
A Fuzzy-Based Bio-Inspired Neural Network Approach for Target Search by
Multiple Autonomous Underwater Vehicles in Underwater Environments

Aolin Sun, Xiang Cao*, Xu Xiao and Liwen Xu

School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian, 223300, China
�Corresponding Author: Xiang Cao. Email: cxeffort@126.com
Received: 14 October 2020; Accepted: 06 November 2020

Abstract: An essential issue in a target search is safe navigation while quickly
finding targets. In order to improve the efficiency of a target search and the
smoothness of AUV’s (Autonomous Underwater Vehicle) trajectory, a fuzzy-
based bio-inspired neural network approach is proposed in this paper. A bio-
inspired neural network is applied to a multi-AUV target search, which can effec-
tively plan search paths. In the meantime, a fuzzy algorithm is introduced into the
bio-inspired neural network to make the trajectory of AUV obstacle avoidance
smoother. Unlike other algorithms that need repeated training in the parameters
selection, the proposed approach obtains all the required parameters that do not
require learning and training. And the model parameters are not sensitive. The
simulation and experiment results show that the proposed algorithm can quickly
and security search targets in the complex obstacle environments. Compared with
the PSO (Particle Swarm Optimization) algorithm, the simulation results show
that the proposed algorithm can control a multi-AUV to complete multi-target
search tasks with higher search efficiency and adaptability. At the same time,
the fuzzy obstacle-avoidance improves the search trajectory smoothness.
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1 Introduction

Multi-AUV (multiple autonomous underwater vehicle) systems have many advantages over a single
AUV: 1) By appropriately decomposing tasks, multi-AUVs can accomplish different sub-tasks in parallel,
thereby increasing work efficiency [1–2]; 2) The members of the system can be designed to “experts”
who complete a task, not “generalists” [3–4]; 3) Through the cooperation between members, the
algorithm can increase the redundancy and robustness of the scheme [5–6]. It can provide more solutions
and reduce system cost and complexity. Because of these advantages, many scholars have used multi-
AUV systems for target search tasks. A large number of multi-AUV target search strategies are proposed.

The target search based on a behavioral strategy is a standard method in early studies. The behavioral
approach is a heuristic method that endows a robot with simple behavior sets, such as searching along
boundaries, and avoiding obstacles. Target search tasks in complex environments can be accomplished
through a hierarchical combination of these simple behaviors [7–8]. Balch et al. [9] adopted a
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behavior-based heuristic approach to multi-robot target search tasks to solve map coverage problems. Magid
et al. [10] analyzed the advantages of behavioral strategy from the perspective of cost and benefit. The robots
based on this strategy do not need expensive positioning sensors, do not need to use limited computing
resources to calculate the precise positions of robots, so the cost of the robot is reduced. This behavior-
based search strategy does not require the advance selection of the search path. Instead, it focuses on the
overall behavior of multiple robots by randomly selecting directions. However, the algorithm does not
guarantee the integrity of the map search, nor does it ensure no duplication, resulting in an inefficient
search. And there is no collaboration between the robots, which violates the original purpose of using
multiple robots for a target search [11–12].

To increase cooperation among multiple robots, Yamauchi [13] proposed a boundary-based distributed
multi-robot target search strategy. The algorithm defines the boundary as that between the known open area
and the unsearched area. During the search process, each robot continuously selects the nearest boundary
point for environmental search until all reachable areas are searched, and the task is completed. Due to
the limited coordination of information between robots in this strategy, some robots may move to the
same boundary, causing collisions and repeated searches, which is inefficient. To further enhance the
collaboration of multi-AUVs, Yoon et al. [14] proposed a synchronous search algorithm that can achieve
large-scale target search. AUVs exchange data through regular rendezvous to perform a collaborative
search of targets. The algorithm has redundancy error capability, and after some AUV failures, the search
task can be completed. However, this algorithm only studies the ideal two-dimensional environment
without considering current and obstacles, which reduces its practicability [15].

To improve the efficiency of the target search, Zolt et al. [16] proposed a multi-robot target search
algorithm based on a market economy mechanism. A robot shares target information and calculates the
cost of reaching the target based on the local map. The algorithm is distributed, robust, and efficient. The
cooperation of robots is realized by explicit communication, which increases resource consumption. The
performance of the target search is significantly diminished when transmission is interrupted. Ferranti
et al. [17] proposed a method based on multi-robot self-search in an unknown environment. This
algorithm constructs indirect communication between multiple robots. The method avoids disadvantages
such as unreliability. The process does not require a robot to have advance environmental knowledge, and
can coordinate the movement of multiple robots in terrain with different topological features. Cai et al.
[18] and Hashemi et al. [19] proposed a distributed self-organizing multi-robot target search algorithm
based on particle swarm optimization (PSO). The method transforms the process of searching for the
optimal solution in the abstract solution space to the search of the unsearched area in the new map to
realize the target search for unknown environments [20]. These three methods are not suitable for a large-
scale target search.

To improve the efficiency of a multi-AUV target search in complex environments, Cao et al. [21]
combined a bio-inspired neurodynamic model and velocity vector synthesis algorithm for multi-AUV target
search in current settings. This method can not only complete the search task but can automatically avoid
obstacles and overcome the influence of current on AUV navigation [22]. However, the algorithm does not
consider security when avoiding obstacles and does not apply to environments with multiple barriers.

This paper studies the safety navigation problem of multi-AUV target searching. To improve the safety
of an AUV in obstacle avoidance, a fuzzy-based bio-inspired neural network approach (FBNN) is proposed.
The bio-inspired neural network (BNN) algorithm plans an effective search path for an AUV.When the AUV
meets obstacles, the fuzzy algorithm improves its navigation path. The improved trajectory is more
reasonable and secure. A fuzzy algorithm makes the trajectory of AUV obstacle avoidance smoother.
Simulation results show that the proposed approach can control multi-AUVs to achieve the search of
multiple targets with higher efficiency and adaptability compared to PSO. At the same time, fuzzy
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obstacle-avoidance improve the security of the AUV trajectory. Experimental results show that the proposed
algorithm can be applied in real underwater environments.

The advantages of the algorithm can be summarized as follows: 1) The method’s parameters do not
require learning and training, and they are not sensitive; 2) Fuzzy obstacle-avoidance improves track
smoothness; and 3) a real-time, safety-aware navigation paradigm guides the AUV locally to plan more
reasonable and safer trajectories.

The rest of this paper is organized as follows. The principles of the proposed algorithm are given in
Section II. Simulations of various situations are described in Section III. A pool experiment is outlined in
Section IV. Section V provides our conclusions.

2 Proposed Approach

This paper proposes a fuzzy-based bio-inspired neural network approach to realize a real-time multi-
AUV target search task in an underwater environment with obstacles. A bio-inspired neural network
topologically organized is constructed to represent the dynamic environments. Through the model’s
dynamic neural activity landscape, the target globally attracts the AUV, while the obstacles locally push
the AUV away to avoid a collision. The AUV generates its search path to the targets autonomously by a
steepest gradient descent rule. When encountering obstacles, AUVs move using the fuzzy obstacle-
avoidance method. The flowchart of the approach is shown in Fig. 1.

Start

Initialize the BNN

Search path planning

All targets are
searched

End

N

Y

Obstacles
AUV move as

planned

AUVs move under
the fuzzy obstacle-
avoidance method

Y

N

Figure 1: Flowchart of multi-AUV target search
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2.1 Bio-Inspired Neural Network

A bio-inspired neural network in underwater environments is established (as shown in Fig. 2), in which a
neuron represents a grid cell. The information of the grid cell is described by neural activities. Each neuron is
connected to adjacent ones to form a network for their transmission of activity (for simplicity, only
connections of the central neuron are shown, and those of other neurons are omitted).

The change rule of neuronal activity in the neural network is expressed as [23]:

duk
dt

¼ �Auk þ ðB� ukÞð½Ik �þ þ
X

0<jklj� ffiffi
3

p
wkl½ul�þÞ � ðDþ ukÞ½Ik �� (1)

where uk represents the activity value of the k-th neuron, ul represents the activity value of other neurons
connected to the k-th neuron, and Ik represents the grid cell signal’s input defined as [24]:

Ik ¼
1; if it is a target
�1; if it is an obstacle
0; otherwise

8<
:

9=
; (2)

A, B, and D are positive constants; A reflects the passive decay rate of neuron k’s activity; B and D are
upper and lower limits of uk , i.e., uk 2 ½�D;B�. jklj is the Euclidean distance between neuron k and its
neighbor l on the 3D space,

jklj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxk � xlÞ2 þ ðyk � ylÞ2 þ ðzk � zlÞ2

q
(3)

where (xk, yk, zk) and (xl, yl, zl) are the coordinates of the k-th and l-th neurons, respectively, in the 3D
coordinate system.

In Eq. (1), wkl is the connection weights between neuron k and its neighbor l, which can be
defined as [25]:

wkl ¼ f ð klj jÞ ¼ l= klj j; 0, klj j, ffiffiffi
3

p
0; klj j � ffiffiffi

3
p

�
(4)

where l is a positive constant, and generally, 0 � wkl � 1. As the connections between neurons are not
directional, the connection weight coefficients are symmetric, i.e., wkl ¼ wlk .

k

l

wkl

Figure 2: Diagram of neural network
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It can be seen from Eq. (1) that the activity values of the target neurons are positive, and those of the
obstacle neurons are negative. That means that some excitation signals come from external inputs, and

others from internal incremental gains of interconnecting neurons. If Ik � 0, then
P

0< klj j� ffiffi
3

p wkl½ul�þ, which

means there is no external input for neuron k, and all its excitation signals are transmitted through the
neuronal network. In contrast, ½Ik �� means that all the inhibitory inputs for signals k are external.
Therefore, the excitation signals are transmitted between neurons. The value of the positive activity of
neurons in a neural network has a global effect while the inhibitory signals do not transmit and the
negative activity of neurons has only a local effect.

2.2 3D Search Path Planning Model

We transform the search path planning problem of an AUV to one of finding its next navigation position.
Only by accurately finding the position can an AUV quickly find unknown targets and avoid collisions with
obstacles. In this regard, the next navigation position of an AUV must be determined in conjunction with the
specific dynamic environment and the previous position and current position of the AUV. Hence, the research
of AUV search path planning is transformed to the study of neuron activity output values in the neural
network structure. The navigation position of an AUV at the next moment is determined by the
distribution of neuron activity output values. In the target search mission, all of an AUVs movements are
guided by the dynamic activity landscape of the neural network. The activity of each neuron is obtained
by a shunting Eq. (1). The influence of the targets and obstacles, the state workspace varies according to
the dynamics of the neural network. The motion of the AUV is determined by the landscape of the
dynamic activity of the topologically organized neural network. An AUV's search path selection strategy
can be written as [26]:

Pn ( uPn ¼ maxful; l ¼ 1; 2;…;Mg (5)

where M represents the number of neurons adjacent to the k-th neuron, Pn represents the AUV’s location at
the next moment in the map, and uPn is the highest activity value of the k-th neuron’s neighbors. When an
AUV selects a path, it compares the activity value of the neuron of its current location with its neighbors and
chooses the one with the largest value as the next step. Repeating this performance, the AUV keeps moving
towards the targets.

2.3 Fuzzy Obstacle-Avoidance

Fuzzy obstacle-avoidance rules can provide different line speeds and angular velocities for a single AUV
when facing obstacles. These rules can improve the smoothness of the AUV trajectory.

The structure of the fuzzy control module embedded in the control system is shown in Fig. 3. It has four
main parts [27]:

(1) The fuzzification interface converts input to membership and compares it to rules in the rule library.

(2) The rule base contains rules based on common knowledge and experience.

(3) Decision logic evaluates the current situation, selects the appropriate fuzzy rules, and converts the
fuzzy input to fuzzy output.

(4) The defuzzification interface converts the fuzzy output to a non-fuzzy instruction that the
AUV recognizes.

The fuzzy controller has the characteristics of intelligence and real-time performance. The output Y ðtÞ of
the system is fed back to the fuzzy controller and compared to the reference input RðtÞ. The input UðtÞ is
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extracted by the fuzzy controller to meet the requirements of the underwater robot. The inputs and outputs of
the fuzzy controller are shown in Fig. 4.

There are two fuzzy inputs, v and ao in the fuzzy controller, where v is the linear degree of freedom
of the AUV, and ao is the angle of attack between the AUV and the obstacle. This design represents line
velocity fuzzy terms as VS (velocity small), VM (velocity middle), and VL (velocity large). The angular
fuzzy terms are expressed as ANS (angle negative small), ANL (angle negative large), APS (angle
positive small), and APL (angle positive large). The membership functions of the above three fuzzy
inputs are shown in Fig. 5 [28].

The AUV’s motion is adjusted by the output command of the fuzzy controller, which has two fuzzy
outputs:, xe is the desired curve speed of the AUV, and ve is its desired line speed. To effectively avoid
obstacles, xe has five fuzzy items, represented as NL (negative large), NS (negative small), Z (zero), PS
(positive small), and PL (positive large). The fuzzy terms of ve are similarly represented as VS (velocity
small), VM (velocity middle), and VL (velocity large), as shown in Fig. 6. For example, if the AUV is
required to turn right, then x would has the fuzzy term PS or PL, depending on the input [29].

The center of gravity algorithm is used for defuzzification, and the fuzzy output is converted to a motion
command output to control the motion of the AUV. The fuzzy controller can effectively guide the AUV to
avoid obstacles and improve the motion track [30].
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Figure 3: Fuzzy controller architecture
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Figure 4: Fuzzy controller
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The main task of the rule is to make the system have a reasonable output. The rules in Tab. 1 apply to all
possible AUVobstacle avoidance scenarios. Each “IF” condition contains sub-conditions of ao and v, and all
fuzzy sets basically come from experience and common knowledge.

3 Simulation Studies

The practicability of the algorithm was verified by simulating the 3D multi-AUV target search under
static and dynamic conditions on MATLAB R2011a. The underwater search space in the simulation
experiment was set to 100 × 100 × 100. AUVs, targets, and obstacles were randomly distributed in the
search space before the search task began. An AUV only knew the number of targets and environmental
boundaries. AUVs and targets could move within the search space. AUVs moved according to the
proposed algorithm, and the target moved randomly before discovery by the AUV. When all the targets
were found, the multi-AUV target search ended.

3.1 Static Targets Search

To test the performance of the proposed algorithm, the search for static targets by multiple AUVs was
simulated. The simulation consisted of three targets, three AUVs, and several obstacles in underwater
environments. The targets had initial positions (41, 88, 76), (74, 72, 18), and (94, 58, 82), and three
AUVs had initial positions (98, 34, 25), (32, 11, 97), and (38, 94, 27), as shown in Fig. 7. At the
beginning of the search task, since the target affected the entire search area through neural transmission,
the activity of each neuron could be derived from the shunt Eq. (1). When the AUV selected its path, it
compared the activity value of the neuron at its current location to its neighbors and selected the neuron
with the largest value as the next step. In the proposed algorithm, the target and obstacles respectively are
the excitation and suppression of the neural network. Repeating the path selection, the AUV moved
toward the target, and could bypass obstacles to avoid collisions. At the same time, through fuzzy
obstacle-avoidance, the AUV search path became smoother, and the AUV made no sharp turns when the
avoiding obstacles. As shown in Fig. 8, the static targets T1, T2, and T3 were found by AUVs R3, R1,
and R2, respectively, which showed that the proposed algorithm could realize the joint search of multiple
static targets.

e
��

1

0

NL NS PS PLZ
1 VS VLVM

ev�

ev
4vemin

2vemin–2ωe0
2ωe0

–ωe0
ωe0

ωe

(a)   (b)

vemin

Figure 6: Membership functions of outputs (a) Membership function of lxe
(b) Membership function of lve

Table 1: Rulebase for obstacle-avoidance

IF ao ANL ANL ANS ANS APS APS APL APL ANS ANL APS APL
v VS VM VS VM VS VM VS VM VL VL VL VL

THEN xe Z PS PL PL NL NL Z NS PL PS NL NS

ve VS VM VL VM VL VM VS VM VS VL VS VL

IASC, 2021, vol.27, no.2 557



3.2 Dynamic Targets Search

Multiple AUVs searched for multiple dynamic targets in the second simulation. Dynamic targets
undoubtedly bring more difficulties to the search task. But the proposed algorithm solved the problem.
Due to pre-definition, the activity values of the neurons in the target were positive, and the target globally
attracted AUVs through the dynamic neural activity landscape of the model. It can be known from
Eq. (1) that when a target’s position changes, the activity values of the adjacent neurons of the AUV will
change accordingly. By changing the activity values of neighboring neurons, each AUV can obtain real-
time information on the change in the position of a moving target. The algorithm can continuously adjust
the search path according to the evolution of adjacent neural activity values.

Figs. 9 and 10 show the process of three AUVs searching for three dynamic targets. A target moves
randomly, and an AUV moves according to the proposed algorithm. Fig. 9 shows the initial positions of
AUVs, targets, and obstacles. Fig. 10 shows the trajectory of the search targets, where the dotted and
solid lines respectively indicate the moving track of the target and the moving trajectory of the AUV. The
simulation results showed that the algorithm realized the joint search for multiple dynamic targets.
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3.3 AUV Break Down

An AUVmay experience mechanical failure when searching in real 3D underwater environments. In the
case of partial AUV failure, whether the target search can be completed is an important indicator to measure
the fault tolerance of the algorithm. We simulated a target search in the event of an AUV failure. In the
simulation environments, four AUVs were to search for three dynamic targets. Initially, the four AUVs
searched for targets. After a while, an AUV failed and other AUVs were still working, as shown in
Fig. 11a. Although R1 failed, the team continued to search. After target T1 was detected, its activity value
was set to 0. Since target T4 was not found, its activity value was 1. R2, R3, and R4 continued to search
in its direction. As shown in Fig. 11b, R3 detected target T4. The AUVs found all the targets in the given
space, and the search task ended. The simulation showed that the algorithm could complete a search task
under the condition of AUV mechanical failure, the algorithm’s good fault-tolerant performance.

3.4 Performance Comparison of Different Algorithms

Compared to commonly used algorithms such as PSO, the proposed algorithm is expected to improve
the efficiency of multi-AUV collaborative search. The PSO algorithm optimizes the solution by improving
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candidate solutions based on given iterations. The algorithm randomly generates particles, evaluates their
fitness, and finds the individual and optimal global positions of the group.

The comparative simulation was of three AUVs searching for three targets in underwater environments
with obstacles. The targets had initial positions (41, 88, 76), (78, 78, 6), and (80, 37, 58), and AUVs were
randomly distributed, with positions (38, 94, 27), (58, 21, 12) and (93, 55, 83). Figs. 12a, 12b show the
search process for two algorithms. Fig. 12 shows that the search path of the algorithm was shorter than
that of the PSO algorithm for each AUV member. This is because the solution to the fitness function of
PSO is only related to the distance between targets. In complex situations, the PSO algorithm does not
adequately guide the AUV to avoid obstacles. The simulation results showed the proposed algorithm’s
greater efficiency and adaptability compared to the PSO algorithm.
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To compare the trajectory smoothness of the proposed algorithm and the PSO algorithm, Fig. 13 shows
the trajectories of the two algorithms to avoid obstacles. Fig. 13a, 13b show the obstacle avoidance result of
the proposed algorithm and PSO algorithm, respectively. The fuzzy obstacle avoidance of the proposed
algorithm can provide better trajectory smoothness than the PSO control method. An AUV avoids sharp
turns when it detects obstacles.

4 Experiment

We used the Neptune-1 AUV model to test the performance of the proposed algorithm in a real pool
environment (see Fig. 14). The model was based on a remote submarine produced by Thunder-Tiger. We
made it an AUV by adding a positioning module and rebuilding the remote-control system. The AUV
thruster had a speed of 2 knots (1.08kN). Since underwater acoustic communication is not yet mature,
this experiment was carried out on the water’s surface. The AUVs communicated using WiFi.

The AUV position information was obtained through a water surface control platform, and the search
track of the AUV was plotted. Fig. 15 shows the target search experiment of the AUV in the pool with an
obstacle. We placed an ROV (remotely operated vehicle) in the pool as an obstacle. At the beginning of
the experiment, the two AUVs searched in different directions to avoid overlapping search areas. Next,

R2 R2

(b)(a)

Figure 13: Trajectory comparison of avoiding obstacle (a) Proposed algorithm (b) PSO algorithm

Figure 14: AUV model
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an AUV searched for the target according to the proposed algorithm. When encountering obstacles, AUVs
moved using the fuzzy obstacle-avoidance method, which improved the smoothness and safety of the
trajectory. Finally, two AUVs completed a search for a target, and the search path was similar to that
obtained in our simulations. Experiments showed that the proposed algorithm was useful for target search
in an obstacle pool.

Fig. 16 shows the target search experiment with two AUVs in the pool with multiple obstacles. Although
obstacles were added to the environment, an AUV could safely avoid them under the guidance of the
proposed algorithm. Finally, R1 searched for the target. It can be seen that the proposed algorithm could
still complete the target search task in a complex environment, and the search path was smooth.

5 Citations

A bio-inspired neural network and fuzzy obstacle-avoidance method were combined to realize the
collaborative search for targets in underwater environments with obstacles. A bio-inspired neural network
algorithm with certain cooperation rules could accomplish handle the target search tasks. It did not
require an explicit environment model, nor trial and error to select parameters. Due to obstacles in
underwater environments, a fuzzy obstacle-avoidance algorithm was introduced to optimize the search
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T1

Figure 15: Pool experiment with an obstacle
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Obstacle
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Figure 16: Pool experiment with multi-ple obstacles
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path. Simulations and experiments showed that the integrated algorithm enabled complete search tasks of
multiple AUV teams and performed better than other algorithms. Although the algorithm has certain
advantages, some problems have not been fully considered, such as ocean currents and the shape of an AUV.
Further research is needed to obtain better algorithms that are consistent with real underwater environments.

Funding Statement: This project is supported by the National Natural Science Foundation of China
(61773177), the Natural Science Foundation of Jiangsu Province (BK20171270), Jiangsu Undergraduate
Training Program for Innovation and Entrepreneurship (201810323001Z, 201910323054Y).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References

[1] Q. Li, Y. Y. Ben, S. M. Naqvi, J. A. Neasham and J. A. Chambers, “Robust student’s t-based cooperative
navigation for autonomous underwater vehicles,” IEEE Transactions on Instrumentation and Measurement,
vol. 67, no. 8, pp. 1762–1777, 2018.

[2] X. Cao and D. Q. Zhu, “Multi-AUV task assignment and path planning with ocean current based on biological
inspired self-organizing map and velocity synthesis algorithm,” Intelligent Automation & Soft Computing, vol. 23,
no. 1, pp. 31–39, 2017.

[3] X. Li and D. Q. Zhu, “An adaptive SOM neural network method for distributed formation control of a group of
AUVs,” IEEE Transactions on Industrial Electronics, vol. 65, no. 10, pp. 8260–8270, 2018.

[4] X. Cao, H. C. Yu and H. B. Sun, “Dynamic task assignment for multi-AUV cooperative hunting,” Intelligent
Automation & Soft Computing, vol. 25, no. 1, pp. 25–34, 2019.

[5] X. Xiang, C. Yu, L. Lapierre, J. Zhang and Q. Zhang, “Survey on fuzzy-logic-based guidance and control of
marine surface vehicles and underwater vehicles,” International Journal of Fuzzy Systems, vol. 20, no. 2, pp.
572–586, 2018.

[6] S. MahmoudZadeh, A. M. Yazdani, K. Sammut and D. M. W. Powers, “Online path planning for AUV
rendezvous in dynamic cluttered undersea environment using evolutionary algorithms,” Applied Soft
Computing, vol. 70, pp. 929–945, 2018.

[7] W. Y. Gan and D. Q. Zhu, “Complete coverage belief function path planning algorithm of autonomous underwater
vehicle based on behavior strategy,” Journal of System Simulation, vol. 30, no. 5, pp. 1857–1868, 2018.

[8] C. Y. Wei, K. V. Hindriks and C. M. Jonker, “Dynamic task allocation for multi-robot search and retrieval tasks,”
Applied Intelligence, vol. 45, no. 2, pp. 383–401, 2016.

[9] T. Balch and R. C. Arkin, “Communication in reactive multiagent robotic systems,” Autonomous Robots, vol. 1, no.
1, pp. 27–52, 1994.

[10] E. Magid, T. Tsubouchi and E. Koyanagi, “Building a search tree for a pilot system of a rescue search robot in a
discretized random step environment,” Journal of Robotics and Mechatronics, vol. 23, no. 4, pp. 567–581, 2011.

[11] J. Melo and A. Matos, “Survey on advances on terrain based navigation for autonomous underwater vehicles,”
Ocean Engineering, vol. 139, pp. 250–264, 2017.

[12] S. Y. Chien, Y. L. Lin, P. J. Lee, S. Han, M. Lewis et al., “Attention allocation for human multi-robot control:
cognitive analysis based on behavior data and hidden states,” International Journal of Human-Computer
Studies, vol. 117, pp. 30–44, 2018.

[13] H. Yamaguchi, “A distributed motion coordination strategy for multiple nonholonomic mobile robots in
cooperative hunting operations,” Robotics and Autonomous Systems, vol. 43, no. 4, pp. 257–282, 2003.

[14] S. Yoon and C. Qiao, “Cooperative search and survey using autonomous underwater vehicles (AUVs),” IEEE
Transactions on Parallel and Distributed Systems, vol. 22, no. 3, pp. 364–379, 2011.

[15] S. Uttendorf, B. Eilert and L. Overmeyer, “Combining a fuzzy inference system with an A* algorithm for the
automated generation of roadmaps for automated guided vehicles. At-Automatisierungstechnik, vol. 65, no. 3,
pp. 189–197, 2017.

IASC, 2021, vol.27, no.2 563



[16] R. Zlot and A. Stentz, “Market-based multirobot coordination for complex tasks,” International Journal of
Robotics Research, vol. 25, no. 1, pp. 73–101, 2016.

[17] E. Ferranti and N. Trigoni, “Practical issues in deploying mobile agents to explore a sensor-instrumented
environment,” Computer Journal, vol. 54, no. 3, pp. 309–320, 2011.

[18] Y. F. Cai and S. X. Yang, “An improved PSO-based approach with dynamic parameter tuning for cooperative
multi-robot target searching in complex unknown environments,” International Journal of Control, vol. 86,
no. 10, pp. 1720–1732, 2013.

[19] A. B. Hashemi and M. R. Meybodi, “A note on the learning automata based algorithms for adaptive parameter
selection in PSO,” Applied Soft Computing Journal, vol. 11, no. 1, pp. 689–705, 2011.

[20] J. Kim and M. Jin, “Synchronization of chaotic systems using particle swarm optimization and time-delay
estimation,” Nonlinear Dynamics, vol. 86, no. 3, pp. 2003–2015, 2016.

[21] X. Cao and D. Q. Zhu, “Multi-AUV underwater cooperative search algorithm based on biological inspired
neurodynamics model and velocity synthesis,” Journal of Navigation, vol. 68, no. 6, pp. 1075–1087, 2015.

[22] X. Cao, H. Sun and G. E. Jan, “Multi-AUV cooperative target search and tracking in unknown underwater
environment,” Ocean Engineering, vol. 150, pp. 1–11, 2018.

[23] H. Ögmen and S. Gagné, “Neural network architectures for motion perception and elementary motion detection in
the fly visual system,” Neural Networks, vol. 3, no. 5, pp. 487–505, 1990.

[24] C. M. Luo and S. X. Yang, “A bioinspired neural network for real-time concurrent map building and complete
coverage robot navigation in unknown environments,” IEEE Transactions on Neural Networks, vol. 19, no. 7,
pp. 1279–1298, 2008.

[25] M. A. Haque, A. R. Rahmani and M. B. Egerstedt, “Biologically inspired confinement of multi-robot systems,”
International Journal of Bio-Inspired Computation, vol. 3, no. 4, pp. 213–224, 2011.

[26] X. Cao, D. Q. Zhu and S. X. Yang, “Multi-AUV cooperative target search based on biological inspired
neurodynamics model in three-dimensional underwater environments,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 27, no. 11, pp. 2364–2374, 2016.

[27] Xia M., Zhang C., Weng L., Liu J., Wang Y., Tiwari S., Trivedi M. and Kohle M. L., “Robot path planning based
on multi-objective optimization with local search,” Journal of Intelligent & Fuzzy Systems, vol. 35, no. 2, pp.
1755–1764, 2018.

[28] M. Elhoseny, A. Shehab and X. H. Yuan, “Optimizing robot path in dynamic environments using Genetic
Algorithm and Bezier Curve,” Journal of Intelligent & Fuzzy Systems, vol. 33, no. 4, pp. 2305–2316, 2017.

[29] B. Sun, D. Q. Zhu and S. X. Yang, “An optimized fuzzy control algorithm for three-dimensional AUV path
planning,” International Journal of Fuzzy Systems, vol. 20, no. 2, pp. 597–610, 2018.

[30] T. Y. Abdalla, A. A. Abed and A. A. Ahmed, “Mobile robot navigation using PSO-optimized fuzzy artificial
potential field with fuzzy control,” Journal of Intelligent & Fuzzy Systems, vol. 32, no. 6, pp. 3893–3908, 2017.

564 IASC, 2021, vol.27, no.2


	A Fuzzy-Based Bio-Inspired Neural Network Approach for Target Search by Multiple Autonomous Underwater Vehicles in Underwater Environments ...
	Introduction
	Proposed Approach
	Simulation Studies
	Experiment
	Citations
	References


