
Feature Point Detection for Repacked Android Apps

M. A. Rahim Khan* and Manoj Kumar Jain

Department of Computer Science and Engineering, Lingaya’s Vidyapeeth, Faridabad, 121002, India
�Corresponding Author: M. A. Rahim Khan. Email: khan_rahim@rediffmail.com

Received: 24 August 2020; Accepted: 16 October 2020

Abstract: Repacked mobile applications and obfuscation attacks constitute a sig-
nificant threat to the Android technological ecosystem. A novel method using the
Constant Key Point Selection and Limited Binary Pattern Feature (CKPS: LBP)
extraction-based Hashing has been proposed to identify repacked Android appli-
cations in previous works. Although the approach was efficient in detecting the
repacked Android apps, it was not suitable for detecting obfuscation attacks.
Additionally, the time complexity needed improvement. This paper presents an
optimization technique using Scalable Bivariant Feature Transformation extract
optimum feature-points extraction, and the Harris method applied for optimized
image hashing. The experiments produced better results than the CKPS: LBP
method in terms of execution time. Further, the proposed method is extended
to detect obfuscation of malware attacks by detecting the packed executables,
which is the initial step in obfuscation attack detection.

Keywords: Repacked malware; phishing; key-point selection; hashing; Harris
method; collision factor

1 Introduction

Malicious code writers typically do not want their code to be analyzed by any obfuscation method. The
code writers are becoming familiar with the code alteration methods, such as packing and other encryptions,
and other techniques that prevent their system from being re-engineered to conceal the malware. Most of the
obfuscation methods are using a signature-based approach for the detection of malwares. Hence, the coders
have learned that hash evaded using the packing technique for payload the malwares in the compressing layer
[1]. The existing familiar methods have widely adopted many static and dynamic methods for recovering the
payloads in a packed code, but they are not usually as effective as expected [2]. If the given malware is either
packed or encrypted, it is a challenging task to analyze them. Hence, to prevent distracts and generate
signatures that detect malwares, the packed code and other executables should be unpacked first.

As there is a significant race between malware writers and anti-malware vendors, the complicated code
obfuscation is generally implemented into mobile malwares. The executables undergo techniques, such as
polymorphism, packing, and other encryption techniques to prevent the anti-malware from detecting these
malwares. Conventional methods are signature-based, need regular updates of the database, and malware
detection is purely dependent on the existing known malware database and packed malwares [3]. Among

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Intelligent Automation & Soft Computing
DOI:10.32604/iasc.2020.013849

Article

echT PressScience

http://dx.doi.org/10.32604/iasc.2020.013849
http://dx.doi.org/10.32604/iasc.2020.013849

the available methods, executables’ packing is very common, as many open source packers are available in
the market. Over 90% of the mobile malwares are known to use packing methods. Moreover, there is clear
evidence that one-half of the newly identified malwares are simply repacked variations of existing malwares.
Even though executables’ packing is very popular in writing malware, it is also found to be applied in the
encryption of original executables. Genuine software developers use the packing method to make the
resultant *.exe files smaller in size, in terms of a few bytes, enabling faster distribution over the network.
The packing technique makes reverse engineering more complicated and, hence, forces hackers to crack
the license. Given this fact, there are many packing tools available in the marketplace, which have been
developed to protect genuine apps from pirated [4]. The unpacking process’s essential step is to identify
the *.exe files that are generally called “executables.” These methods always use intelligent techniques or
rely on databases. There are a couple of significant issues associated that need to be noted. First, mass
malicious codes and genuine codes are too complicated to be collected to form a substantial database.
Second, the classification takes a significant amount of time to become trained and classified, regardless
of whether the app is genuinely packed or malware. As these classifications are based on the existing
database, detecting new malwares is difficult [5]. The vital thing to be done here is first to identify the
packed and un-packed apps separately.

Also, considering the drawbacks of the time complexity in the CKPS: LBP, and as a way of extending
the method for detection of obfuscation attacks, this paper proposes an optimization technique using Scalable
Invariant Feature Transformation for the extraction of optimum feature points extraction and the Harris
method to optimize image hashing. The local feature points of the image are obtained in an optimal way
using the SIFT method, and the usage of the Harris technique reduces the Hamming distances between
the layout hashes. The rest of the manuscript is organized in the following manner. Section 2 briefly
discusses some of the critical literature in the related domain, Section 3 elaborates on the proposed
methodology, and Section 4 describes the implementation. Section 5 discusses the results in detail, and
finally, the paper is concluded with the scope for future research.

2 Related Works

Many of the anti-obfuscation methods are classified into signature-based and Heuristic-based
techniques. In [6], a detailed survey on the taxonomy of the present works proposed to secure the
Android devices is intended. Based on the different stages of the deployment, the authors claim that these
taxonomies help identify the common objective among the methods and identify many crucial
differences. The essential limitations in the existing literature and the present challenges are also
presented. Exeinfo [7] was introduced for the detection of packed executables, and the information on the
header is extracted. It displays the entry point, offsets of the files, information about the compilers, and
unpacks of input information. In [8], a procedure for the systemization of the anti-malware applications is
proposed. A lack of openness in the existing methods was identified, and in order to resolve this issue, an
effective method was proposed to detect the code obfuscation attacks. The proposed method was found to
be effective for the anti-virus developers to test the resilience of products from a large volume of
malwares and focus on the improvements to perform well against the code-transforming attacks. A multi-
dimensional hybrid-features extraction [9] was developed to detect the Android malwares, which is based
on extracting the numbers of API calls, behaviors of the running condition, and obtaining permissions.
This approach combines three hybrid vectors by using machine learning classification algorithms. The
hybrid-features extraction approach increased a more significant number of vector scales to detect the
malwares but could not detect the obfuscation attacks.

In [10], PEiD tools are introduced where the signature-based packing is commonly used. It is designed
for the detection of over 500 different kinds of signatures in packed executables. It is unique when compared

1360 IASC, 2020, vol.26, no.6

with that of the other signature-based methods. The rate of detection was found to be excellent among the
other standard identifiers. In [11], a scheme is proposed that can quantitatively monitor the level at which
the obfuscation is hidden in an Android application based on Machine Learning. The authors have used
the statistical analysis of the DEX file that is obtained from the Dalvik platform. Another android
malware obfuscator (AAMO) classification was used to classify the APIs. The experiments were
conducted on the applications selected from Google Play. The results proved the proposed method to be
efficient, and it served the purpose of evaluating the obfuscation level without depending on tools. In
[12], researchers proposed an approach to protect Android applications from static reverse engineering
using Multidex. APK has a DEX file, which uses encryption and adds Stub DEX to protect the apps from
reverse engineering (repackaging techniques), and instead, keeps actual classes .dex files; a Dalvik
executable file that all Android applications have. Whenever the user starts the application, stub DEX
dynamically decrypts the application to verify the integrity of APK. In [13], Hump-and-Dump was
discussed, where it follows a different kind of approach from the other literature because it uses pre-
defined characteristics of the unpacking by counting the number of loops used in the process of
unpacking. When the number of loops is higher than the threshold, and when no larger loops are being
used for the threshold period, the loop address is caught and recorded.

In [14], RomaDroid was presented to effectively detect the cloned apps based on the features inherited
from other applications. The authors proposed that the app’s manifest could be represented as an XML file in
a tree-based structure, which can withstand code obfuscation attacks. A string of all the manifest XML files is
then compared, between the genuine and repacked apps, using the longest common subsequence (LCS)
similarity method. The experiments were performed for both the obfuscated and their clones, using three
tools. The results proved that RomaDriod could accurately detect cloned apps, even when code
obfuscation has been applied. In [15], eight different methods were presented for detecting the repacked
Android apps inside the images. The authors have presented a technique to store images that have
malicious content in other apps’ resources. After this process, the evaluation of the vulnerability of 10 of
the famous Android malwares was done. The results seemed alarming as only one among them could
detect the concealment methods in which the obfuscation attack happened. In [16], a framework was
proposed for the efficient and dynamic analysis named “EnDroid,” to bring out highly précised malware
detection based on the multiple kinds of feature behaviors. The features cover the complete system-level
traces and some common malicious trends, such as stealing information, subscribing to premium services,
etc. The proposed EnDroid uses a novel algorithm for selecting the features for removing noise and other
features that are not relevant. The EnDroid was efficient enough to differentiate between genuine and
malicious applications. The proposed method also achieved more classification accuracy by using a
stacking algorithm for Android malware identification. In [17], AlDroid was introduced for increasing the
detection time and accuracy of the code obfuscation attacks. The proposed method used active learning to
select only the new and informative apps and, thus, reduced labeling overhead and ensured the systematic
and practical process of obfuscation attack detection. The experimental results indicate that the proposed
active learning methodology outperforms other solutions provided in the literature, which were heuristic-
based. The proposed method also produced high true-positive rates and low false-positive rates.

In [18], a new paradigm called the RIDG (reductive instructions dependent graphs) was proposed to be
independent of the platform and stable with all obfuscation attacks. The authors have also introduced a four-
tier schema based on RIDG for identifying the similarity between a repacked app and an original app. The
experiments were carried out with 100 different apps, the anti-obfuscation attack was evaluated, and the
proposed framework showed 98% accuracy.

IASC, 2020, vol.26, no.6 1361

3 Proposed Methodology

The proposed methodology is shown in Fig. 1 for detecting repackaged Android apps. Feature points are
the local patterns of the image that differs from the intermediate neighbors as per some predefined characters,
such as the corners, blobs, and salient points. The local features are then extracted, the feature points are
identified through the wavelet similarity, and the hashes are generated through the adaptive methods that
are based on the probability of the feature distribution. This method aims to solve some issues, the first,
as the feature points detection are very critical in the image hashing for extracting optimized features, The
Scale Bivariant Feature Transformation is proposed for the detection of optimized feature points, which
could reduce the time complexity, and the introduction of Harris method, which ensures the selection of
stable key feature points, which are less exposed to obfuscation attacks.

3.1 Optimized Local Feature Points

The local features include the parameters, such as the blob and the corners, widely used in detecting
manipulations and detecting manipulations and retrieval. There are many advantages to using the local
features, as the invariances are kept under the geometric transformations [19]. However, the optimization
issues against classical attacks, specifically noising and blurring, are limited. The scalable invariant
feature transform (SIFT) was relatively optimal among the different local feature detection techniques.
Here, the scalable bivariant feature transformation (SBFT) was introduced to consider the tradeoffs
between the optimization, distinctiveness, and efficiency. In the proposed methodology, SBFT is
presented along with the Harris method for improving optimization against obfuscation attacks through
robust image processing. The optimum features extracted are then used for the process of generating hashes.

3.2 Scalable Bi-Variant Feature Transformation

The proposed SBFT is primarily comprised of three levels, namely:

1. Scale-bivariant point detections,

2. Localization and orientation and,

3. Assignment and descriptors.

PACKED

Layout Images

SBFT

Orientation Assignment

Layout Descriptor

Point Detection and
Localization Harris optimized

feature selection

Complexity Analysis

Key Point EvaluationSIMILAR
APP

IMAGE HASHApp
repository

YES

Not Packed

NO

Figure 1: Proposed methodology

1362 IASC, 2020, vol.26, no.6

3.2.1 Scale Bivariant Point Identification and Localization
The local feature points are detected as candidates of the scale bivariant through the process of searching

the extremes locally as a series of differences in the Gaussian DoGs of the given images in the given space of
scaling. The construction of the DoG is performed as follows:

Image I x; yð Þ is initially convolved as a series in the Gaussian kernel represented as G x; yð Þ that are
incremented continuously.

L x; y; gð Þ ¼ G x; y; að Þ � i x; yð Þ (1)

The two-dimensional Gaussian function is given as:

G x; y; að Þ ¼ 1

2pa2
e�

x2þy2ð Þ
2a2 (2)

Then, a DoG is produced considering the Gaussian values and the nearby scales of g:

D x; y; að Þ ¼ L x; y; kað Þ � L x; y; að Þ (3)

Given the series of DoGs, the local maxima and minima are then detected as a candidate of all the
keypoints in comparison with every pixel to all its neighbors in different regions in the current and
adjustable scales. The final location points are then localized to sub-pixel the accuracy by introducing a
3-D function, which is quadratic for selecting candidates to determine the interpolated positions of the
maxima that reject some of the candidates that have low contrast. Further, the Hamming matrix is then
computed at the given location and to scale every candidate key point. Those that have a more significant
curvature are then rejected to eliminate the edge’s response.

The must-have identifier attributes towards the detection of blob-like structures that are inside the given
image, as they provide close proximity to the Laplacian scales of the Gaussian functions. Here, the
r2 x; yð Þ is termed, and it is the Laplacian operator that is commonly used for the detection of edges and
the corners of the image. In general, the 2-D Laplacian and Gaussian operator is defined by:

r2G ¼ � 1

pa4
1� x2 þ y2

2a2

� �
e�

x2þy2ð Þ
2a2 (3.1)

The difference in the Gaussian is the proximity of the concerned Laplacian in the Gaussian proximity of
the Laplacian for the Gaussian function and are isotropic as ther2G is rotation invariant. In these, the DoG
gives better optimization in the case of geometrical transformations.

3.2.2 Orientation Assignment
This step is crucial as the concerned descriptor shall be represented as a relative measure to its

orientation and rise for rotational invariance. The orientation peak calculates it in the histograms
constructed from the gradients in the keypoints that are detected along with the neighbors. The
orientation consisted of 36 bins, which give 360 degrees of coverage in the orientation, and are weighted
by the magnitude in the corresponding gradient with a Gaussian circular layout that is used for the
reinforcement of weights of the gradients at the center of the neighborhood, and which improves the
optimization against the noise.

3.2.3 Layout Descriptor
Given the position, the scale, and the orientation of every keypoint, the corresponding layout descriptor

is generated inside the local region of the respective layout in the scaling space. The local neighbors of the
keypoints are then divided into sub-regions and are relative to the orientation. Within each of the sub-regions,
the magnitude of the gradient and the orientation are calculated. Inside the sub-regions, the magnitude of the

IASC, 2020, vol.26, no.6 1363

gradient and the orientation are calculated, and then the magnitudes are assigned weight through
the Gaussian circular window for the orientation histogram in an octal direction. Hence, each of the
keypoints has descriptors with 128 dimensions. The SBFT descriptor has been shown to provide
the expected distinctiveness for matching the points and optimizing the image obfuscation attacks and
other geometric transforms, which are commonly done in injecting malware into the original app.
Although other methods for improving the SBFT descriptors are based on the DoG [20]. As we are
dealing with the visual similarity of the layouts in an Android application for identifying a packed app
from unpacked, the main objective is to ensure the optimization of keypoints in the image hashing. It is
achieved by using the SBFT technique.

3.3 Optimized Keypoints Detection Using Harris Criteria

Further, to achieve a robust hashing, the optimized extraction of features is more important. Although
DoG detection gives an excellent performance, some hindrances, such as noises and collision issues, affect
the similarity measure between the genuine and packed app’s layouts. This method also decreases the number
of false negatives. To extract the optimal features, it is better to select the more stable keypoints in different
distortions. It is found that the Harris method can provide more stability in the detection with high accuracy.
Hence, it is proposed to incorporate the Harris condition for selecting the more stable SBFT keypoints for
hashing. The Harris detection is based on the autocorrelation matrix representing the gradient’s
distribution locally on the selective keypoints. For a certain image I x; yð Þ, the auto-correlation matrices M
in a given point x; yð Þ shall be represented as:

Mj j ¼
Xy

x

w x; yð Þ I2x IxIy
IxIy I2y

� �
(4)

where, w x; yð Þ is a given window for the determination of accumulated region, and the gradients are
represented as x; y axis. The Gaussian kernel is used for the weighted layouts to make the isotropic
matrix. In general, if both the Eigenvalues are 1 and 2 of the matrix M, an alternative condition for
evaluating the corner is:

H ¼ b1 b2 � k g1 þ g2ð Þ ¼ Det Mð Þ � k trace Mð Þ2 (5)

Here, β denotes the coefficient with a value between 0.04 and 0.15, which is set as the threshold range.
Given the set of SIFT keypoints P ¼ P x; y;Nð Þ, where x and y represent the coordinates and N denotes the
number of scalable parameters, the Harris response Hi x; yð Þ is computed where ‘I’ denotes the standard
deviations of the Gaussian windows that are used for the computation of correlation matrix M and the
threshold is set for selecting the optimized SBFT point as:

T ¼
XN
1

Hi x; yð Þ (6)

where, Hi is a parameter control optimized selection of keypoints. Empirically, it takes the values between
0.1 and 0.5. In this proposed method, the value is taken as 0.5 as it defies the additive noises. The reason
behind choosing such a threshold is that it helps keep track of the local points that are more scalable.

3.4 Detection Evaluation

To further illustrate the Harris method’s effect in optimizing SBFT keypoints, an optimization function F
is defined for evaluating the performance in SIFT and the proposed SBFT-Harris detection method. Of P

1364 IASC, 2020, vol.26, no.6

denotes the set of keypoints obtained through SIFT and Q is the keypoints obtained through the SBFT-Harris
method, then function F of optimization is defined as:

F ¼ P \ Qj j
P [Qj j (7)

Here, Pj j denotes the set cardinality, which is defined as the measure of unique elements of the set. When
the F is about to reach 1.0, it means that the keypoints have been extracted from the layout image hashes of
the genuine app and the packed app. F’s value is used as the criteria for measuring the stability of the
keypoints detected in different layouts.

4 Experimental Analysis

4.1 Complexity

The concept of complexity was proposed for complementing the entropy and for extracting more
quantity of information. The complexity denoted by C Xð Þ is the length of the shortest layout, which
represents X and is terminated. In any complexity problem, the function of complexity is defined as:

C Xð Þ ¼ Min Xð Þ (8)

However, this concept has a severe issue, which cannot be computed as the identification of the optimum
algorithm, which makes the shortest distance from a given X string of input, is not feasible. The comparative
algorithm can be used in the same way as the concept of complexity:

Compress Xð Þ ¼ X 0ð Þ (9)

Here, X 0 represents the compressed bit string of the image layout hash X . Different compression
techniques are used for the reduced size in input and the best smallest output. Hence, the complexity can
be measured as the input that uses compression for the classification. Almost all of the packed *.exe files
are either compressed or encrypted, so to classify a packed *.exe, the point at which high complexity is
attained must be detected. However, the length of the file before and after compressing will be lower in the
case of a packed file versus an unpacked file. For the experimental purpose, the apps were taken from five
different third-party Android markets, and the numbers of packed apps were detected. Tab. 1 shows the
total number of apps taken from the market, and the corresponding obfuscation attacked shown in the Fig. 2.

4.2 Evaluation of Optimized Keypoints

Investigation of the benefits of having an optimized selection of keypoints against the obfuscation
malwares for the specific purpose of identifying the content was made. Since it is highly unlikely to
obtain the exact key-points sets detected in both genuine and packed app layouts, the Hamming distance

Table 1: Results for the packed app detection

Android market Total apps Packed apps

Google play 9589 648

APK mirror 7564 429

APK pure 6587 312

Aptoide 4210 125

F-Droid 2500 78

IASC, 2020, vol.26, no.6 1365

is calculated with Harris criteria, which is then used to calculate the similarity between the app’s layout
hashes. The image hashes of the five layouts in the Twitter app were considered for the evaluation, and
the average Hamming distance using the Harris approach was calculated. In the proposed method, the
vectors represent the scalable points’ coordinates that have a high rank. It is also noted that the average
Hamming distance between the keypoints, which are detected using the Harris method, which was those
from the normalized Hamming method, were computed using the CPK method. The proposed SBFT–
Harris method found to be more optimal, even when investigated under the packed Android apps.
Although the proposed method is similar to SIFT, the advantage is that the coordinates can be used for
the detection of scalable and optimized keypoints directly from the layout hashes of apps, and these kinds
of keypoints provide more optimization in the key point selection, which is vital in the detection of
packed apps. Tab. 2 presents the values of the Mean Hamming Distance (MHD) obtained for the five
layouts using the two methods previously discussed.

As seen in Fig. 3, there is a significant variation in the hamming distances calculated using the CKP
method and the proposed method with Harris Technique. The proposed method has less hamming
distance, which assures more efficiency in the similarity calculation of original and packed apps with
obfuscation attack programs.

Tab. 3 shows the time complexity (TC) and depicted in the Fig. 4 of the CKPS method for the layouts
considered, after using scalable invariant feature extraction and optimized feature point selection using the
Harris method. The results show the time complexity significantly reduced in the latter, which addresses the
objective. It has been calculated that the time is taken to decide whether the app is a packed one was reduced
to 0.81 s compared to 0.91 s in the case of CKPS.

From the resulting analysis, it is proven that the proposed scale-invariant points detection and
localization, and the optimized keypoints detection, using the Harris criterion, resulted in time complexity
reduction and also is helpful in the identification of obfuscation attacks through the detection of packed apps.

4.3 Evaluation of Accuracy

The proposed method was tested for its accuracy by obtaining the True Positive, True Negative, False
Positive, and False Negative for the proposed method using Harrison optimization and SIFT (H: SIFT) with
that of the previous work CKPS: LBP, along with other state-of-the-art methods discussed earlier. The results
are tabulated in Tab. 4.

Fig. 5 shows a comparative graph of the parameters represented in Tab. 4. It can be seen that the
proposed method offers the best values for True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN). Based on the values obtained in Tab. 4, the True Positive Rate and False
Negative Rate were calculated and presented in Tab. 5. Fig. 6 shows a graphical representation of the
TPR and FNR of the different methods. It can be noted that the proposed method has a 41% higher TPR
and 38% lesser FNR than the other methods, which proves the efficiency of the proposed method.

Tab. 6 details the precision, recall, and F-measures obtained from the Tab. 4 parameters, wherein it is
noted that the proposed method has a higher value for precision and recall than the other methods
discussed, which increases the F-score value, thus proving the consistency. Fig. 7 presents a graphical
depiction of the results.

The accuracy consistency was measured between the previous method CKPS: LBP and the proposed
methodology. The number of layouts was obtained from 10–10000. The accuracy levels are recorded at
each layout and are logged in Tab. 7.

1366 IASC, 2020, vol.26, no.6

Figure 2: (a) Comparative study of the number of packed apps-google play. (b) Comparative study of the
number of packed apps-APK mirror. (c) Comparative study of the number of packed apps-APK-pure. (d)
Comparative study of the number of packed apps-Aptoid. (e) Comparative study of the number of packed
apps F-Droid

IASC, 2020, vol.26, no.6 1367

In Tab. 7, it can be seen that the accuracy of the proposed optimization, using the Harris method and
SIFT, provides not only more accurate but also maintains the consistency irrespective of the number of
layouts obtained. Fig. 8 details a steady decrease in the accuracy level with CKPS: LBP when the
number of layouts is increased. However, when H: SIFT optimization is implemented, high and consistent
accuracy is maintained, even when the numbers of the layout are increased, proving the accuracy and the
consistency of the proposed technique.

Table 2: Comparison of mean hamming distance of the layout hashes

Layout MHD-Harris method MHD-CKP

Layout 1 0.268 0.387

Layout 2 0.202 0.324

Layout 3 0.358 0.589

Layout 4 0.412 0.810

Layout 5 0.514 0.754

Figure 3: Mean hamming distance comparison

Table 3: Comparison of time complexity

Layouts TC-CKP TC-Harrison method

Layout 1 0.212 0.182

Layout 2 0.356 0.244

Layout 3 0.415 0.301

Layout 4 0.281 0.194

Layout 5 0.541 0.314

1368 IASC, 2020, vol.26, no.6

Figure 4: Plot of time complexity

Table 4: Comparison of TP, TN, FP, and FN

Method TP TN FP FN

OmniPack 0.84 0.38 0.24 0.81

PolyUnpack 0.81 0.31 0.19 0.86

EnDroid 0.90 0.24 0.49 0.84

RomaDroid 0.78 0.29 0.17 0.76

Aldroid 0.93 0.41 0.37 0.83

CKPS:LBP 0.95 0.21 0.24 0.96

H:SIFT 0.97 0.14 0.12 0.98

Figure 5: Comparison of TP, TN, FP, and FN

IASC, 2020, vol.26, no.6 1369

Figure 6: Comparison of TPR and FNR

Table 5: Comparison of TPR and FNR

Method TPR FNR

OmniPack 0.24 0.62

PolyUnpack 0.39 0.51

EnDroid 0.26 0.30

RomaDroid 0.58 0.42

Aldroid 0.61 0.37

CKPS:LBP 0.92 0.21

H:SIFT 0.96 0.16

Table 6: Precision, recall, and F-score comparison

Methods Precision Recall F-Score

OmniPack 89.2 87.4 88.4

PolyUnpack 78.2 89.3 79.3

EnDroid 91.1 89.7 89.8

RomaDroid 89.5 84.5 87.4

Aldroid 81.5 79.5 80.4

CKPS:LBP 96.5 94.5 95.4

H:SIFT 98.4 97.3 98.4

1370 IASC, 2020, vol.26, no.6

Figure 7: Comparison of precision, recall, and F-measure

Table 7: Accuracy comparison

Layout Accuracy CKPS: LBP Accuracy H: SIFT

10 96.2 98.4

20 96.1 98.4

30 96.1 98.4

100 95.9 98.4

200 95.1 98.2

300 94.8 98.2

1000 93.5 98.2

2000 93.1 98.1

3000 93.0 98.1

7000 92.8 98.0

10000 92.0 98.0

IASC, 2020, vol.26, no.6 1371

5 Conclusion

This paper presents an optimization technique using scalable invariant feature transformation to
extract optimum feature-points extraction and apply the Harris method to optimize image hashing. The
experiments produced better results than the CKPS: LBP in terms of time complexity. Additionally, the
proposed method is extended to detect obfuscation of malware attacks by detecting packed executables,
which is the initial step in obfuscation attack detection. The results were impressive, and, on average,
1592 packed apps out of a total of 35942 apps could be detected with which the layout hashes
compared. The detection time was a minimum of 0.81 s. The proposed optimization method proves to
be efficient in terms of high precision, recall, and F-score. Further, a high accuracy of 98% was
maintained consistently, even when the number of layouts increased. As future research intends to
extend the proposed methodology to other domains to study the feasibility.

Funding Statement: The authors received no specific funding for this study.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] J. Garcia, M. Hammad and S. Malek, “Lightweight, obfuscation-resilient detection and family identification of

Android malware,” ACM Transactions on Software Engineering and Methodology, vol. 26, no. 3, pp. 1–29, 2018.

[2] M. Chua and V. Balachandran, “Effectiveness of Android obfuscation on evading anti-malware,” in Proc. of the
Eighth ACM Conf. on Data and Application Security and Privacy, Tempe AZ USA, pp. 143–145, 2018.

[3] C. Yuan, S. Wei, C. Zhou, J. Guo and H. Xiang, “Scalable and obfuscation-resilient Android app repackaging
detection based on behavior birthmark,” in 2017 24th Asia-Pacific Software Engineering Conf., Nanjing,
China, pp. 476–485, 2017.

[4] Y. Wang, H. Wu, H. Zhang and A. Rountev, “Orlis: Obfuscation-resilient library detection for Android,” in Proc.
of the 5th Int. Conf. on Mobile Software Engineering and Systems-MOBILESoft 18, Gothenburg, Sweden,
pp. 13–23, 2018.

Figure 8: Accuracy plot

1372 IASC, 2020, vol.26, no.6

[5] X. Yang, L. Zhang, C. Ma, Z. Liu and P. Peng, “Android control flow obfuscation based on dynamic entry points
modification,” in 2019 22nd Int. Conf. on Control Systems and Computer Science, Bucharest, Romania, pp. 296–
303, 2019.

[6] D. J. Tan, T. W. Chua and V. L. Thing, “Securing Android: A survey, taxonomy, and challenges,” ACM
Computing Surveys, vol. 47, no. 4, pp. 1–45, 2015.

[7] https://www.oreilly.com/library/view/learning-malware-analysis/9781788392501/5d32bae2-f024-4493-ad8c-
5b5db3e537c5.xhtml.

[8] T. Cho, H. Kim and J. H. Yi, “Security assessment of code obfuscation based on dynamic monitoring in Android
things,” IEEE Access, vol. 5, pp. 6361–6371, 2017.

[9] Y. Li, G. Xu, H. Xian, L. Rao and J. Shi, “Novel Android malware detection method based on multi-dimensional
hybrid features extraction and analysis,” Intelligent Automation and Soft Computing, vol. 25, pp. 637–647, 2019.

[10] D. Shin, C. Im, H. Jeong, S. Kim and D. Won, “The new signature generation method based on an unpacking
algorithm and procedure for a packer detection,” International Journal of Advanced Science and Technology,
vol. 27, pp. 59–78, 2011.

[11] M. D. Preda and F. Maggi, “Testing Android malware detectors against code obfuscation: A systematization of
knowledge and unified methodology,” Journal of Computer Virology and Hacking Techniques, vol. 13, no. 3,
pp. 209–232, 2017.

[12] K. Lim, N. Kim, Y. Jeong, S. J. Cho, S. Han et al., “Protecting Android applications with multiple
DEX files against static reverse engineering attacks,” Intelligent Automation and Soft Computing, vol. 25,
pp. 143–153, 2019.

[13] G. Jeong, E. Choo, J. Lee, M. Bat-Erdene and H. Lee, “Generic unpacking using entropy analysis,” in 2010 5th
Int. Conf. on Malicious and Unwanted Software, Nancy, Lorraine, pp. 98–105, 2010.

[14] B. Kim, K. Lim, S. J. Cho and M. Park, “RomaDroid: A robust and efficient technique for detecting Android
app clones using a tree structure and components of each app’s manifest file,” IEEE Access, vol. 7,
pp. 72182–72196, 2019.

[15] S. Badhani and S. K. Muttoo, “Evading Android anti-malware by hiding malicious application inside images,”
International Journal of System Assurance Engineering and Management, vol. 9, no. 2, pp. 482–493, 2017.

[16] J. Zhao, X. Mo and Q. Zheng, “A novel method of Android malware detection based on ensemble learning
algorithm,” in Proc. of 2018 the 8th Int. Workshop on Computer Science and Engineering, Bangkok, pp. 531–
538, 2018.

[17] N. Nissim, R. Moskovitch, O. Barad, L. Rokach and Y. Elovici, “ALDROID: Efficient update of Android anti-
virus software using designated active learning methods,” Knowledge and Information Systems, vol. 49, no. 3,
pp. 795–833, 2016.

[18] X. Zhang, J. Pang and X. Liu, “Common program similarity metric method for anti-obfuscation,” IEEE Access,
vol. 6, pp. 47557–47565, 2018.

[19] W. Miao and X. W. Peng, “WLIB-SIFT: A distinctive local image feature descriptor,” in 2019 IEEE 2nd Int. Conf.
on Information Communication and Signal Processing, Weihai, China, pp. 379–383, 2019.

[20] J. Zhao, H. Liu, Y. Feng, S. Yuan and W. Cai, “BE-SIFT: A more brief and efficient SIFT image matching
algorithm for computer vision,” in 2015 IEEE Int. Conf. on Computer and Information Technology;
Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive
Intelligence and Computing, Liverpool, pp. 568–574, 2015.

IASC, 2020, vol.26, no.6 1373

https://www.oreilly.com/library/view/learning-malware-analysis/9781788392501/5d32bae2-f024-4493-ad8c-5b5db3e537c5.xhtml
https://www.oreilly.com/library/view/learning-malware-analysis/9781788392501/5d32bae2-f024-4493-ad8c-5b5db3e537c5.xhtml

	Feature Point Detection for Repacked Android Apps
	Introduction
	Related Works
	Proposed Methodology
	Experimental Analysis
	Conclusion
	References

