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Abstract: A new iterative technique for nonlinear equations is proposed in this
work. The new scheme is of three steps, of which the first two steps are based
on the sixth-order modified Halley’s method presented by the authors, and the last
is a Newton step, with suitable approximations for the first derivatives appeared in
the new scheme. The eighth-order of convergence of the new method is proved
via Mathematica code. Every iteration of the presented scheme needs the evalua-
tion of three functions and one first derivative. Therefore, the scheme is optimal in
the sense of Kung-Traub conjecture. Several test nonlinear problems are consid-
ered to compare the performance of the proposed method according to other opti-
mal methods of the same order. As an application, we apply the new scheme to
some nonlinear problems from the field of chemical engineering, such as a che-
mical equilibrium problem (conversion in a chemical reactor), azeotropic point
of a binary solution, and volume from van der Waals equation. Comparisons
and examples show that the presented method is efficient and comparable to
the existing techniques of the same order.

Keywords: Nonlinear equations; root finding method; iterative methods; Halley’s
method; optimal order of convergence

1 Introduction

Searching for a solution of g xð Þ ¼ 0, when g xð Þ is nonlinear is highly significant in mathematics.
Newton’s iterative technique for solving such equations is defined as

znþ1 ¼ z� g znð Þ
g0 znð Þ : (1)

It was shown by Traub [1] that the scheme given by (1) has the second-order of convergence. Many
researchers have improved the method of Newton to attain better results and to increase the convergence
order, for instance see [2–5] and the references therein. Petković [6] has presented a general class of
multipoint root finding methods of arbitrary order 2n. Because of the huge number of iterative techniques
that appear in the literature, Petković et al. [7] have presented a review for the most efficient iterative
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methods and developed techniques in a general sense. Also, Cordero et al. [8] have presented a general
survey on optimal iterative schemes and how to design optimal methods of different orders.

One of the most famous improvements of Newton’s scheme is the technique of order three given by
Halley [9]:

znþ1 ¼ zn � 2g znð Þg0 znð Þ
2ðg0 znð ÞÞ2 � g znð Þg00 znð Þ : (2)

Halley’s method has been studied widely and improved in different ways. For example, a two-step
Halley’s scheme with order of convergence equals six was implemented by Noors et al. [10] using a
predictor-corrector technique. But finding the second derivative is not always an easy task. Because of
that Noor et al. [11] have improved the previous technique with the help of the finite difference and
implemented a new second derivative-free scheme of order five. Very recently, Said Solaiman et al. [12]
have established two sixth-order modifications of Halley’s method, with one of them without
second derivative.

One of the most common ways to compare the efficiency of iterative methods is the efficiency index
which can be determined by q1=r, where q is convergence order of the iterative scheme and r represents
number of functions needed to be found at each iteration. Kung et al. [13] mentioned in a conjecture
that the iterative scheme with the number of functional evaluations equals r is optimal if its order of
convergence equals 2r�1. Many authors have constructed optimal iterative methods of different orders.
The default way for constructing optimal method is the composition technique together with the usage
of some interpolations and approximations to minimize the number of functional evaluations. Different
optimal fourth-order iterative methods have been constructed, see for examples [14–16]. Optimal
eighth-order of convergence methods have been presented by many authors, see [2,17,18–22]. A
comparison using the dynamics of different families of optimal eighth-order of convergence methods
was proposed by Chun et al. [23].

We propose in this work a new optimal eighth-order iterative technique for nonlinear equations. The new
method is a modification of the modified Halley method (MH2) introduced by Said Solaiman et al. [12]. We
use the composition technique with Hermite’s interpolation for the first derivative to reach the eighth-order of
convergence with optimality, which can be considered as the major motivation of this research. The work in
this paper is distributed as follows. In Section 2, below the new scheme is illustrated. In Section 3, the order
of convergence of the new scheme is determined. In Section 4, four chemical engineering problems in
addition to six nonlinear examples are used to demonstrate the efficiency of the proposed scheme, and
tables are used to illustrate the comparison between our optimal method with other techniques having
equal order. Lastly, in Section 5 the conclusion is given.

2 The New Method

Let g xð Þ ¼ 0 be an equation such that g xð Þ is a nonlinear function defined on some open interval A and
sufficiently differentiable. Let a 2 A be a simple root of g xð Þ, and consider x0 as an initial guess which is
sufficiently close to a. Said Solaiman and Hashim [12] obtained the following iterative scheme using
Taylor’s expansion of g xð Þ with Newton’s and Halley’s methods.
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Said Solaiman et al. [12] named Algorithm 1 as MH1. They proved that MH1 is of order of convergence
equals six. MH1 needs at each iteration the evaluation of two functions, two first derivatives, and one
second derivative evaluation. So, the efficiency index of MH1 is ð6Þ

1

5 � 1:431, which is not as good as
Halley’s method.

To make the efficiency index of Algorithm 1 better, Hermite’s approximation of the second derivative is
used to produce a second derivative-free method given by:

where the second derivative g00 ynð Þ is approximated by

R xn; ynð Þ ¼ 3
g ynð Þ � g xnð Þ

yn � xn
� 2g0 ynð Þ � g0 xnð Þ

� �
2

xn � yn
: (5)

Algorithm 2 is called MH2. Said Solaiman et al. [12] proved that it is of order six. MH2 needs at each
iteration the computation of two functions, and two first derivatives only. So, MH2 has efficiency index
equals ð6Þ14 � 1:565, which is better than ð6Þ15 � 1:431 of MH1 and 3

1
3 � 1:442 of Halley’s method.

In order to reach the optimality, we reduce the number of functions needed to be evaluated at each
iteration by using divided differences, Hermite’s interpolation, and the composition of Algorithm 2 with
Newton’s method. Now, by using Algorithm 2 as a predictor, and Newton’s technique as a corrector one
obtains the following algorithm:

Algorithm 1: Let x0 be an initial guess of the solution of g xð Þ ¼ 0. Then we can approximate xnþ1 by
the iterative method defined by:

yn ¼ xn � g xnð Þ
g0 xnð Þ ;

xnþ1 ¼ yn � g ynð Þ
g0 ynð Þ �

2 g ynð Þð Þ2g0 ynð Þg00 ynð Þ
4 g0 ynð Þð Þ4 � 4g ynð Þ g0 ynð Þð Þ2g00 ynð Þ þ g ynð Þð Þ2 g00 ynð Þð Þ2 :

8>>><
>>>:

(3)

Algorithm 2: Let x0 be an initial guess of the solution of g xð Þ ¼ 0. Then we can approximate xnþ1 by
the iterative method defined by:

yn ¼ xn � g xnð Þ
g0 xnð Þ ;

xnþ1 ¼ yn � g ynð Þ
g0 ynð Þ �

2 g ynð Þð Þ2g0 ynð ÞR xn; ynð Þ
4 g0 ynð Þð Þ4 � 4g ynð Þ g0 ynð Þð Þ2R xn; ynð Þ þ g ynð Þð Þ2 R xn; ynð Þð Þ2 ;

8>>><
>>>:

(4)

Algorithm 3: Let x0 be an initial guess of the solution of g xð Þ ¼ 0. Then we can approximate xnþ1 by
the iterative method defined by:

yn ¼ xn � g xnð Þ
g0 xnð Þ ;

wn ¼ yn � g ynð Þ
g0 ynð Þ �

2 g ynð Þð Þ2g0 ynð ÞR xn; ynð Þ
4 g0 ynð Þð Þ4 � 4g ynð Þ g0 ynð Þð Þ2R xn; ynð Þ þ g ynð Þð Þ2 R xn; ynð Þð Þ2 ;

xnþ1 ¼ wn � g wnð Þ
g0 wnð Þ :

8>>>>>>><
>>>>>>>:

(6)
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Algorithm 3 has order of convergence equals twelve with error term enþ1 ¼ c52ðc4 � c2c3Þ2e12n þ O e13n
� �

.
At each iteration, Algorithm 3 requires three function evaluations and needs three first derivatives. Our goal
is to rewrite g0 ynð Þ and g0 wnð Þ by using a combination of already evaluated functions.

Using the second-order polynomial interpolation of the function g ynð Þ one simply obtains

g0 ynð Þ � g yn; xn½ � þ yn � xnð Þg yn; xn; xn½ �; (7)

where g yn; xn; xn½ � ¼ g yn; xn½ � � g0 xnð Þð Þ= yn � xnð Þ. Simplifying (7) and using q ynð Þ ¼ g0 ynð Þ gives
g0 ynð Þ ¼ q ynð Þ � 2g yn; xn½ � � g0 xnð Þ: (8)

Now, we will use the technique which proposed before by Petković [6] and Petković et al [7] to
approximate g0 wnð Þ, consider Hermite’s interpolating polynomial of order 3

k tð Þ ¼ c1 þ c2 t � xnð Þ þ c3ðt � xnÞ2 þ c4ðt � xnÞ3; (9)

where c1; c2; c3; and c4 need to be found. With the conditions

g xnð Þ ¼ k xnð Þ; g ynð Þ ¼ k ynð Þ; g wnð Þ ¼ k wnð Þ; g0 xnð Þ ¼ k 0 xnð Þ; and by solving the system of
linear equations resulted from the above conditions, we get

c1 ¼ g xnð Þ;
c2 ¼ g0 xnð Þ;
c3 ¼ xn � wnð Þg wn; yn½ �

yn � wnð Þ xn � ynð Þ �
xn � ynð Þg xn;wn½ �
yn � wnð Þ xn � wnð Þ � g0 xnð Þ 1

wn � xn
þ 1

yn � xn

� �
;

c4 ¼ g xn;wn½ �
xn � wnð Þ yn � wnð Þ �

g yn; xn½ �
xn � ynð Þ yn � wnð Þ þ

g0 xnð Þ
xn � wnð Þ xn � ynð Þ.

Substituting these into Eq. (9) and using the approximation g0 wnð Þ ¼ k 0 wnð Þ, one can write

k 0 wnð Þ ¼ g wn; xn½ � 2þ xn � wn

yn � wn

� �
� ðxn � wnÞ2

xn � ynð Þ yn � wnð Þ g xn; yn½ � þ g0 xnð Þ yn � wn

xn � yn
� g0 wnð Þ: (10)

Replacing g0 ynð Þ and g0 wnð Þ in Algorithm 3 and in Eq. (5) with the approximations (8) and (10)
respectively, the following algorithm is obtained.

We call the above scheme the third modified Halley’s methodMH3, which has convergence order equals
eight as we will see in the next section. Each iteration in Algorithm 4 requires the evaluation of three
functions, and one first derivative only. Based on the conjecture of Kung et al. [13], MH3 attains

optimality and has efficiency index ð8Þ14 ¼ 1:6818.

Algorithm 4: Let x0 be an initial guess of the solution of g xð Þ ¼ 0. Then we can approximate xnþ1 by
the iterative method defined by:

yn ¼ xn � g xnð Þ
g0 xnð Þ ;

wn ¼ yn � g ynð Þ
q ynð Þ �

2 g ynð Þð Þ2q ynð ÞR xn; ynð Þ
4 q ynð Þð Þ4 � 4g ynð Þ q ynð Þð Þ2R xn; ynð Þ þ g ynð Þð Þ2 R xn; ynð Þð Þ2 ;

xnþ1 ¼ wn � g wnð Þ
k 0 wnð Þ :

8>>>>>>><
>>>>>>>:

(11)
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3 Order of Convergence

In this section we establish the order of convergence of the presented methodMH3 given by Algorithm 4
by using Mathematica codes to prove the order of convergence. Consider for the next theorem that a is a root
of g xð Þ, and let en ¼ xn � a be the error at the n-th iteration. Using Taylor’s series expansion of g xð Þ about
x ¼ a: g xnð Þ ¼ g0 að Þ en þ c2e2n þ c3e3n þ c4e4n þ � � �� 	

, where ck ¼ 1

k!

g kð Þ að Þ
g0 að Þ ; k ¼ 2; 3; . . . we have

the following:

Theorem 1 Let a 2 A be a simple root of the function g : A � R ! R, where g xð Þ is sufficiently
differentiable in an open interval A. Let x0 be an initial guess close enough to the root a. The proposed
scheme given by (11) has at least eighth-order of convergence.

Proof. The following Mathematica code proves the theorem

In [1]:= g[e_]:= dg[a] (e+c 2e 2+c 3e 3+c 4e 4); (*g(x) series with dg[a ]=g0 að Þ *).

In [2]:= g[x_,y_]:=
g x½ � � g y½ �

x� y
; (*This is the finite difference*).

In [3]:= q[x_,y_]:= 2 g[x,y]-g 0[x]; (*g0 yð Þ approximation *).

In [4]:= R[x_,y_]:= (3
g y½ � � g x½ �

y� x
-2q[x,y]-g 0[y])

2

x� y
; (*Second derivative approximation*).

In [5]:= k[x_,y_,w_]:= g[w,x] (2+
w� x

w� y
)-

ðw� xÞ2
w� yð Þ y� xð Þg[x,y]+g’[x]

w� y

y� x
;(*g0 wð Þ approximation*).

In [6]:= y =e-Series[
g e½ �
g0 e½ �,{e,0,8}]; (*First step of Alg. 4 *).

In [7]:= w =y-
g y½ �
q e; y½ � �

2ðg y½ �Þ2q e; y R� ½e; y½ �
4ðq e; y½ �Þ4 � 4g y½ �ðq e; y½ �Þ2R e; y½ � þ ðg y½ �Þ2ðR e; y½ �Þ2;(*Second step of Alg. 4 *).

In [8]:= e nþ1= w-
g w½ �

k e; y;w½ �// FullSimplify (* Third step of Alg. 4 *).

Out [8]:= c 2
2c 3(c 2c 3-c 4)e 8+O[e 9]

Hence, MH3 technique given by Algorithm 4 is of eighth-order of convergence.

4 Applications and Numerical Examples

To show the efficiency of the new optimal eighth-order method MH3, several examples will be tested
including some chemical engineering problems. Comparison will be done against the following schemes of
optimal eighth-order of convergence: the method proposed by Kung et al. [13], the method presented by
Cordero et al. [2] with b ¼ 1, the second case of the first family with b ¼ 1 proposed by Sharma et al.
[19], the method presented by Behl et al. [21] with b ¼ 1, and the special case 2 with b ¼ 1 from the
method presented by Behl et al. [18]. We denote the methods by the following abbreviations respectively:
KT, CLMT, SA, BGMM, and BAM.

We consider xn � xn�1j j < 10�30 and f xnð Þ � f xn�1ð Þj j < 10�30 at the same time as a stopping
criterion of the computer programs. Mathematica 9 was used to carry out all computations with
10000 significant digits.

Tabs. 1–5 illustrate the comparisons between the iterative methods, where n indicates number of the
iterations such that the stopping criterion is affirmed, xn is the approximate root, xn � xn�1j j is the
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absolute difference between two successive approximations of the root such that xn � xn�1j j < 10�30 and
f xnð Þ � f xn�1ð Þj j < 10�30, f xnð Þ is the value of the approximate root, the approximated computational
order of convergence (ACOC) given by Cordero et al. [24], which can be estimated as follows

ACOC � ln xnþ1 � xnð Þ= xn � xn�1ð Þj j
ln xn � xn�1ð Þ= xn�1 � xn�2ð Þj j ;and finally, the time in seconds required to satisfy the stopping

criterion using the built-in function “TimeUsed” in Mathematica 9 software. All calculations have been
performed under the same conditions on Intel Core i7-3770 CPU @3.40 GHz with 4GB RAM, with
Microsoft Windows 10, 64 bit based on X64-based processor.

Consider the following test examples:

Example 1 (A chemical equilibrium problem) Consider the equation from [25] which describes the
fraction of the nitrogen-hydrogen feed that gets converted to ammonia (this fraction is called fractional
conversion). Also, consider that we have pressure of 250 atm and temperature of 500�C, the original
problem consists of finding the root of the function

f1 xð Þ ¼ 8ð4� xÞ2x2
ð6� 3xÞ2 2� xð Þ � 0:186; which can be reduced in polynomial form as:

f1 xð Þ ¼ x4 � 7:79075x3 þ 14:7445x2 þ 2:511x� 1:674:

The four roots of this function are: x1 ¼ 0:27776; x2 ¼ �0:384094; x3 ¼ 3:94854þ 0:316124i and
x4 ¼ 3:94854þ 0:316124i. By the definition, the factional conversion must be between 0 and 1. So, only
the first real root x1 ¼ 0:27776 is acceptable and physically meaningful. We started by x0 ¼ 0:3 as an
initial guess. The results are concluded in Tab. 1.

Example 2 (Azeotropic point of a binary solution) Consider the problem obtained by Shacham et al.
[26] to determine the azeotropic point of a binary solution:

f2 xð Þ ¼
AB½B 1� xÞ2 � Ax2


 i
½x A� Bð Þ þ B�2 þ 0:14845;

where A and B are coefficients in the Van Laar equation which describes phase equilibria of liquid solutions.
Consider for this problem that A ¼ 0:38969 and B ¼ 0:55954.

The root of this equation is x ¼ 0:6914737357. We took the initial approximation x0 ¼ 1. See Tab. 2 for
the results and comparisons.

Table 1: Comparisons between different methods on test function f1 xð Þ
Method n xn xn � xn�1j j f xnð Þj j ACOC CPU Time

f1 xð Þ; x0 ¼ 0:3

KT 3 0.27775954284172066 5.82E-96 2.41E-760 8 0.171

CLMT 3 0.27775954284172066 1.72E-103 1.87E-821 8 0.203

SA 3 0.27775954284172066 6.38E-67 2.21E-524 8 0.203

BGMM 3 0.27775954284172066 9.36E-70 2.17E-547 8 0.422

BAM 3 0.27775954284172066 3.81E-96 7.95E-762 8 0.203

MH3 3 0.27775954284172066 3.41E-109 9.49E-868 8 0.188
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Example 3 (Conversion in a chemical reactor) In this example from [27], the following nonlinear
equation is to be solved

f3 xð Þ ¼ x

1� x
� 5ln

0:4 1� xð Þ
0:4� 0:5x

� �
þ 4:45977;

where x is the fractional conversion of species in a chemical reactor. Therefore, x should be bounded between
0 and 1.

The solution of this equation is x ¼ 0:7573962463. As an initial solution, we selected x0 ¼ 0:77. Check
the results in Tab. 3.

Example 4 (Volume from Van Der Waals equation) Van Der Waals’ equation is given by

pþ n2a

V 2

� �
V � nbð Þ ¼ nRT ;

where p;V ; T ; n are the pressure, volume, temperature in Kelvin and number of moles of the gas. R is the gas
constant equals 0:0820578. Finally, a and b are called Van Der Waals constants and they depend on the gas
type. Its clear that the above equation is nonlinear in V . It can be reduced to the following function of V .

Table 2: Comparisons between different methods on test function f2 xð Þ
Method n xn xn � xn�1j j f xnð Þj j ACOC CPU Time

f2 xð Þ; x0 ¼ 1

KT 3 0.69147373574714142 7.41E-48 3.05E-379 8 0.187

CLMT 3 0.69147373574714142 1.74E-56 1.87E-449 8 0.234

SA 3 0.69147373574714142 7.73E-83 6.19E-665 8 0.172

BGMM 3 0.69147373574714142 4.61E-76 1.77E-609 8 0.453

BAM 3 0.69147373574714142 1.38E-44 1.36E-352 8 0.188

MH3 3 0.69147373574714142 8.37E-54 7.36E-428 8 0.171

Table 3: Comparisons between different methods on test function f3 xð Þ
Method n xn xn � xn�1j j f xnð Þj j ACOC CPU Time

f3 xð Þ; x0 ¼ 0:77

KT 3 0.75739624625375388 6.61E-47 6.39E-360 8 0.312

CLMT 3 0.75739624625375388 6.24E-53 2.86E-409 8 0.765

SA 4 0.75739624625375388 1.75E-106 1.08E-831 8 0.280

BGMM 4 0.75739624625375388 5.99E-173 6.79E-1363 8 7.484

BAM 3 0.75739624625375388 4.82E-42 2.29E-320 8 0.312

MH3 3 0.75739624625375388 2.37E-48 2.79E-372 8 0.264
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f Vð Þ ¼ pV 3 � n RT þ bpð ÞV 2 þ n2aV � n3ab:

For instance, if one has to find the volume of 1:4 moles of benzene vapor under pressure of 40 atm and
temperature of 500�C, given that Van Der Waals constants for benzene are a ¼ 18 and b ¼ 0:1154, then
the problem arises is to find roots of this polynomial

f4 xð Þ ¼ 40x3 � 95:26535116x2 þ 35:28x� 5:6998368:

The above equation has three roots: x ¼ 1:97078 and x ¼ 0:205425	 0:173507i. As V is a volume,
therefore only the positive real roots are physically meaningful, that is the first root. We considered the
initial approximation x0 ¼ 2 for this problem. The results and comparisons are concluded in Tab. 4.

Example 5 To study the proposed method on some nonlinear functions, consider the following six test
functions:

f5 xð Þ ¼ ðx� 1Þ3 � 1; f6 xð Þ ¼ x3 � 10; f7 xð Þ ¼ cos xð Þ � x;
f8 xð Þ ¼ 1� x2 þ sin2 xð Þ; f9 xð Þ ¼ 2þ xð Þex � 1;
f10 xð Þ ¼ ln x2 � xþ 1ð Þ � 4sin x� 1ð Þ:

Comparisons’ results of Example 5 are presented in Tab. 5.

It is clear from Tabs. 1–5 that MH3 needs less iterations to satisfy the stopping criterion than the other
tested methods, or in some cases it needs the same number of iterations. Based on the numerical experiments,
the iterative scheme given by MH3 is comparable to the tested schemes of equal order. Note that even if
MH3 has the same number of iterations needed to satisfy the convergence criterion, it is still superior to
the other schemes considered in this study since xn � xn�1j j and f xnð Þ are less for MH3 than the other
tested methods of the same order. Also, in the last column of Tabs. 1–5, the CPU time required to satisfy
the convergence condition of MH3 is less in nine out of 10 functions than that of the other tested
methods. Overall, based on either the number of iterations or CPU time needed to satisfy the convergence
criterion, the new method would be preferable as compared to the tested methods.

For the test functions in Example 5, we test another convergence condition, that is number of required
iterations such that xn � xn�1j j < 10�200. It is obvious from Tab. 6 that MH3 requires number of iterations
which is fewer or equal to the number needed by the tested methods of equal order of convergence to satisfy
the convergence criterion. Overall, MH3 is comparable to the other tested methods if we want to take in
account the accuracy of the approximate zero with the CPU time needed to satisfy the stopping criterion.

Table 4: Comparisons between different methods on test function f4 xð Þ
Method n xn xn � xn�1j j f xnð Þj j ACOC CPU Time

f4 xð Þ; x0 ¼ 2

KT 3 1.9707842194070294 2.41E-89 2.11E-706 8 0.171

CLMT 3 1.9707842194070294 1.10E-98 3.31E-782 8 0.171

SA 3 1.9707842194070294 3.43E-40 2.07E-305 8 0.187

BGMM 3 1.9707842194070294 3.86E-44 1.35E-337 8 0.312

BAM 3 1.9707842194070294 2.83E-88 1.04E-697 8 0.187

MH3 3 1.9707842194070294 7.22E-107 1.32E-848 8 0.156
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Table 5: Comparisons between different methods on test functions f5 xð Þ � f10 xð Þ
Method n xn xn � xn�1j j f xnð Þj j ACOC CPU Time

f5 xð Þ; x0 ¼ 2:5

KT 4 2 6.26E-188 3.94E-1497 8 0.187

CLMT 4 2 2.50E-241 2.06E-1925 8 0.156

SA 4 2 9.54E-105 5.85E-830 8 0.203

BGMM 4 2 3.50E-131 5.28E-1042 8 0.203

BAM 4 2 2.16E-185 1.13E-1476 8 0.172

MH3 3 2 4.68E-32 7.73E-252 8 0.156

f6 xð Þ; x0 ¼ 2

KT 3 2.1544346900318837 3.63E-65 1.09E-516 8 0.171

CLMT 3 2.1544346900318837 1.21E-75 1.30E-601 8 0.188

SA 4 2.1544346900318837 5.84E-175 4.83E-1391 8 0.188

BGMM 4 2.1544346900318837 3.10E-236 6.70E-1882 8 0.218

BAM 3 2.1544346900318837 2.62E-63 1.16E-501 8 0.203

MH3 3 2.1544346900318837 1.56E-81 2.55E-649 8 0.156

f7 xð Þ; x0 ¼ 1:7

KT 3 0.7390851332151606 4.05E-46 1.06E-366 8 0.281

CLMT 3 0.7390851332151606 2.55E-52 1.21E-417 8 0.281

SA 3 0.7390851332151606 2.94E-34 7.85E-273 8 0.281

BGMM 3 0.7390851332151606 4.47E-42 2.58E-363 8 1.313

BAM 3 0.7390851332151606 1.22E-47 5.96E-379 8 0.329

MH3 3 0.7390851332151606 4.13E-53 2.35E-424 8 0.249

f8 xð Þ; x0 ¼ 1

KT 4 1.4044916482153412 2.97E-123 2.04E-980 8 0.281

CLMT 4 1.4044916482153412 2.34E-226 2.05E-1806 8 0.390

SA 3 1.4044916482153412 2.21E-32 2.30E-253 8 0.265

BGMM 3 1.4044916482153412 8.57E-40 5.22E-314 8 1.657

BAM 4 1.4044916482153412 8.75E-92 1.46E-728 8 0.374

MH3 3 1.4044916482153412 6.83E-38 1.23E-299 8 0.250

f9 xð Þ; x0 ¼ 0:5

KT 3 0.4428544010023886 2.74E-85 1.24E-677 8 0.313

CLMT 3 0.4428544010023886 2.30E-95 2.55E-759 8 0.328

SA 3 0.4428544010023886 2.47E-79 2.76E-629 8 0.328

BGMM 3 0.4428544010023886 1.83E-88 2.48E-703 8 5.126

BAM 3 0.4428544010023886 1.59E-82 3.06E-655 8 0.454

MH3 3 0.4428544010023886 2.57E-96 5.13E-767 8 0.313
(Continued)
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5 Conclusion

A new optimal root finding scheme for nonlinear equations has been established in this work. The
optimality of the proposed method was reached by using composition technique with Hermite’s
polynomial and finite differences. The software Mathematica has been used to show that the optimal
technique is convergent with convergence order equals eight. Several numerical examples with four real
life problems from the field of chemical engineering were examined, demonstrating the strength of the
proposed method. Overall, the implemented method is comparable to the tested iterative schemes of equal
order of convergence.
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