorpoints, are used in the door detection step.

We evaluated the positions and lengths of the detected walls and doors by means of the precision, recall
and F1 score, as used in pattern recognition, information retrieval and classification. The main concept of
these methods is the fraction of relevant instances among the retrieved instances. We computed these
metrics based on the overlap between the areas of the ground truth and the detected walls. We evaluated
true-positive, false-positive and false-negative cases. True-positive (TP) refers to the area of a
detected wall or door that is a wall or door in the ground truth, false-positive (FP) refers to the area of a
detected wall or door that is not a wall or a door in the ground truth, and false-negative (FN) is the
area that is a wall or a door in the ground truth but is not detected as a wall or a door by the proposed
algorithm. The F1 score is the harmonic mean of the precision and recall, where an F1 score reaches its
best value at 1 (perfect precision and recall). Based on TP, FP, and FN, we calculated the precision and
recall as follows:

Precision ¼ TP = FP þ TPð Þ (4)

Recall ¼ TP = FN þ TPð Þ (5)

Moreover, based on precision and recall, we calculated the F1 score as follows:

F1 score ¼ 2 � Precision � Recallð Þ = Precision þ Recallð Þ (6)

4.2 Implementation Details

We implemented the proposed method using C++, and the details of the algorithm used are presented in
Fig. 8. The representative functions in the implementation are as follows:

� doSimplify() – The implementation of the simple WLOP algorithm. It works recursively.

� calcNormal() – Estimate the normal using the PCA.

� extract_planes() – Extract planes using the efficient RANSAC.

Figure 7: Thresholds used for the second floor of the residual house
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� doUpsampling() – Fill in missing parts in a plane and close to edges.

� generate2Dimage() – Generate a 2D depth image to detect the wall topologies.

� wallDetect() – Detect walls using the L-CNN network.

� doorDetect() – Detect doors in each of the detected walls.

� reconstructToBIM() – Create the BIM geometry from the 3D point cloud in the IFC file format.

The algorithm details are explained in Section 3 and threshold used are described in Section 4.1.

4.3 Experiment Results

During the overall wall detection process, we initially preprocessed the input data in two steps. First, we
reduced input points using the proposed speed-up WLOP method. Figs. 9a and 9c show simplified point
clouds of the first and the second floor of a residual house, respectively. Moreover, we compared the
proposed speed-up WLOP method and the traditional WLOP method in terms of the computational
impact using data of the residual house with different point densities, in this case data with 600K points,
2M points, 3.2M points, 8.9M points and 14.9M points. Tab. 2 shows the results of the comparison of
the two methods. The proposed speed-up WLOP performed nearly 2.5 times faster than the traditional
WLOP. In this step, we used a height histogram with a bin size of 0.5. Second, we up-sampled the data
using the edge-aware method for missing parts in the data. Figs. 9b and 9d show the upsampled point
clouds of the first and the second floors of the residual house, respectively. This is suitable for the applied
L-CNN wall topology detection method because junction detection is an important part of the L-CNN.

Figure 8: The overall process of the proposed method

Table 1: Details of Datasets

Dataset Scanner No. of
rooms

No. of
points

Floor
size

Degree
of clutter

Degree of
missing points

First floor of the
residential house

Velodyne
HDL-32E

3 8,914,891 68 m2 High High

Second floor of the
residential house

Velodyne
HDL-32E

5 3,216,766 66.6 m2 High High
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Then, we generated a depth image from the preprocessed data, as presented in Figs. 10a and 10c. For wall
detection, we used the L-CNN method. These results are shown in Figs. 10b and 10d. The L-CNN was
trained based on the ShanghaiTech dataset [44], which contains 5,462 images of man-made environments
with wireframe annotation for each image that includes the positions of the salient junctions V and lines
E, with a stacked hourglass network [55] used as the backbone network. We stopped the training at
16 epochs as the validation loss no longer decreased. The proposed method is more efficient than existing
algorithms such as the Hough transform method. We implemented the Hough line transform algorithm
from the OpenCV library [56] with the corresponding defined thresholds for a comparison with the
proposed method. Tab. 3 shows the comparison result of wall geometry detection and the processing time
of wall line detection on the second floor of the residual house. The experiments were performed using a
MacBook Pro with a Dual-Core Intel Core i5 and 8 GB of memory.

Fig. 11 shows the door detection result from the first and the second floors of the residual house. We
successfully detected most of the doors in the input data. However, there are two limitations in our door
detection results, as presented in Fig. 12. Because we removed door points as clutter in the preprocessing
step based on the information that a door plane usually does not reached the ceiling level, the proposed
door detection algorithm does not work with nearly closed or fully closed door, as presented in Fig. 12c.
Also, the proposed algorithm does not work when there are numerous missing points around a door
which are not recovered in usually up-sampling step, as presented in Fig. 12d.

Table 2: Computation Time Comparison of WLOP and the Proposed Speed-up WLOP

600K points 2M points 3.2M points 8.9M points 14.9M points

WLOP 2.9 min 10.5 min 17.4 min 2.85 hours 3.86 hours

Proposed speed up WLOP 1.32 min 4.73 min 7.32 min 31.15 min 46.7 min

Figure 9: Result of the preprocessing step: (a) simplification result of the first floor, (b) upsampling result
of the first floor, (c) simplification result of the second floor, and (d) upsampling result of the second floor
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Tab. 4 shows the final wall and door detection results. We detected 95% of the ground truth and
reconstructed the detected walls and doors in the IFC file format, as shown in Fig. 13.

Figure 10: Result of wall detection: (a) depth image generation result of the first floor, (b) L-CNN wall
topology generation result of the first floor, (c) depth image generation result of the second floor, and (d)
L-CNN wall topology generation result of the second floor

Table 3: Wall geometry detection and processing time comparison results of the hough transform-based method
and the proposed method from experiments on the second floor of a residual house

F score Processing time

Hough transform-based reconstruction method 0.94 16.3 min

Proposed method 0.96 10.9 min
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Figure 11: Results of door detection: (a) first floor and (b) second floor, where green shapes indicate
detected doors

Figure 12: Failed results of door detection: (a) the result of the proposed method, (b) ground truth input data,
(c) and (d) zoomed in failed cases. Red rectangles describe the positions of doors that were not detected

148 IASC, 2021, vol.28, no.1



5 Conclusion and Future Work

In this paper, we proposed a fully automated algorithm to reconstruct as-built BIM data from
unstructured point clouds. First, we utilized the proposed big data preprocessing mechanism, which
involved two steps. We proposed a speed-up WLOP algorithm in the simplification step and an edge-
aware algorithm in the upsampling step. As a result of the proposed preprocessing method, we reduced

Table 4: Evaluation result of the proposed method

First floor Second floor

Walls Doors Walls Doors

TP 88.3% 100% 93.2% 71%

FP 8.8% 50% 5.3% 28%

FN 4.4% 50% 2.1% 14%

Precision 91% 67% 94.6% 71.4%

Recall 95.3% 67% 97.7% 83.3%

Figure 13: BIM results of proposed method: (a) first floor result and (b) second floor result
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the input data points with more distributed and structured data. The proper preprocessing of the unstructured
input point clouds was the most significant step for wall topology detection to create the BIM. Second, the
wall topology was detected using a 2D CNN, which is a L-CNN, and existing doors in each wall were
detected by the proposed template matching algorithm. Finally, the proposed algorithm reconstructed
detected walls in the BIM format, which can be edited in CAD programs. All of these steps are well
suited to work with each of the other steps to improve the accuracy of the final results. For instance, after
preprocessing the input data, we obtained a clear wall topology with clear edges. Therefore, this
preprocessing result helped the most important part of the L-CNN architecture, which was to detect the
junctions (edges) from the 2D image. We experimentally assessed the proposed algorithm on point cloud
data gathered from the first and second floors of a residual house using LIDAR. More than 95% of the
walls in the ground truth were detected, and the detected walls and doors were successfully generated in
a BIM file. However, with regard to door detection, the proposed method had two limitations, i.e., when
the doors are closed or almost closed, and there are numerous missing points around the doors. In the
future, we will improve the door detection algorithm with a 2D CNN network and a more accurate
generalization method.
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