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Abstract: Service pricing is a bottleneck in the development of innovation ser-
vices, as it is the issue of most concern to the suppliers and demanders. In this
paper, a negotiated pricing model that is based on the multiobjective genetic algo-
rithm is developed for innovation services. Regarding the process of service pri-
cing as a multiobjective problem, the objective functions which include the
service price, service efficiency, and service quality for the suppliers and the
demanders are constructed. Because the solution of a multiobjective problem is
typically a series of alternatives, an additional negotiation process is necessary
in determining the final decision. A learning strategy is adopted during the nego-
tiation process to simulate reality. Finally, the model is implemented in an inno-
vation service transaction, the objective of which is to select the optimal price
plan. The results demonstrate that the model is able to provide quantitative deci-
sion support for the pricing of an innovation service with a win-win result
obtained. Furthermore, the influence of the parameters during the negotiation pro-
cess is analyzed in detail. The effects of the learning strategy in accelerating the
negotiation process and the set of reasonable parameters are discussed.

Keywords: Innovation service; negotiated pricing model; multiobjective problem;
genetic algorithm; learning strategy

1 Introduction

A ‘three-step’ strategy is proposed by the Chinese government in the ‘Outline of the National Strategy of
Innovation-Driven Development’ [1]. According to this strategy, China will become an innovative country
by 2020, a forefront of innovation-oriented country by 2030, and world’s top scientific and technological
innovation powerhouse by 2050. To realize these objectives, industries with enormous innovation vitality
were incorporated into China’s strategic emerging industries which is the key point to realize the strategic
deployment of driving industrial innovation [2,3].

With the innovation-driven development strategy, innovation services emerge. Innovation services are
the services provided for innovative activities, such as research and development (R&D) services,
intellectual property services, and advanced technology services, etc. The principals of innovation
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services include scientific and technological intermediaries [4,5], service platforms for innovation [6], resource
sharing platforms for science and technology [7], and knowledge-service intermediaries [8], among others. The
advantages of resource and service are combined among these subjects to provide proper service support for
industrial innovation in order to effectively increase the industrial innovation efficiency.

The premise for an innovation service to achieve value is that it is adopted by innovation enterprises [9].
Typically, the price of an innovation service is the main factor that determines its successful adoption by
innovation enterprises. So the pricing of innovation services is the key to the transaction of innovation
services and will affect the overall development of innovation services. Therefore, the reasonable pricing
of innovation services and the maximization of the benefits of both the suppliers and the demanders of
innovation services have become urgent problems to be solved.

In previous studies, the pricing of services mostly refers to the pricing method of commodities in which
the prices are determined based on the supply-demand relationship [10] and the service cost. Kung et al.
attempted to determine service prices using game theory [11]. Li et al. provided a pricing framework for
big data services which was based on the comprehensive service quality, service time, and matching
degree of supply and demand [12]. With the development of blockchain technology, researchers began to
use it to mediate the pricing of services [13]. However, the service pricing methods in these studies are
set by the suppliers. Due to the frequent interaction between the suppliers and the demanders in
innovation services, the demanders also play an important role in the price-setting process; hence, the
application of the above simple methods to adapt to the particularity of innovation services is difficult.

In this study, the process of innovation services pricing is regarded as the process of value co-creation
between the suppliers and the demanders [14]. The price of an innovation service is reasonable if the supplier
and demander achieve win-win. Therefore, the utilities of the supplier and demander can be regarded as
objective functions, and the pricing of innovation services is essentially a multiobjective decision-making
problem. However, the solution of a multiobjective problem is usually a series of alternatives and another
process is necessary to make the final decision.

In this paper, Non-dominated Sorting Genetic Algorithm-II (NSGA-II) algorithm is utilized to solve the
multiobjective problem to obtain the Pareto front (the above mentioned ‘series of alternatives’). A
negotiation process is performed on the Pareto front to make the final decision. A learning strategy is
adopted during the negotiation process to simulate reality. The remainder of this paper is structured as
follows: The process of innovation services pricing is analyzed theoretically in Section 2, with a model
for innovation services pricing exhibited. Section 3 presents the algorithm of the model in detail. In
Section 4, an implementation of the model is described. The influence of the parameters during the
negotiation process is discussed in Section 5. The conclusions are drawn in Section 6.

2 Theoretical Analysis & Modeling

In this section, the problem of innovation service pricing is analyzed theoretically. Three hypotheses are
formulated, based on which the model is constructed.

A practical service pricing process typically involves more than one demander and supplier. However,
multiple demanders and suppliers can be regarded as the superposition of single demander and supplier.
Therefore, hypothesis 1 is raised:

Hypothesis 1: The number of demanders and the number of suppliers in a service are both 1. The
demander and the supplier are denoted as D and S, respectively.

In a practical service pricing process, the price of the service is generally the main concern of the
demander and supplier. While the quality and efficiency of the service will also affect the price
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acceptance. Usually, both the supplier and the demander have corresponding acceptance ranges for each
attribute. Therefore, hypothesis 2 is raised:

Hypothesis 2: The set of service attributes is denoted as � ¼ �1; �2; �3f g which includes the
service price, service efficiency, and service quality. fj stands for the value of �j j 2 1 2 3ð Þð Þ. The
acceptable ranges for the demander D and for the supplier S on �j are denoted by fD

min
j ; fD

max
j

h i
and

fS
min
j ; fS

max
j

h i
, respectively.

The importance of each attribute of the service varies from the demander to the supplier. The weight
coefficient of each attribute must be considered. Therefore, hypothesis 3 is raised:

Hypothesis 3: The demander and the supplier specify the set of weight coefficients for each attribute
according to their own actual situation. The sets of weight coefficients are denoted as
�D ¼ xD

1 ; xD
2 ; xD

3

� �
for the demander and �S ¼ xS

1 ; xS
2; xS

3

� �
for the supplier, which satisfy

X3
j¼1

xD
j ¼

X3
j¼1

xS
j ¼ 1 (1)

With these hypotheses, a model for innovation service pricing can be developed. The model is composed
of four steps (Fig. 1), which are described as follows:

Step 1: Set the initial parameters of the supplier and the demander. The parameters include the

acceptable ranges fD
min
j ; fD

max
j

h i
and fS

min
j ; fS

max
j

h i
j 2 1 2 3ð Þð Þ, and the corresponding sets of

weight coefficients �D and �S .

Step 2: Construct the objective functions of the supplier and the demander, which are denoted as FDð�Þ
and FSð�Þ, respectively.

Step 3: Find the solution of the multiobjective optimization problems (i.e., Pareto front).

Step 4: Obtain the final decision fj j 2 1 2 3ð Þð Þ on the Pareto front with the chosen strategy
for negotiation.

Set
initial parameters 

Construct
objective functions

Get
Pareto front

Obtain 
final decision

Choose
negotiation strategy

Figure 1: Flowchart of the innovation service pricing model

IASC, 2021, vol.27, no.1 193



3 Algorithm Design

3.1 Objective Functions Construction

The benefit is usually the primary objective of both the supplier and the demander. In this model, the
overall benefit is assumed to be the sum of the benefits that are received from the service price, service
efficiency, and service quality. Furthermore, it is assumed that there is no overlap between the benefits of
the three parts, namely, the benefits can be linearly superimposed. Based on the comprehensive benefit
calculation formula proposed by Raiffa [15], the benefit functions (i.e., objective funtions) for the supplier
and the demander are:

FDð�Þ ¼
X3
j¼1

xD
j v

D
j ðfjÞ (2a)

FSð�Þ ¼
X3
j¼1

xS
j v

S
j ðfjÞ (2b)

where vDj and vSj are the contributions of the attribute j to the demander and the supplier, respectively. The
computing method for vDj and vSj is defined as follows:

vj ¼

fmax
j � fj

fmax
j � fmin

j

For0Cost0

fj � fmin
j

fmax
j � fmin

j

For0Benefit0

8>>>><
>>>>:

(3)

in which ‘cost’ and ‘benefit’ are tags attached to the attributes. The tag of an attribute indicates whether the
increase in the attribute will cause an increase in the cost or benefit. Each attribute could have different tags
for the demander and the supplier, as presented in Tab. 1.

To maximize the benefits of both the supplier and the demander with the acceptable ranges of the
attributes as constraints, the following multiobjective problem is formulated:

maxFð�Þ ¼
X3
j¼1

xD
j v

D
j ðfjÞ;

X3
j¼1

xS
j v

S
j ðfjÞ

" #
(4)

subject to

fD
min
j � fj � fD

max
j j ¼ 1; 2; 3

fS
min
j � fj � fS

max
j j ¼ 1; 2; 3

(5)

Table 1: Tags of each attribute for the demander and the supplier

Demander Supplier

Service price Cost Benefit

Service efficiency Benefit Cost

Service quality Benefit Cost
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3.2 Obtainment of the Pareto Front

The multiobjective optimization problem defined by Eqs. (4) and (5) can be solved with genetic
algorithm [16,17], ant colony algorithm [18], particle swarm optimization algorithm [19] or simulated
annealing algorithm [20]. In this paper, one of the most widely employed multiobjective optimization
methods NSGA-II is utilized to obtain the set of noninferior solution of the problem.

NSGA-II is a multiobjective optimization method that is based on the genetic algorithm. The basic
process of NSGA-II is illustrated in Fig. 2. Detailed information about the method is provided in [21,22].

With the NSGA-II algorithm, the Pareto front of the above multiobjective problem is obtained. The
Pareto front is composed of a series of points, with each point contains a possible combination of
attributes O ¼ O1; O2; O3f g and the corresponding combination of utilities for the supplier and the
demander U ¼ US; UDf g.

3.3 Negotiation on the Pareto Front

A series of alternatives (Pareto front) are obtained with NSGA-II in Section 3.2. In this section, a
negotiation is conducted to make the final decision. The classic negotiation strategy proposed by Faratin
[23] is adopted in combination with a learning strategy to complete the negotiation process.

In Faratin’s method, the supplier and the demander reached an agreement with a process of initial
expectations and gradual concessions. For each negotiation, the expected utility EU(t) is

 

Generate Initial Population 

Evaluate Individuals

Merge Parent and 
Progeny Population

Start

Gen 1?

No

Yes

Nondominated Sorting

Calculate Crowding 
Distance

Selection

Crossover & Mutation

Temination?

Stop
Yes

No

Figure 2: Flowchart of NSGA-II algorithm
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EUðtÞ ¼ max�aðtÞðmax�minÞ (6)

where t is the number of negotiations; max and min are the maximum and minimum values of the acceptable
utilities for the supplier or the demander, respectively; aðtÞ is the concession coefficient, which has the
following form:

aðtÞ ¼ e
1�

minðt; tmaxÞ
tmax

� �b

ln j

(7)

in which tmax is the maximum number of negotiations; j is the initial concession coefficient, which
corresponds to the initial value of aðtÞ; b is the parameter of concession speed control, according to
which the degree of aggressiveness of the negotiation strategy adopted by both sides is determined. The
value of a tð Þ as a function of t is illustrated in Fig. 3 for different b values.

The learning strategy attempts to automatically adjust the value of b according to the concession of the
opposite side [24]. The method was demonstrated to accelerate and increase the robustness of the negotiation
process. Take the supplier as an example, Ut

D!S � Ut�1
D!S is the difference between the utilities of the last two

proposals, where Ut
D!S represents the supplier’s utility with the demander’s bid. Define the concession rate h

as the ratio of the differences:

h ¼ ðUt
D!S � Ut�1

D!SÞ=ðUt�1
D!S � Ut�2

D!SÞ (8)

Now, we discuss the automatic adjustment of the value of b. With the definition of h given by Eq. (8), if
h. 1, the concession of the demander is gradually increasing with t. The supplier should reduce its
concession to avoid unnecessary excess concession and increase its final utility. If h ¼ 1, the demander is
making steady concession. Therefore, the supplier should keep a constant value of b and also make
steady concession. If h, 1, the demander is reducing its concession. So the supplier should make larger
concession to approach the demander’s expected bid in order to increase the success rate of the
negotiation. After a series of tests, the value of b ¼ 1=h is adopted due to its simplicity and effectiveness.

The negotiation is conducted on the Pareto front obtained with NSGA-II. The supplier and the demander
compare their actual and expected utilities and negotiate until an agreement is reached. The process is
described as follows with a flowchart illustrated in Fig. 4:

max/ tt

tα

0

1

1

1=β

1β

1β

Figure 3: a tð Þ as a function of t for different b values (j ¼ 0:2)
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Step 1: Based on the Pareto front, the supplier bids on its highest utility. The utility of the supplier is
defined as Ut

S and the corresponding combination of bidding attributes is Ot. Proceed to Step 2.

Step 2: After receiving a bid from the supplier, the demander obtains its utility Ut
D on the Pareto front.

The demander compares Ut
D with EUt

D which can be computed with the concession function Eq. (6). If
EUt

D .Ut
D, then proceed to Step 3; otherwise (i.e., Ut

D.EUt
D), proceed to Step 6 directly.

Step 3: The demander rejects the bid of the supplier as it does not meet the demander’s expectation.
Based on EUt

D, the demander finds the utility Utþ1
D which is closest to EUt

D on the Pareto front and
provides the corresponding Otþ1 as the bid. Proceed to Step 4.

Step 4: The supplier receives the new bid and obtain the corresponding utility Utþ1
S . Similar to Step 2,

the supplier compares Utþ1
S with EUtþ1

S which can be computed with the concession function Eq. (6). If
EUtþ1

S .Utþ1
S , then proceed to Step 5; otherwise (i.e., Utþ1

S .EUtþ1
S ), proceed to Step 6 directly.

Step 5: The supplier rejects the bid of the demander as it does not meet the supplier’s expectation. Based
on EUtþ1

S , the supplier finds the utility Utþ2
S which is closest to EUtþ1

S on the Pareto front and provides the
corresponding Otþ2 as the bid. Return to Step 2.

Step 6: The bid meets the supplier’s and demander’s expectations. An agreement is reached and the
negotiation is terminated.

4 Model Implementation

In this section, the developed model is implemented in a service pricing problem. To evaluate the price
of a R & D service, an innovation service platform selects one each representative company from potential
suppliers and demanders, which are denoted as S and D, respectively. The platform collects the weight
coefficients and acceptable ranges for the service price, service efficiency and service quality of S and D.
Relevant parameters for the supplier and the demander in the R & D service pricing problem are
presented in Tab. 2.

t
SU tO

t
DU t

DEU

1+t
DU 1+tO

1+t
SU 1+t

SEU2+t
SU 2+tO

Agreement reached/
     Negotiation  stopped

11  if ++ < t
S

t
S EUU

t
D

t
D EUU ≥  if

11  if ++ ≥ t
S

t
S EUU

t
D

t
D EUU <  if

Next negotiation

Figure 4: Flowchart of the negotiation process

Table 2: Parameters for the supplier and demander in the R & D service pricing problem

Attributes R & D service demander D R & D service supplier S

Weight coefficients Acceptable intervals Weight coefficients Acceptable intervals

Service price 0.5 [6,10] 0.7 [8,10]

Service efficiency 0.2 [2,6] 0.1 [1,5]

Service quality 0.3 [4,6] 0.2 [3,6]
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According to Eq. (3), the utilities of each attribute for S and D are calculated as follows:

vD1 ¼ fD
max
1 � f1

fD
max
1 � fD

min
1

¼ 10� f1

10� 6
¼ 10� f1

4

vD2 ¼ f2 � fD
min
2

fD
max
2 � fD

min
2

¼ f2 � 2

6� 2
¼ f2 � 2

4

vD3 ¼ f3 � fD
min
3

fD
max
3 � fD

min
3

¼ f3 � 4

6� 4
¼ f3 � 4

2

vS1 ¼ f1 � fS
min
1

fS
max
1 � fS

min
1

¼ f1 � 8

10� 8
¼ f1 � 8

2

vS2 ¼ fS
max
2 � f2

fS
max
2 � fS

min
2

¼ 5� f2

5� 1
¼ 5� f2

4

vS3 ¼ fS
max
3 � f3

fS
max
3 � fS

min
3

¼ 6� f3

6� 3
¼ 6� f3

3

According to Eqs. (4) and (5), the following objective functions and corresponding constraints can be
obtained:

maxFDð�Þ ¼ 0:5 � 10� f1

4
þ 0:2 � f2 � 2

4
þ 0:3 � f3 � 4

2
(9)

maxFSð�Þ ¼ 0:7 � f1 � 8

2
þ 0:1 � 5� f2

4
þ 0:2 � 6� f3

3
(10)

subject to

Supplier
8 � f1 � 10
2 � f2 � 5
4 � f3 � 6

8<
:

Demander
8 � f1 � 10
2 � f2 � 5
4 � f3 � 6

8<
:

(11)

NSGA-II is utilized to solve this multiobjective optimization problem. The relevant parameter settings of
NSGA-II are given in Tab. 3. The Pareto front is obtained, as shown in Fig. 5.

Table 3: Parameter settings of NSGA-II

Parameter Value

Pareto Fraction 0.6

Population Size 1000

Generations 2000

Stall GenLimit 2000

TolFun 1e-100

198 IASC, 2021, vol.27, no.1



Based on the Pareto front, S and D negotiate on service prices, service quality, and service efficiency.
The actual and expected utilities of S and D change with the number of negotiations are shown in Fig. 6.

As shown in Fig. 6, the actual utilities reached the expected utility at the 15th negotiation, which means
that an agreement is reached. The final bid for the 15th negotiation is 8.4228; therefore, the final price of the
R & D service is 8.4228.

5 Discussion on Negotiation Process

The learning strategy and some user-defined parameters are adopted during the negotiation process,
while the influence of them has not been fully discussed. The objective of this section is to discuss the
influence of learning strategy and the user-defined parameters in detail. The results of the problem in
Section 4 is considered as the basis, which means that the Pareto front is kept same as above for all the
following discussions.

Figure 5: Pareto front for the problem

Figure 6: Actual and expected utilities of S and D as functions of the number of negotiations
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5.1 Learning Strategy

First, we investigate the influence of the learning strategy. For simplicity, the control parameters
including initial concession parameter j and concession speed control parameter b are the same as
section 4. The learning strategy is simply turned off or not during the simulation for comparison. The
results of the negotiation process are shown in Fig. 7. The number of negotiations for with and without
the learning strategy are 15 and 60, respectively. The final results are the same for the two cases.
Therefore, the negotiation process is greatly accelerated with the learning strategy with nearly no change
on the final results.

5.2 Initial Concession Parameter j and Concession Speed Control Parameter b

The initial concession parameter j and concession speed control parameter b are two important
parameters during the negotiation process. To analyze them in detail, j ranging from 0.1 to 1.0 and b
ranging from 0.2 to 1.8 are considered. The interval of value range for j and b are 0.1 and 0.2,
respectively. The tmax in Eq. (6) is set 100 for all the simulations, which is reasonable for reality.

The results of iteration number and the utilities of the demander and the supplier for various
combinations of j; bð Þ are given in Tab. 4. It is not hard to find that a larger initial concession parameter
j and concession speed control parameter b will lead to a smaller iteration number. It is noted that when
the value of j is larger than 0.6, program will crash. However, the accuracy of the results is necessary to
be checked. Here the results with very large tmax (here we use tmax ¼ 10000) and very small j and b
(j ¼ 0:05 and b ¼ 0:05) as the reference results. The utilities of the demander and the supplier are
0.221799 and 0.288188, respectively. The following equation is adopted to compute the relative error

Relative Error ¼ De:� De:refj j
De:ref

þ Su:� Su:refj j
Su:ref

(12)

Here De. and Se. indicate the utilities of the demander and the supplier, respectively. Subscript refmeans
the reference values.

The relative errors of the utilities are illustrated in Fig. 8. To be clear, both three-dimensional and two-
dimensional results are shown. For the combination of small j and b, relative error could be very large, up to
100%. With the increase of j and b, the error decrease gradually. Less than 5% error is observed when j and

0 20 40 60 80
0.1

0.2
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0.4

0.5

0.6

U
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 UD
t-without LS

 EUS
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t-without LS

 EUD
t-with LS

 UD
t-with LS

 EUS
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Figure 7: Utilities of the supplier S and the demander D as functions of the number of negotiations with or
without the learning strategy (LS is short for learning strategy)
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b is large enough. Recall the results in Tab. 4, it seems that larger values of j and b usually behave better.
However, it should be remembered that very large jmay lead to a crash of the program, as mentioned before.

Table 4: The results of iteration number (Ite Num.), and the utilities of the demander (De.) and the supplier
(Su.) for various combinations of j;bð Þ
β
κ

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

0.1 Ite Num. 100 100 97 91 85 79 74 69 65

De. 0.1295 0.2255 0.2217 0.2255 0.2247 0.2232 0.2209 0.2247 0.2211

Su. 0.1249 0.2003 0.2881 0.2714 0.2740 0.2714 0.2809 0.2757 0.2843

0.2 Ite Num. 100 99 93 85 78 72 66 61 57

De. 0.1716 0.2188 0.2278 0.2247 0.2247 0.2255 0.2211 0.2247 0.2217

Su. 0.1680 0.2687 0.2573 0.2757 0.2809 0.2687 0.2843 0.2809 0.2863

0.3 Ite Num. 100 96 87 78 70 63 58 53 49

De. 0.2015 0.2261 0.2209 0.2211 0.2211 0.2232 0.2217 0.2211 0.2211

Su. 0.2003 0.2757 0.2809 0.2843 0.2843 0.2779 0.2881 0.2843 0.2843

0.4 Ite Num. 100 91 79 68 60 54 48 44 40

De. 0.2255 0.2255 0.2247 0.2225 0.2232 0.2247 0.2232 0.2211 0.2232

Su. 0.2392 0.2726 0.2779 0.2809 0.2843 0.2779 0.2809 0.2863 0.2809

0.5 Ite Num. 97 79 65 54 47 41 37 33 30

De. 0.2255 0.2225 0.2217 0.2225 0.2217 0.2217 0.2247 0.2217 0.2211

Su. 0.2687 0.2843 0.2881 0.2843 0.2881 0.2863 0.2809 0.2863 0.2843

0.6 Ite Num. 79 54 41 32 27 23 21 19 17

De. 0.2225 0.2225 0.2232 0.2225 0.2217 0.2225 0.2232 0.2247 0.2217

Su. 0.2843 0.2843 0.2843 0.2843 0.2863 0.2843 0.2809 0.2809 0.2881

Figure 8: Relative error of the utilities in (a) three-dimensional; and (b) two-dimensional
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6 Conclusions

An pricing model for innovation services that is based on the combination of the genetic algorithm and
negotiation is developed in this paper. Based on three hypotheses, the model is analyzed and interpreted in
detail. The model utilizes the benefit functions of commonly considered parameters of the service supplier
and demander as the objective functions, obtains the Pareto front with NSGA-II, and adopts a learning
strategy as the negotiation strategy. The model is utilized to study the pricing process of a R & D service,
and the optimal price is successfully obtained. Therefore, the reliability of the model is demonstrated.

A detailed discussion on the influence of the learning strategy and the user-defined parameters during the
negotiation process are performed based on the selected implementation. It is observed that the learning
strategy greatly accelerates the negotiation process with nearly no influence on the final results. In
addition, a larger initial concession parameter j and concession speed control parameter b will lead to a
smaller iteration number with acceptable accuracy obtained. While the initial concession parameter j
should not be too large, otherwise the program will crash.

However, the model has various shortcomings. For example, the negotiation process is only affected by
the behavior of the negotiating counterparty, and the influence of the market supply-demand environment is
not considered. This shortcoming will be resolved in the future so that the pricing model can better adapt to
the development of innovation services.
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