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ABSTRACT

The two-way interaction between smart grid and customers will continuously play an important role in enhan-
cing the overall efficiency of the green and low-carbon electric power industry and properly accommodating
intermittent renewable energy resources. Thus far, the existing electricity pricing mechanisms hardly match
the technical properties of smart grid; neither can they facilitate increasing end users participating in the electri-
city market. In this paper, several relevant models and novel methods are proposed for pricing scheme design as
well as to achieve optimal decision-makings for market participants, in which the mechanisms behind are com-
patible with demand response operation of end users in the smart grid. The electric vehicles and prosumers are
jointly considered by complying with the technical constraints and intrinsic economic interests. Based on the
demand response of controllable loads, the real-time pricing, rewarding pricing and insurance pricing methods
are proposed for the retailers and their bidding decisions for the wholesale market are also presented to increase
the penetration level of renewable energy. The proposed demand response oriented electricity pricing scheme can
provide some useful operational references on the cooperative operation of controllable loads and renewable
energy through the feasible retail and wholesale market pricing methods, and thereby enhancing the development
of the low-carbon energy system.
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1 Introduction

As one of the most important fundamental infrastructure, electric power system affects various industries
and thousands of households. In faced with the ever-growing load demand and emergent energy shortage,
smart grid technologies become significant development trend in the 21st century [1]. The smart grid
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features omni-directional informatization, digitization and intelligent technologies of integrating all
components in the process of power generation, transmission, distribution and electricity consumption [2–4].

As a bridge connecting electricity supply and demand, electricity price is a key factor in maintaining the
balance between generation and consumption. It shall not only follow the basic laws of market economy, but
also be subject to the inherent and complex physical and technical characteristics of the power network. For
example, electricity is not easy to be stored, the system must keep real-time (seconds or even milliseconds)
balance among generation and load, and the power flow in the network must be governed by the Kirchhoff’s
law. It is difficult to artificially control and track the power flow, and so on. Therefore, electricity pricing
decision should comply with these complex physical characteristics and unique transaction attributes,
which are different from the ones in the general commodity markets.

For a long time, the electrical energy in China has been priced and regulated by the government
according to the production cost [5]. The existing pricing mechanism is unable to effectively reflect the
market relationship between supply and demand, the scarcity of resources and the production cost [6]. In
2015, the Chinese government issued a series of policies to further deepen the reform of electric power
industry, since then a new round of electricity market development has begun in China [7]. The trading
rights have been exercised on the two sides of generation and demand in some provinces. By the end of
2018, 33 provincial trading centers and the 2 regional trading centers (i.e., the ones in Beijing and
Guangzhou) have been established. The transmission and distribution prices for provincial power grids
have been fully realized. On September 3, 2018, Guangdong’s first spot market started trial operation [8].
At present, China’s power market reform is still in its infancy, and there still exist a large gap as
compared to the mature electricity markets in e.g., United States and Britain [9].

The two-way interaction between smart grid and customers plays a more and more important role in
improving the overall efficiency of power system [10]. The technical characteristics of smart grid and the
market participant and demand response bring new challenges to decision-makings on electricity pricing.
Therefore, the technical constraints of power network, active participation of controllable loads, rational
use and feedback of electric power should all be taken into account [11,12]. However, the existing
electricity pricing mechanisms can hardly match the technical characteristics of smart grid; neither can
they facilitate the ever-growing controllable loads in the electricity market.

In this paper, several relevant models and novel methods are proposed for pricing scheme design as well
as to achieve optimal decision-makings for market participants, in which the mechanisms behind are
compatible with demand response operation of the end users in smart grid. In our study, the electric
vehicles and relevant prosumers are considered to enable the two-way energy interaction with the smart
grid. Towards this end, the methods on real-time pricing, rewarding pricing and insurance pricing for the
retailers are comprehensively proposed in this paper.

2 Demand Response Decision-Making of Controllable Loads

After receiving the signals of direct compensation or price adjustment sent by the operator, the end users
adjust their electricity consumption behaviors accordingly [13]. By means of marketization, the two kinds are
the price-based and incentive-based demand response, i.e., PBDR and IBDR, respectively. By deploying the
PBDR and IBDR, the end users can be stimulated to adjust the electricity consumption mode to improve
the overall economy and efficiency of the power system. The former mainly refers to the situation where
the users spontaneously change the electricity consumption mode that is responsive to different electricity
price, e.g., time-of-use (TOU) price, peak price and real-time price. The latter one mainly refers to the
situation where the dispatch organization implements the specific incentive schemes to directly control
the power load in the system operation [14].
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In PBDR, by taking the market price as an incentive, the end users spontaneously adjust the time and
quantity of electricity consumption. Thus, the system load power is reduced during the peak period with
high price, and the system load power is increased during the valley period with low price. The peak-
cutting and valley-filling smooth the system load curve, thus improving energy efficiency, reducing and
postponing generation investments.

In IBDR, during the peak load period, the electric power operation organization interferes and controls
the system load by the incentive means of economic compensation and price rebate [15]. In the market
environment, the controllable loads, such as washing machines, refrigerators, electric vehicles (EV) and
prosumers will actively respond to the incentive means. The two-way interaction of the controllable loads
in smart grid operation is shown in Fig. 1.

As a kind of controllable load, EVs participate in the power system operation through Vehicle to Grid
(V2G) technology. The randomness on EV charging and discharging would eventually cause a series of
problems, such as power loss, line overload and voltage fluctuations in the power system. Hence, the
safety and stability of smart grid operation will be greatly affected. Therefore, it is important to devise the
charging/discharging strategies of large-scale EVs to facilitate the overall system integration.

This section will investigate the demand response decision-making of controllable loads considering their
participation behavior into the smart grid. The following work is presented. 1) Route optimization and
charging/discharging arrangement of EVs under TOU price; 2) Route and charging optimization of EVs by
the means of crowd sensing; 3) Optimal generation and consumption decision of multi-energy prosumers.

2.1 Route Optimization and Charging/Discharging Arrangement of EVs under TOU Price
Dantizing and Ramser firstly proposed the vehicle routing problem (VRP) [16]. As shown in Fig. 2, an

EV with full battery capacity leaves the distribution point (depot) and delivers a batch of goods to N
customers, and simultaneously picks up the goods from the N customers and returns to the distribution
point. The VRP is aimed to minimize the total driving costs, route length and driving time, which are
subject to the constraints such as the time window, the vehicle type and the overall loading [17–19].

In [20], a VRP model for alternative fossil fuel-driven vehicles was proposed, with the objective of
minimizing the driving distance while maximizing fuel capacity and alternative energy supply. In [21],
the driving characteristics of EVs are taken into account and the charging decisions of fast charging
stations are formulated by satisfying the electrical energy constraints (such as EV battery capacity and
routing) and the regular VRP constraints.

change Demand 
response

Random 
uncontrollable load controllable load

EV
Energy 

storage device

Smart Grid

Domestic consumers

Industrial/
commercial  users Prosumers

Generation 
Load Real-time balance 

Traditional Grid Smart Grid 

Load 
demand rsponse

Generation 
resource dispatch

change

Figure 1: Demand response of controllable load to smart grid
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The optimization problem is formulated to take the minimum number of electric vehicles and the
shortest route as the objectives. It should be noted that the battery degradation cost and fast charging cost
are not considered in this study. Furthermore, an optimization model of EV routing concerning the slow
charging in the park and the fast charging on the road is proposed with TOU electricity price [22]. The
sum of the total costs, covering the slow/fast charging cost and the battery loss costs during fast charging,
is minimized. The best navigation route and the charging station with the shortest charging time are
simultaneously selected by satisfying these constraints, i.e., charging time, battery capacity and path
selection in charging modes. As compared to the existing models, the impact of large-scale charging can
be effectively reduced by considering the safety operation of power distribution system, while improving
the efficiency of EVs by participating in system-level logistics.

Obviously, this model is a highly non-linear, discrete and non-convex problem, which is difficult to find
tractable solutions based on the traditional Newton and descent gradient algorithms. Therefore, a deep-learning
intelligent optimization algorithm incorporating the traditional intelligent algorithms and the knowledge models
is proposed, which is shown in Fig. 3. The expert knowledge in EV routing and charging station selection is
established in the database of algorithm. Based on the constantly updated solutions, it can effectively guide the
subsequent searching process to efficiently obtain accurate EV path [23].
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Figure 2: Illustration of EV route optimization
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The numerical simulation tests on the systems comprising of customers, charging stations and depots
demonstrate that the fast charging frequency and time of electric vehicles are crucial for the logistics
distribution [22]. As illustrated in Fig. 4, in considering the cost, the decision under the discounted price
curve e(3) is the best, and the night delivery can reduce the distribution cost. In considering the route
length, the decision under the fixed electricity price curve e(2) is optimal. Under the TOU price, curve
e(1), the fast charging does not increase the peak load of the system, and the slow charging mode fills the
valley load of the system. The proposed model is conducive to the EV users by improving the driving
efficiency, reducing the driving costs and alleviating the impact of simultaneous charging of a great
amount of EVs on the operation of power distribution system.

2.2 EVs’ Charging Navigation and Route Selection Based on Real-Time Information Collection
In actual transportation system, traffic information (e.g., vehicle density, driving speed and traffic flow)

is dynamically changing in real time. However, the traffic information obtained from historical data cannot
effectively reflect real-time traffic conditions, thus deviation from the optimal routing remains. Furthermore,
the data of traffic information cannot be uploaded in time to the control center, which impacts the operational
capacity of intelligent transportation system [24]. Therefore, it is important for the EV users to accurately
acquire real-time traffic information in actual navigation system.

In [25], an optimal model of charging navigation and electric vehicle route selection based on real-time
information collection is proposed, as shown in Fig. 5. The dynamic charging and traffic information is
transmitted to the dispatch center via wireless communication network. For example, the number of
electric vehicles arriving at and charging at the charging station can be directly collected through existing
sensors or devices. The best EV driving and charging navigation route will be determined by minimizing
the vehicle’s charging and navigation time, energy consumption. The EV drivers receive the best
decisions on routes and charging navigation through smart mobile devices such as tablet computers and
mobile phones. Since traffic flow and charging station queuing are dynamically updated, the decision of
the dispatch center should also be made in real time.

In the early stages of data acquisition on EVs, if no EV user providing location information within a
certain interval and time period, blank lines will exist in the EV speed matrix. If the communication
network fails, the empty columns exist in the road speed matrix. For a road speed matrix containing
empty columns or rows, the errors in the matrix will increase due to the lack of a large amount of EV
speed information.

To ensure the accuracy of matrix factorization, a method for recovering the empty columns or rows in the
velocity matrix is proposed, as shown in Fig. 6. A matrix factorization method is used to improve the traffic
information matrix. Under the conditions of mutually exclusive constraints, the EV driving time, battery

Figure 4: Three different electricity price profiles
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capacity, route selection and charging and discharging time are considered. The charging navigation
strategies and EV path selection are presented under TOU electricity pricing scheme with three different
decision goals: shortest driving time, minimum charging cost and minimum comprehensive cost.

Taking driving time, battery capacity, path selection, and node voltages of distribution system as
constraints, a charging navigation and path selection optimization model is developed to minimize the
total cost of EV charging and driving time. Based on the results of the numerical simulation of an IEEE

Charging Station

EV and Smart Device

Wireless Signal

Signal Tower
Decision
Centre

Traffic
Network

Charging Station Information

Real-Time Traffic Information
Travel Route Recommended

Charging Recommended

Figure 5: Framework of EV charging navigation and route selection based on real-time information
collection
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33-node urban power distribution system with four charging stations [25], the proposed strategies optimize
the driving time and charging cost in the process of charging navigation and path selection.

When the dispatch center receives more real-time traffic information about the waiting time of charging
station, traffic speed, as shown in Fig. 7, the dispatch center will make more correct decisions and reduce the
total EV driving time. Meanwhile, this proposed method can reduce the peak-to-valley difference of
distribution system, thereby increase the operating efficiency of the overall system.

2.3 Optimal Generation and Consumption Decision-Making of Multi-Energy Prosumers
As illustrated in Fig. 8, the prosumers achieve demand response through the energy management system

(EMS) by changing the energy habits and automatically adjusting the generation and load according to the
real-time price in electricity market. The demand response of the prosumers can effectively facilitate peak
clipping and valley filling and increase permeation of distributed wind and solar energy in the low-carbon
power system.

Figure 7: Varying curve of driving time with percentage of EVs taking part in real-time information
collection

Figure 8: Demand response of prosumers in smart grid
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An energy hub of prosumers with distributed energy systems (DES) and combined cooling, heating and
power (CCHP) is proposed as shown in Fig. 9. The multi-energy prosumers integrates the networks of natural
gas and electricity to enable integrated utilization and mutual backup. The operating efficiency of DES/
CCHP is about 60%–80%, which is much higher than those of traditional energy systems [26]. By
coordinating the operation of DES/CCHP, the peak-shaving and valley-filling of distribution system can
be achieved in the region, while minimizing the costs of energy supply and carbon emission. Thus, some
researches have been investigated on the coordination and optimization of multi-network
system operation. In [27], by using the natural gas, electricity, photovoltaic power generation and energy
storage as the source end, the energy hub produces, distributes, consumes and stores multiple distributed
energy. Therefore, the coordinated operation of integrated energy systems and external networks should
be considered.

The concept of regional multiple-energy prosumer (RMEP) is proposed in [28] with a demonstration of
multiple energy hubs combining renewable DES, CCHP and energy storage. As shown in Fig. 10, the
electrical energy is transmitted to the prosumer through a radioactive electricity network in each energy
hub, and the prosumer can feed back excess power to the smart grid. Meanwhile, the prosumer receives
the natural gas via the gas network. Also, the network of cooling and heating pipes provides the heat
and cold energies.

The multiple-energy prosumer uses natural gas, electric power, and photovoltaic power generation as the
main sources. In considering the EV charging and discharging functions, the energy hub structure outputs
the cold/heat and electrical energy. A two-way energy flow is achieved through the form of a bus
between the multiple energy hubs and the smart grid. By concerning the price of electricity and natural
gas during different time periods, the incentive measures are applicable to renewable DES. The optimized
scheduling model of prosumer with demand response is proposed to meet the needs of different types of
electricity, heat, and cold loads in different seasons and thus reduce the overall greenhouse gas emissions.
Through numerical simulation based on IEEE 15-bus system, the case study results in Fig. 11 shows that
the multi-energy prosumer can not only reduce the system operational costs, but also increase the power
feed-back to the smart grid [28]. Therefore, the RMEP can effectively improve the flexibility, reliability
and efficiency of energy supply.
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3 Pricing Decision of Retail and Wholesale Markets

With the deep integration of power system and information technology, more and more consumers
are involved in the operation and management of smart grid. It is important for different types of
consumers to respond efficiently to the time-varying electricity price with the satisfaction of load
requirements. Intelligent demand response will bring about a series of new problems to the system
scheduling and pricing. This section will summarize some research results on the design of electricity
pricing scheme from three aspects, including pricing method, bidding strategy and insurance strategy in
the retail and wholesale markets. The framework of pricing decision based on smart response of
controllable loads is illustrated in Fig. 12.

3.1 Retail Market Pricing Based on Smart Response of Controllable Loads
With the widespread utilization of advanced metering infrastructure, the consumers can collect the real-

time loading power and distributed generation data. The smart response of controllable loads, as one of the
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Figure 10: Framework of prosumer with interconnected multiple energy hubs

Figure 11: Power purchased and sold by multi-energy prosumer on typical summer day
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important adjustable power ways in the demand sides dispatched by the system operator, has the advantages
of quick response, friendly environment and relatively low scheduling costs. It can effectively smoothen the
fluctuation of load power and distributed generation, thereby significantly improve the economic benefits of
the consumers. Therefore, it is necessary to formulate the reasonable prices and policies to promote more
controllable loads to take part in balancing market.

In the literature, several research attempts on pricing schemes based on TOU rates, day-ahead and real-
time rates, compensation rates for interruptible loads have been implemented. However, the existing pricing
models assume that the operators have complete and accurate the consumers’ information. When analysing
the impact of different pricing plans on the consumers, different types of consumers’ uncertainties and
behaviours are not considered. The consumers’ information is limited in practice. Thus the designed
models should reflect the response of different types of controllable loads to differential prices.

In order to promote a great amount of controllable loads scattered around to participate in the power
market operations, the retailers have designed a pricing scheme with multiple choice plans to encourage
more controllable loads to respond to multiple options [29]. Based on the quotes and price elastic
coefficient of controllable loads, the categories of smart response are deduced based on data clustering
and classification, thereby reducing the requirements on the consumers’ information. Based on a list of
options, the controllable loads can accurately respond to different types of prices.

Furthermore, by using the Bayesian discrete probability distribution function, a comprehensive pricing
framework that takes into account consumers’ behaviour uncertainty is proposed, as shown in Fig. 13. The
information (e.g., the increase and decrease of power and quotes, the power adjustment limit and the demand
elasticity coefficient by the controllable loads) is exacted as the certain features to achieve accurate
clustering. Then, the corresponding menu options are designed and the compensation prices of power
adjustment of controllable loads are determined to minimize the system power supply cost. The proposed
menu pricing method effectively promotes demand-side smart response and reasonable profit return.

Wholesale market

Retailer 1 Retailer 2 ... Retailer n

Controllable loads Renewable energy generators

Pricing Strategy

Bidding strategy

Insurance strategy

Retail market

Microgrid
Charging

station
Distribution

System
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Figure 12: Framework of pricing decision in retail and wholesale markets based on smart response of
controllable loads
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The IEEE 30-node and 118-node systems have been adopted to verify the effectiveness of the proposed
menu pricing model [29]. As illustrated in Fig. 14, the research results show that the pricing method ensures
that different types of consumers choose the most suitable menu pricing, which effectively stimulates more
demand-side resources to adjust the load power and thus reduce the overall power supply cost of the system.

3.2 Wholesale Market Bidding Decision of Retailers with Controllable Loads
As intermittent and unpredictable renewable energies are embedded in the power system, more

controllable loads need to be dispatched to ensure the stable and safe operation of system [30]. The
renewable energy producers, which are served as price takers, generally make their own biggest profits by

Figure 13: Framework of menu pricing scheme in smart response

Figure 14: Power supply cost and load reduction under menu price and fixed price
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setting a rationale generation power plan [31]. In order to enhance the returns in the day-ahead market and
real-time balance market, and make investment profitable, the renewable energy producer develops effective
bidding strategies. The risk constrained model is proposed to express the risk of profit fluctuations due to the
bidding of competitors [32].

In the above research work on bidding decisions, it is assumed that electricity prices were known in the
day-ahead market. The deviations due to unpredictable fluctuations in the generation and load power are
eliminated through the real-time market. In these researches, the influence of market price uncertainty on
retailers’ bidding strategies in real-time market operations is ignored. In addition, through the use of a
scheme tree to identify events that may occur in the electricity market, the complexity of the retailer’s
bidding decision increases exponentially. Therefore, it is necessary to coordinate the inflexible and
flexible biddings in different electricity markets, and to reformulate the alternatives to deal with the
stochastic optimization problems with conditional expectation.

Therefore, according to the retailers’ trading schemes, the flexible up-regulation or down-regulation
bidding in the real-time market and the inflexible bidding in the day-ahead market should be coordinated
for the controllable loads. According to the probabilistic relationship between the derived bid price and
the market clearing price, a bidding decision model with minimum purchase cost under conditional
expectations is proposed [33], as shown in Fig. 15. In the cost function, the penalty caused by the
deviation of the bidding amount in the real-time and the day-ahead markets is added to avoid the retailer's
arbitrage interests in the two markets and eliminate a large power balance problem in the system.

Based on the PJM (Pennsylvania-New Jersey-Maryland) price data in the USA electricity market, the
numerical simulations, as shown in Fig. 16, shows that the proposed bidding decision model of retailers
can reveal the nonlinear relationship between the bidding quantity and price, the expected purchase cost
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and the successful probability of bidding. The flexible up-regulation or down-regulation bidding provides an
optimal decision-making reference method for the retailers with frequently fluctuating renewable energy.

3.3 Insurance Pricing of Retailer Considering Uncertainty Risk of Renewable Energy Generation
Due to the random fluctuation of grid-connected power of renewable energy and end users, the bidding

power of the retailer deviates from the actual power, resulting in penalties for the imbalanced settlement in
the electricity market. The retailers will face the risk of penalties from trading centres. It is critical to
accurately forecast renewable energy generation on different time scales for market trading and portfolio
management. The prediction errors and imbalances for the supply and load power are shown in Fig. 17.

Although the renewable energy forecasting technologies have been continuously improved in recent
years, there exist relatively large prediction errors in case that the generation power of renewable energy
has high-speed fluctuations [34]. Currently, in addition to setting up the reserve market and installing the

Figure 16: Varying of bidding quantities and expected costs with different penalty prices

Figure 17: Forecast errors and imbalance for supply and load power
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energy storage systems, there are three measures to avoid the uncertainty risk of generation power prediction
of renewable energy [35,36].

1. Risk reduction: the current forecasting methods are improved for renewable energy generation based
on operational experience and historical data. The bidding strategies are adjusted by considering the
cost of power imbalances.

2. Risk aversion: the renewable energy producers indirectly participate in the power market, which can
choose the retailers to sell electricity. The retailers have more controllable power to perform the
bidding in the real-time market [37].

3. Risk transfer: the risk of deviation penalties is transferred to the insurance company. An insurance
company collects premiums from a number of the retailers. When a retailer pays the penalties for
deviations, it will obtain the compensation fee from the insurance company [38].

The retailers with renewable energy generation transfer the risk of grid-connected power fluctuations to
the insurance companies by the insurance purchase and payment methods. The establishment of insurance
mechanism can effectively reduce the economic losses of retailers when facing the events with the low
probability and high loss, thus ensuring the sustainable development of renewable energy industry [39].
There are many factors to be considered in the insurance pricing, such as a large number of historical
operating data of renewable energy units. As compared to the traditional methods such as installing
energy storage equipment or improving the prediction accuracy of renewable energy generation, it is
becoming more and more important to effectively utilize the insurance strategies to resolve the
contradiction between the stability and economy of electric system. The impacts of prediction errors of
renewable energy generation are effectively reduced in the system scheduling and control.

In [40], an insurance strategy method of retailer is proposed to quantitatively consider the risk of
prediction errors of renewable energy generation and load power. Based on Monte Carlo simulation
method, the statistical scenarios for power output of renewable energy generation and loading power are
established and the penalty costs of retailer can be quantified. The simulation results in Fig. 18
demonstrate that through the combination of insurance strategy and energy storage system (ESS), the risk
of penalty costs of retailer is alleviated in the spot market. The insurance strategy method is used to
compensate the imbalanced penalty costs under the large fluctuations of renewable energy generation,
while the energy storage device is used to balance the small fluctuations.

Figure 18: Varying of annual cost of an energy storage system plus insurance with different excess
insurances for renewable energy generation
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4 Conclusions

The controllable loads (e.g., electric vehicles, air conditioners and washing machines) can be effectively
utilized to participate in demand side management in power system. The demand responsive decision-
makings in the electricity market and electricity pricing schemes that are conducive to peak shaving and
valley filling, frequency and voltage regulation are comprehensively reviewed. The retail market and
wholesale market pricing decision can assist in stimulating more demand-side resources to adjust load
and generation power to participate in market transaction and system dispatch. This paper summarizes
and analyses the key issues of demand responsive market decision-makings and pricing scheme design in
the context of smart grid, thus providing some useful operational references on the cooperative operation
of controllable loads and renewable energy through the feasible retail and wholesale market pricing
methods, and enhancing the development of the low-carbon energy system.
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