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Abstract: Image recognition algorithms based on deep learning have been widely
developed in recent years owing to their capability of automatically capturing
recognition features from image datasets and constantly improving the accuracy
and efficiency of the image recognition process. However, the task of training
deep learning networks is time-consuming and expensive because large training
datasets are generally required, and extensive manpower is needed to annotate
each of the images in the training dataset to support the supervised learning pro-
cess. This task is particularly arduous when the image scenes involve randomly
stacked objects. The present work addresses this issue by developing a synthetic
training dataset generation method based on OpenGL and the Bullet physics
engine which can automatically generate annotated synthetic datasets by simulat-
ing the freefall of a collection of objects under the force of gravity. Rigorous sta-
tistical comparison of a real image dataset of staked scenes with a synthetic image
dataset generated by the proposed approach demonstrates that the two datasets
exhibit no significant differences. Moreover, the object detection performances
obtained by three popular network architectures trained using the synthetic dataset
generated by the proposed approach are demonstrated to be much better than the
results of training conducted using a synthetic dataset generated by a conventional
cut and paste approach, and these performances are also competitive with the
results of training conducted using a dataset composed of real images.

Keywords: Synthetic dataset; stacked object scenes; OpenGL; Bullet physics
engine; image recognition; parts position

1 Introduction

Image recognition has been increasingly and widely applied in fields such as transportation, industrial
detection, and animal and plant identification. Conventional image recognition methods are limited by their
reliance on distinct features and characteristics of images to detect objects [1]. However, the development of
deep learning technology has greatly enhanced the accuracy and efficiency of image recognition methods for
identifying comprehensive information regarding object categories and positions within images. Image
recognition methods based on deep learning generally apply large training datasets for automatically
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learning the effective feature representations of objects that enable the classification of individual objects
within images. However, the task of training deep learning networks is time-consuming and expensive
because large training datasets are generally required, and extensive manpower is needed for annotating
each of the images in the training dataset to provide ground truth data supporting the supervised learning
process. This task is particularly arduous when the image recognition features involve pixel-level
segmentation, or when the image scenes involve randomly stacked objects.

This issue can be potentially addressed by replacing the large collection of annotated images in the
training dataset with synthetic images that are generated and automatically annotated using computational
methods, and then training the model using the synthetic training dataset for the recognition of objects in
actual image scenes. Two approaches are commonly used to construct synthetic datasets. The first
approach simply cuts and pastes an instance of a target object onto a random background [2]. The second
approach obtains synthetic images by the programmed modeling of virtual scenes meeting given
specifications [3]. Each of these approaches have advantages and disadvantages.

The cut and paste method has been widely applied. For example, semi-synthetic image data
were generated by combining dry pulp sheet backgrounds with typical dirt particles patches to train a
detection and classification system for realizing the automated quality evaluation of dry pulp sheets [4].
Gupta et al. [5] employed this method to generate image datasets of text, and thereby extended text
recognition from a single letter to entire words. Su et al. [6] explored two-dimensional (2D) image target
viewpoint estimation by training a convolutional neural network (CNN) using synthetically rendered
objects cut and pasted into the images of the training dataset. Although this method is convenient and
fast, pixel artifacts associated with the pasted edges in the generated images can cause the trained model
to perform poorly. Dwibedi et al. [7] addressed this issue by blurring the pasted edges to ensure that the
model was not trained with these features, and the generated synthetic data were demonstrated to be
competitive with actual images. Other work addressed this issue by replacing the extracted object
instances with three-dimensional (3D) models of objects [6,8–10].

Most techniques based on the modeling approach employ a game engine for building virtual scenes
[11–13]. For example, virtual scenes were built using the Unreal Engine4 game engine, and the generated
data were applied to a robot environment perception experiment [14]. Handa et al. [15] applied depth
data synthesized through rendering to address the problem of indoor scene understanding, which is a
prerequisite for many advanced tasks of automated intelligent machines. A game simulation engine was
used to simulate the driving conditions of automobiles on roadways [16,17]. Data collected for training a
deep learning network was applied to an automatic driving application. Applications in these conditions
can benefit greatly from the use of virtual scenes because the scene parameters, such as camera angle,
light conditions, and weather conditions, can be arbitrarily changed to provide datasets that include a
wide range of scenarios. The virtual scene rendering method has far-reaching significance in a wide
variety of fields, such as autonomous driving [16,18], scene perception [15,19], unmanned aerial vehicle
tracking [20], and object recognition [4,21–23].

While both of the above-discussed image synthesis approaches have provided significant benefit for
generating annotated image datasets with greatly reduced workload, these approaches have been mainly
applied for generating sparse-object scenes, such as those involving individual vehicle, text, and human
objects, and very few studies have focused on the synthesis of image data for scenes involving randomly
stacked objects. Moreover, the cut and paste approach is not suitable for generating scenes of randomly
stacked objects because the pixel artifacts associated with the pasted edges in the generated images
cannot be effectively addressed under stacked object conditions. Furthermore, the modeling approach
suffers from serious complications because the poses of the various objects in a synthetic dataset typically
depend on the pose of the original model, and the random collection of the objects will not conform to
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the distribution observed in a natural state. As such, the synthetic stacked object images will deviate from
natural images, and thereby limit the object recognition accuracy of the model trained using the synthetic
dataset. No image synthesis approach has yet been proposed that can be effectively applied to complex
stacked object scenes, and thereby random fetching operations of stacked objects remains a challenging
task for robot automation in industry. As a result, industrial robot applications typically require that items
be in a stack-free state. While this can be addressed by the use of additional equipment, such as a
vibration disc added between the part bin and grabbing platform, to separate the individual parts, this can
make the system inefficient and expensive. Clearly, image recognition based on deep learning represents
a promising and powerful solution to this problem. However, as discussed, the annotation of stacked
objects in images is particularly tedious and expensive. Therefore, the use of training datasets composed
of synthetic images would greatly improve the efficiency of the learning process.

The above-discussed issue is addressed in the present work by proposing a new framework that
automatically generates an annotated synthetic dataset of images comprising complex stacking scenes
based on OpenGL and the Bullet physics engine by simulating the freefall of a collection of objects
under the force of gravity. The proposed approach can quickly output a large number of well-annotated
images that faithfully represent the distributions observed in a natural stacking state. Rigorous statistical
comparison of a real image dataset of staked scenes with a synthetic image dataset generated by the
proposed approach demonstrates that the two datasets exhibit no significant differences. Moreover, the
object detection performances obtained by three popular network architectures trained using the synthetic
dataset generated by the proposed approach are demonstrated to be much better than the results of
training conducted using a synthetic dataset generated by a conventional cut and paste approach, and
these performances are also competitive with the results of training conducted using a dataset composed
of real images.

The remainder of this paper is structured as follows. Section 2 introduces the proposed synthetic image
dataset generation approach using OpenGL and the Bullet physics engine. Section 3 explores the differences
between a synthetic dataset generated by the proposed approach and a dataset composed of actual images.
The training performance of the proposed synthetic dataset generation approach is analyzed for three
popular network architectures from various perspectives in Section 4. Finally, we draw the conclusions of
the paper in Section 5.

2 Synthetic Dataset Generation Approach

The framework of the proposed synthetic dataset generation approach is illustrated in Fig. 1. Briefly, a
3D computer aided design (CAD) model of the principle object is obtained, and 12 copies of these objects are
input into the OpenGL simulation platform. Here, common 6060 aluminum corner connectors are employed
as an example. Then, the Bullet physics engine, which is a cross-platform, open-source physics engine that
supports 3D collision detection and flexible, rigid-body dynamics, is applied to build the collective structure
of randomly stacked objects. We then capture red-green-blue (RGB) channel images by a virtual camera
placed within the simulation platform with a specific position and posture under predetermined lighting
conditions. The detailed process is given as follows.

Establish object models. The 3D CAD model of the object is built using the SOLIDWORKS platform.
Models of more complex parts can be obtained through 3D reconstruction. The model is textured and
rendered by UV mapping in 3Ds Max software to enable it to be rendered in OpenGL with a realistic
appearance and illumination state.

Import the model. The Assimp library is applied to load model files with a consistent data structure to an
OpenGL 3D simulation scene. The object model is loaded into the scene in a preset fixed position with
6 degrees of freedom.
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Construct the stacking scene. Stacking scenes caused by gravity, collision, and other factors are
simulated by constructing a container in OpenGL (similar to the bins used in industry). The Bullet engine
is applied to simulate the freefall of models from a fixed point and their collisions with each other to
form an object stacking scene.

Load the virtual camera. Like actual cameras used to capture real scenes, virtual cameras must be
configured in a specific position and posture within virtual 3D simulation scenes, and the lighting
conditions must also be specified in OpenGL.

Capture synthetic image. The RGB image corresponding to the scene rendered from the viewpoint of
the virtual camera is captured, and segmentation annotation, depth, and all other corresponding information
are recorded according to the position and orientation of each object model in the scene.

In addition, different background images are applied to the virtual scenes to ensure that the deep learning
model trained by our synthetic dataset ignores features associated with background patterns. Moreover, we
increase the robustness of the deep learning model by randomly adjusting the parameters of the synthesis
process to vary the lighting and camera parameters.

3 Comparison of Datasets

Figs. 2(a)–2(c) respectively present example images of randomly stacked 6060 corner connectors based
on actual images, synthetic images generated by the proposed approach, and synthetic images generated by
the cut and paste (C&P) approach [5,6]. Here, the cut and pasted image scenes were assembled from images
of 3D models of a single connector in various postures without considering the mutual relationships of the
parts. We note that the synthetic images generated by the proposed method cannot be effectively
distinguished from the real images, while the synthetic images generated by the C&P approach appear to
be considerably more artificial. In addition, artifacts are clearly observable in the images, as indicated by
the circles in Fig. 2(c).

In terms of annotation, the real dataset was manually annotated using labelme, which is an image
annotation tool that can annotate images at the pixel level. However, because of errors in manual labeling
process and the inherent limitations of labelme (e.g., the holes on the corner connectors cannot be
removed), the automatic annotation obtained by the proposed approach has advantages over the real
dataset with respect to representing the ground truth information.

Figure 1: Framework for generating synthetic datasets of randomly stacked object scenes
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The level of congruence between the synthetic dataset generated by the proposed approach and the real
dataset was evaluated statistically by comparing the 3D and 2D posture distributions of the two datasets, as
shown in Fig. 3. Both datasets included more than 200 images composed of 12 randomly stacked corner
connectors. As illustrated in Fig. 3(a), the posture of each corner connector in each image of both datasets
was defined according to the angles α, β, and γ that are respectively measured with respect to the Z, Y,
and X axes with the origin located at the center of the bottom connector plate. The posture distributions
of the synthetic and real datasets are respectively presented in Fig. 3, where the plots at left are 3D
(α, β, γ) scatter diagrams, while the plots at right are 2D (β, α) and (β, γ) projections and their
corresponding frequency cumulative diagrams.

The posture distributions of the two datasets are obviously similar. Several densely distributed postures
are observed in the diagrams because the probability of the connectors landing on one of their flat surfaces is
much greater than those of any other postures. This is particularly evident in the frequency cumulative
distribution diagrams of the 2D (β, α) projections, where peaks can be observed at three α angles and
three β angles. The intersecting lines formed by these faces represent the most obvious lines in the 3D
distributions. We also note that the frequency cumulative distribution diagrams of the 2D (β, γ)
projections represent normal distributions with respect to the angle γ.

To analyze the similarity of the two datasets quantitatively, we note that the two sets of data are
inevitably biased. Many factors can lead to deviations between the statistical results, and the most
important factors is expected to be errors in the measurement results of the acceleration sensor employed
for determining the connector postures in the real scenes. Therefore, we must eliminate the influence of
this factor when seeking to quantify the similarity of the distributions. This is addressed by adopting
normalized and standardized methods for evaluating the consistency of the distributions of α, β, and γ
angles. Accordingly, we applied a Kolmogorov–Smirnov test with two sample sizes n of n1 = 2,400 and

Figure 2: Example images of randomly stacked corner connectors: (a) Actual images; (b) Synthetic images
generated by the proposed approach; (c) Synthetic images generated by a cut and paste (C&P) approach
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n2 = 2,000, and a significance level of 0.05. This test begins by processing the (α, β, γ) coordinates of each
connector as follows.
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After preprocessing the data, the following hypotheses H0 and H1 are proposed.

H0: The two sets of data conform to the same distribution.

H1: The two sets of data correspond to different distributions.

We then define the difference of the cumulative frequency at data xj as follows:

Dj ¼ F1 xj
� �� F2 xj

� �
(2)

where F1(xj) and F2(xj) are cumulative frequency functions of two groups of data. The statistic Z is
then calculated according to the maximum value of Dj:

Z ¼ maxj Dj

�� �� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1n2

n1 þ n2

r
(3)

Figure 3: Corner connector posture distributions: (a) Object coordinate system; (b) Posture distribution
plots of the synthetic dataset generated by the proposed approach; (c) Posture distribution plots of the real
dataset. Here, the plots at left are 3D (α, β, γ) scatter diagrams of connector posture, while the plots at
right are 2D (β, α) and (β, γ) projections and their corresponding frequency cumulative diagrams
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pvalue ¼ e
�2z2� 2zðn1þ2n2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1n2ðn1þn2Þ3p (4)

Then, the values of PValue are computed for the angles α, β, and γ based on the Z value. This yields
the following results.

PValue; α ¼ 6:4� 10−11 (5)

PValue; β ¼ 2:7� 10−10 (6)

PValue; γ ¼ 0:0082 (7)

Accordingly, the values of PValue for angles α, β, and γ are all less than the required significance level of
0.05, which demonstrates that the posture distributions of the two datasets exhibit no significant differences.
As such, hypothesis H0 is accepted, and the synthetic data effectively simulates the stacking postures of
objects obtained under actual conditions. Moreover, the convenience of the proposed synthetic dataset
generation approach enables the incorporation of a much great number of annotated object postures.

4 Evaluation

We evaluated the performance of the proposed synthetic dataset generation approach from various
perspectives. First, we investigated the object detection performance of deep learning models trained
using a real dataset and synthetic datasets. Second, we conducted ablation studies reflecting the effect of
introducing variations in environmental conditions when generating the synthetic dataset using the
proposed approach on the object detection performance of a deep learning model. Finally, we investigated
the effects of different training strategies on the object detection performance of a deep learning model
trained using synthetic datasets generated by the proposed approach.

Unless otherwise specified, we adopted training datasets composed of 2,000 RGB images of stacked
scenes comprising twelve 6060 corner connectors. As discussed, random variations in image
backgrounds, lighting conditions, and added noise provides synthetic images with greater diversity for
focusing deep learning networks on the characteristics pertaining to the objects themselves rather than on
meaningless artifacts in the images. Therefore, these random variations were uniformly applied to all
synthetic datasets, unless otherwise specified. In addition, we applied some data-enhancement methods,
such as flip, crop, zoom, affine transformation, and random erasure, for each dataset. The testing dataset
was composed of 50 real images of stacked scenes comprising twelve 6060 corner connectors, all of
which were manually annotated using labelme.

The mean intersection over union (MIoU) was adopted as the evaluation standard during segmentation.
Here, IoU = TP/(TP + FP + FN), where TP, FP, and FN represent true positive, false positive, and false
negative results, respectively. Correct object detection was established when the IoU between a predicted
bounding box (mask) and a ground-truth bounding box (mask) was greater than 0.6. We also prevented
model overfitting by terminating the training process when the object detection performance
became saturated.

4.1 Object Detection

Three popular neural networks were trained using a real dataset and synthetic datasets generated by the
proposed approach and by the C & P approach. The datasets were converted to the standard COCO format to
facilitate training for the open-source implementations of the three networks. The network architectures are
briefly described as follows.
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YOLOv3 is the third version of the YOLO (you only look once) series of target detection algorithms that
have demonstrated significant improvements in accuracy and speed [24]. The network divides an image into
S � S grids, and the grid at the object center is responsible for object detection. YOLOv3 consists of
75 convolutional layers and applies no fully connected layer. Due to the absence of a fully connected
layer, the network can accommodate input images of any size. During training, the learning rate and
momentum were set to 0.002 and 0.9, respectively.

Mobilenet-SSD is a lightweight network designed for mobile terminals. Accordingly, it uses the
Mobilenet [25] feature extraction network rather than vgg16, as used in the original single shot detector
(SSD) [26]. Mobilenet-SSD has the advantages of high speed, few network parameters, and robust
detection accuracy, and is suitable for deployment in embedded and edge computing devices in industrial
scenarios. We trained the Mobilenet-SSD network with a learning rate of 0.015 and a momentum of 0.9.

Mask R-CNN adds an additional branch to the original framework of Fast region-based CNN (R-CNN),
and uses a small fully convolutional network to obtain the mask of a predicted object while simultaneously
predicting classifications and bounding boxes [27]. The instance segmentation of an object can be obtained
through a Mask R-CNN model. This pixel-level segmentation requires annotation information of the training
dataset at the pixel level. Clearly, the application of synthetic datasets can substantially facilitate the training
of such neural networks. We trained the Mask R-CNN model with an initial learning rate of 0.001, a weight
decay factor of 0.0001, and a momentum of 0.9.

Two datasets were respectively generated by the proposed approach and the C&P approach. In addition,
another training dataset composed of 200 real images captured using a Basler scA1600-20gc area scan
camera from actual stacked scenes comprising 12 corner connectors was adopted during object detection
performance evaluations, and the images were manually annotated by labelme. Although the scale of the
synthetic data was greater than that of the real data, these synthetic images came essentially for free, as
they were generated automatically. In fact, only 30 min were required to synthesize the 2000 images in
the training dataset using the proposed approach, which was only one-eleventh of the approximately
5.5 h required for manually labeling the real images. While the datasets were smaller than those generally
employed in similar studies, they were sufficient to provide meaningful comparisons.

The MIoU values obtained by the three network architectures when training using each of the three
training datasets are listed in Tab. 1. The model trained using the real dataset performed best because the
images in this training dataset were obtained in the same manner as the images in the testing dataset.
Nonetheless, the MIoU values obtained by the networks trained using the synthetic dataset generated by
the proposed approach, while slightly less, were competitive. However, taking the greatly reduced time
cost into account, the slightly diminished detection accuracy can be regarded as an acceptable tradeoff. In
contrast, the object detection performances of these three frameworks trained using the synthetic dataset
generated by the C&P approach were uniformly poor, particularly for the Mobilenet-SSD framework.

Table 1: Object detection performances (MIoU values) of the three network architectures trained using each
of the three image datasets

Architecture Real dataset Synthetic dataset
(Proposed)

Synthetic dataset
(C & P)

YOLOv3 0.905 0.821 0.677

Mobilenet-SSD 0.871 0.762 0.539

Mask R-CNN 0.886 0.832 0.744
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The object detection results obtained by the Mask R-CNN model trained using the three datasets are
illustrated in Fig. 4. While the Mask R-CNN model trained using the real dataset indentified all
connectors in the images, the model trained using the synthetic dataset generated by the proposed
approach failed to identify some of the corner connectors at the bottoms of the stacks, which are circled
in yellow in the figures. However, objects would not be grabbed from the bottom first by robots in
automated industrial applications. Therefore, these unrecognized examples are of relatively little
importance in practical usage. In contrast, the model trained using the synthetic dataset generated by the
C&P approach tended to identify gaps between the connectors as actual connectors, as indicated by
the regions within the red circles, leading to a high false recognition rate, which represents an
unacceptable condition.

These experiments further demonstrate that the proposed approach for generating synthetic datasets can
effectively simulate the stacked relationship between objects, and therefore replace real image datasets
requiring tedious annotation to train deep learning models. Moreover, the proposed synthetic training
datasets not only ensure good detection accuracy, but also greatly improve the efficiency and
expandability of the training process owing to the very low time cost involved.

4.2 Ablation Studies

Variations in lighting conditions were considered in OpenGL by varying the property values of the
variables GL AMBIENT, GL DIFFUSE, and GL SPECULAR. Here, GL AMBIENT represents the light

Figure 4: Object detection results obtained by the Mask R-CNN model trained on the real image and
synthetic image datasets. Here, unidentified corner connectors at the bottoms of the stacks are circled in
yellow, while gaps between the connectors identified as actual connectors are circled in red
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intensity (color) of various ambient light rays that reflect many times from the object surfaces until they form
an ambient light source in the environment. The variable GL DIFFUSE represents the light intensity (color)
in the object on which light is diffused. Finally, GL SPECULAR is the intensity of light (color) formed by the
reflection of light rays from the object. We also considered the effect of data-enhancement algorithms, such as
flip, rotation, shift, brightness, or contrast adjustment, on the object detection performance. In our
experiments, some objects were also added as an interference to diversify datasets. Meanwhile, we note
that occlusions are very common in randomly stacked object scenes, and some objects may be
represented by so few pixels that they are difficult to be detected. Therefore, we also considered the
removal of annotation referring to objects with high shielding rates. The shielding rate is defined as

& ¼ Np

NA
; (8)

where Np is the number of pixels representing the object in the image, and NA is the number of pixels required
to represent the object in the absence of occlusion. For this purpose, we removed the annotation for objects
whose shielding rate was greater than 70% to ensure that they were not recognized as real objects.

The MIoU values obtained by the Mask R-CNN model trained using synthetic datasets generated by the
proposed approach while omitting single randomized parameters during the dataset generation process are
presented in Fig. 5. The MIoU value obtained for the control group where none of the parameters
were changed was 0.758, while the MIoU value of the other control group where all of the parameters
were randomly varied was 0.832. As we can see, full variation yields an MIoU value that was 8.9%
greater than that obtained by the statically-derived dataset. This is reasonable because these parameters
are volatile in reality. The effects of variations in the background, added noise, lighting, and shielding
rate operation on the synthetic dataset are illustrated in Fig. 6.

The effects of the full set of parameter variations on the MIoU values obtained by the Mask R-CNN
model trained using synthetic datasets generated by the proposed approach are described as follows based
on the MIoU values presented in Fig. 5.

Figure 5: MIoU values obtained by the Mask R-CNN model trained using synthetic datasets generated by
the proposed approach while omitting single randomized parameters during the dataset generation process
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Background. The MIoU decreased by 6.4% from 0.832 to 0.778 when the background in the synthetic
dataset was not varied by using other monochrome colors or complex patterns. Moreover, the object
detection accuracy was improved if the test image included complex backgrounds.

Data augmentation. In the absence of applying data augmentation operations in the synthetic dataset,
the MIoU decreased by 5.5% from 0.832 to 0.786.

Lighting variation. In the absence of lighting variations in the synthetic dataset, the MIoU value
decreased by 4.9% from 0.832 to 0.791.

Noise addition.Without the addition of noise, the MIoU value decreased by 2.7% from 0.832 to 0.809.

Shielding rate operation. Without applying the shielding rate operation, the MIoU value decreased by
2.3% from 0.832 to 0.813. In addition, we note that including the shielding rate operation increased the
convergence rate of model training.

4.3 Effect of Training Strategy

The effects of different training strategies on the object detection performance of the Mask R-CNN
model trained using the dataset generated by the proposed image synthesis approach were investigated.
These different strategies included training with grayscale images, with different numbers of RGB images
in the training dataset, and with mixed datasets composed of both real and synthetic RGB images.

Grayscale image training. The corner connectors employed in our experiments were monochrome
objects. Therefore, the objects could be reasonably represented by grayscale images. The MIoU value
obtained by the Mask R-CNN model trained using the grayscale image dataset was 0.831, indicating that
the conversion from RGB to grayscale images had no significant effect on the object detection
performance of the model. The recognition effects of the models trained using the two different synthetic
datasets are illustrated in Fig. 7. We also present a comparison of the model convergence observed during
the training process using RGB and grayscale images in Fig. 8. We note that model convergence was
significantly faster when training was conducted with grayscale images rather than with RGB images,

Figure 6: Effects of variations in the parameters of the synthetic dataset on object detection
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where the model converged at step 80 when trained with grayscale images, while the model converged at step
122 when trained with RGB images.

Number of images in training dataset. The MIoU values obtained by the three network architectures
when trained using the proposed synthetic datasets are presented in Fig. 9 with respect to the number of
images included in the training dataset. Except for the number of images, all of the other parameters were
equivalently randomized, as discussed above, for the different datasets. As shown in the figure, the object
detection performances of the three network architectures increased substantially with increasing training
dataset size from 200 to 1000. However, further changes in the detection performances with increasing
training dataset size were either minor increases, or, occasionally, minor decreases, indicating relatively

Figure 7: Object recognition effects of the Mask R-CNN model trained with RGB images and grayscale
images generated by the proposed synthesis approach

Figure 8: Loss curve of the Mask R-CNN model trained using synthetic grayscale image and RGB image
datasets
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stable performance for dataset sizes of around 4,000 images. That is to say, the recognition accuracy of the
model can be further improved by increasing the size of the dataset, which can be easily realized in our
synthetic dataset.

Training with mixed datasets. The MIoU values obtained by the Mask R-CNN model when trained
using mixed datasets composed of both real and synthetic RGB images are listed in Tab. 2. Surprisingly,
the training dataset composed of just 200 real images facilitates a high object detection performance that
is not surpassed until 1,800 synthetic images are added to it. However, a very high MIoU value of
0.913 was obtained when mixing 200 real images with 3,800 synthetic images. These results indicate that
training datasets based on real images of stacked object scenes offer advantages regarding the object
detection performance of models trained with these datasets. However, these results also demonstrate that
the addition of only a small number of real images to a large synthetic training dataset can have marked
benefits for ensuring high identification accuracy, while also ensuring excellent training efficiency
and low cost.

Figure 9: Influence of training dataset size on the object detection performances of the three network
architectures

Table 2: Object detection performance of the Mask R-CNN model trained using mixed datasets composed
of both real and synthetic RGB images

Dataset size Real images Synthetic images MIoU

200 200 (100%) 0 0.886

2,000 0 (0%) 2,000 0.832

2,000 50 (2.5%) 1,950 0.860

2,000 100 (5%) 1,900 0.868

2,000 200 (10%) 1,800 0.891

4,000 200 (5%) 3,800 0.913
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5 Conclusion

The present work addressed the highly time-consuming and tedious nature of assembling annotated
image datasets for training deep learning networks to detect objects within image scenes involving
randomly stacked objects by proposing a synthetic training dataset generation method based on OpenGL
and the Bullet physics engine, which automatically generates annotated synthetic datasets by simulating
the freefall of a collection of objects under the force of gravity. Rigorous statistical comparison of a real
image dataset of staked scenes with a synthetic image dataset generated by the proposed approach
demonstrated that the two datasets exhibit no significant differences. Moreover, the object detection
performances obtained by three popular network architectures trained using the synthetic dataset
generated by the proposed approach were much better than the results of training conducted using a
synthetic dataset generated by the conventional C&P approach, and these performances were also
competitive with the results of training conducted using a dataset composed of real images. Therefore, a
synthetic dataset comprising images of stacked object scenes generated by the proposed approach can
replace a dataset composed of real images for training deep learning models both effectively and
efficiently. The results further demonstrated that the addition of only a small number of real images to a
large synthetic training dataset can have marked benefits for ensuring high identification accuracy, while
also ensuring excellent training efficiency and low cost. Future work could focus on the machine
recognition of textured objects and groups of multiple objects in stacked object scenes based on synthetic
datasets generated by the proposed approach, and improve the approach to further narrow the gap
between synthetic images and real images.
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