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Abstract: In a cloud environment, Virtual Machines (VMs) consolidation and
resource provisioning are used to address the issues of workload fluctuations.
VM consolidation aims to move the VMs from one host to another in order to
reduce the number of active hosts and save power. Whereas resource provisioning
attempts to provide additional resource capacity to the VMs as needed in order to
meet Quality of Service (QoS) requirements. However, these techniques have a
set of limitations in terms of the additional costs related to migration and scaling
time, and energy overhead that need further consideration. Therefore, this paper
presents a comprehensive literature review on the subject of dynamic resource
management (i.e., VMs consolidation and resource provisioning) in cloud com-
puting environments, along with an overall discussion of the closely related
works. The outcomes of this research can be used to enhance the development
of predictive resource management techniques, by considering the awareness of
performance variation, energy consumption and cost to efficiently manage the
cloud resources.
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1 Introduction

Cloud computing has changed the way in which the businesses and individuals are used the Information
Technology (IT) by offering their customers on-demand services such as applications, platforms and
infrastructures at competitive prices depending on their usage (e.g., pay-as-you-go model). However, the
widespread adoption of cloud computing and the rising number of cloud customers have increased the
overall operating costs for cloud providers [1–5]. Thus, reducing the operational costs of different cloud
services is an active area of research.

A number of mechanisms have been adopted by cloud service providers in order to achieve economies
of scale in a cloud environment [6]. For example, dynamic consolidation presents a solution to improve
resource utilization and achieve energy efficiency in clouds. Virtual Machines (VMs) consolidation allows
VMs to move from one Physical Machine (PM) to another through live migration, without any
interruption to the service. This mechanism plays a major role in load balancing between the PMs and
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reduces the overall energy consumption by switching off the idle hosts. However, live migration of the VMs
is a resource-intensive operation that affects the performance of the migrating VM and therefore the services
running on other VMs [7]. Also, there are additional costs [8] in terms of migration time and energy
overhead, which need to be explored further [9]. Therefore, understanding the impact of VM live
migration is essential to design an efficient VM consolidation strategy. Resource provision defined as
VMs auto-scaling is another solution to provide additional capacity to the VMs on-the-fly in order to
handle service performance variations. However, it can take a few minutes for this process to start [10],
which is inappropriate for VMs that need to scale rapidly during computation [11]. In fact, there are
additional costs [8] in terms of scaling time (booting/rebooting), license fees for the new VMs (horizontal
scaling) and energy overhead that need attention [12]. Hence, understanding the impact of VMs auto-
scaling is important to design an efficient resource provision technique.

Furthermore, most of the literature studies have concentrated on reducing energy consumption and
optimizing resource utilization, rather than enhancing service performance. To illustrate that, cloud
providers such as Amazon EC2 [13] have developed their Service Level Agreements (SLAs) based on
the availability of services, without such a service performance assurance [14]. For example, consider the
situation where a number of VMs run on the same PM, and each VM is allocated its fair share of
resources. If the workload of the VM’s increases and no resources are sufficient to manage this
increasement (e.g., the workload reaches the upper level of Central Processing Unit (CPU) such as 95%
threshold). In this case, there may be resource competition leading to VMs’ performance degradation,
which may affect the fulfilment of the SLAs and therefore the revenue of the cloud service provider.
Thus, predictive mechanisms have the advantage of taking preventive actions (e.g., live migration and
auto-scaling) at an early stage to avoid service performance degradation.

The aim of this research is to investigate the dynamic resource management issues and the impact of
VMs consolidation and resource provisioning in cloud computing environments. This would help to
enhance the development of predictive resource management techniques, by considering the awareness of
performance variation, energy consumption and cost to efficiently manage the cloud resources.

The remainder of this paper is organized as follows: Section 2 presents the fundamental concepts of
cloud computing with a description of its definition, services types, deployment types and virtualization
technologies. The aspects of cloud applications and their workload patterns as well as related benchmarks
are discussed in Section 3. Section 4 reviews the existing work on cloud resource management, including
VMs consolidation and resource provisioning. Section 5 includes the overall discussion, along with a
comparison summary of the closely related works. Section 6 concludes this paper.

2 Overview

2.1 Cloud Computing

Cloud computing is a technology that uses the internet to provide computing resources as services. This
innovation allows scalable, on-demand sharing of resources and their costs between cloud customers. Also, it
provides customers with various online computing services at reasonable prices, to manage, process, and
store their data efficiently. With the cloud, customers do not need to install any kind of software on their
machines; as long as the internet connection is accessible, they can reach their data worldwide from any
computer [15].

The cloud computing system architecture consists of three standard layers, Software-as-a-Service (SaaS)
where the service is developed, Platform-as-a-Service (PaaS) where the service is deployed, and
Infrastructure-as-a-Service (IaaS) where the service is run [16]. Furthermore, cloud computing can be
deployed through many models, which can be mainly Public, Private, Hybrid, and Community clouds [17].
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2.2 Virtualization

Virtualization is a key component of the cloud computing infrastructure and is defined as: “a technology
that combines or divides computing resources to present one or many operating environments using
methodologies like hardware and software partitioning or aggregation, partial or complete machine
simulation, emulation, time-sharing, and many others” p.2, [18]. One of the main advantages of
virtualization is to abstract the Physical Machines (PMs) hardware in order to provide Virtualized Machines
(VMs) that can work in isolation and run different applications with different operating systems. By
virtualization, the VMs can be consolidated to minimize the number of active PMs using (e.g., live
migration), which would then reduce the power consumption as well as lowering the operational cost. Thus,
virtualization adds an essential value to the cloud infrastructure by increasing the physical resource
utilization, achieving significant energy savings and reducing the operational cost in cloud environments [19].

2.3 Virtual Infrastructure Manager

Cloud infrastructure providers use Virtual Infrastructure Manager (VIM) to manage their physical
resources in order to provide virtualized resources to meet their customers’ service requirements. In order
to build, deploy and manage cloud infrastructures, there are several open-source cloud management
platforms available to manage virtualized infrastructures in clouds. Some examples of the major open
source cloud platforms are OpenNebula [20], OpenStack [21] and CloudStack [22]. The following Tab. 1
summarizes some of the features of these VIMs.

Table 1: Comparison of open-source cloud platforms

Functionality OpenNebula OpenStack CloudStack

Cloud
infrastructure

Private, Public and
Hybrid Clouds

Private, Public and Hybrid Clouds Private, Public and Hybrid
Clouds

Resource
abstraction

Compute, Storage and
Network

Compute, Storage and Network Compute, Storage and Network

Architecture Modular (third- party
component)

Fragmented into many modules Monolithic central controller

Installation
difficulty

Easy (process-based
package installers)

Difficult (many choices, not fully
automation)

Medium (Few parts to install)

Supported
hypervisors

Xen, KVM, VMWare,
vCenter

Xen, KVM, VMware, HyperV,
vCenter, LXC, vSphere

Xen, KVM, VMWare, HyperV,
LXC, vSphere,

Administration Web UI, CLI Web UI, CLI Web UI, CLI

User
management

Yes Yes Yes

Live migration Yes Yes Yes

Load
balancing

Yes Yes Yes

Fault-tolerance VM scheduling,
replication

VM scheduling, replication VM scheduling, replication

High
availability

Yes Yes Yes

Security User authentication VPNs, firewall, user authentication,
others

VPNs, firewall, user
management, others

Compatibility All Amazon interfaces Amazon EC2, Amazon S3 Amazon EC2, Amazon S3

Extensibility Yes Yes Yes
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OpenNebula, OpenStack and CloudStack have a common role in providing a platform for deploying,
managing and provisioning (compute, storage and networking) resources through interfaces such as Web
User Interface (Web UI) and Command Line Interface (CLI). However, there are some differences in
terms of their architectures based on the configurations, settings and their deployment. For instance,
OpenStack has many components to install, which may increase the complexity of installation and
configuration as well as the management overhead [23]. In order to avoid this, the OpenStack
administrator has to only install the required components to meet the needs of their cloud deployment. In
contrast, OpenNebula does not have such constraints as it provides centralized deployment and has a
fine-grained core [23]. In addition to OpenNebula, OpenStack and CloudStack, there are other VIMs
available freely or commercially for the deployment and management of cloud infrastructures such as
OpenQRM [24], Eucalyptus [25], Nimbus [26] and others more.

2.4 Hypervisors

Hypervisors-based virtualization abstracts the underlying physical hardware to provide isolated
instances, called VMs, which can run their own operating system (guest-OS) [27]. These VMs are
managed by the hypervisor, which is also referred to the Virtual Machine Monitor or Manager (VMM) to
control the number of resources allocated to each VM. The hypervisor sits between the physical hardware
and OS, which is also responsible for creating, running, migrating, copying, and deleting the VMs [27].
Further, hypervisors can be implemented in different ways such as full virtualization when the hypervisor
runs on underlying physical OS and hardware virtualization when the hypervisor runs on underlying
physical hardware. Some examples of hypervisors include Kernel-based Virtual Machine (KVM) [28],
Xen [29], VMware [30] and Virtual Box [31].

2.5 Containers

Containers-based virtualization modifies the underlying host OS to provide isolated instances, called
containers, that can run different applications by sharing the same host OS [27]. Containers provide new
ways for faster-running applications, developing, and shipping. It represents a light-weight alternative
instance when compared to VM, thus, instead of building one application, developers can build a suite of
components, called micro-services, which come together over the container [32]. Most of cloud service
providers have moved to Docker [33] such as Microsoft, Google and Amazon Web Services to provide
the infrastructure that supports the container standard [34]. Containers are better suited to micro-services
than VMs, they can start up and shut down more rapidly as well as their resources can be scaled
independently. However, containers do not provide full isolation, which may cause security issues.
Therefore, hypervisor-based is more appropriate than container-based virtualization in terms of isolation
and security concern. Some examples of containers include Docker [33], Linux Containers (LXC) [35]
and Warden Container [36].

3 Cloud Computing Applications

Cloud applications should be designed specifically with the support of a cloud computing architecture;
thus, the applications need to break down into separate components to support the distribution among cloud
resources. Also, the cloud applications should be designed to support scalability and elasticity, which allow
dynamic reservation and release of the cloud resources to match the changes of the workloads.

3.1 Workload Patterns

In cloud environments, different applications have different resource usage requirements. Cloud
applications may also experience different patterns of workload depending on the customers’ usage
behaviors, and these patterns of workload consume power differently based on the services and resources
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they use. As indicated in Fehling et al. [37], the cloud workload patterns can be categorized as static
workload, periodic workload, once-in-a-lifetime workload, unpredictable workload, and continuously
changing workload.

As depicted in Fig. 1, a static workload pattern occurs when an application is running continuously with
the same and stable resource utilization over a period of time. Private websites and wikis are examples of
such static workload. A periodic workload pattern can be experienced when an application is running
with a repeated resource utilization peaks occurring over time intervals (e.g., seasonal changes).
Examples of this type of workload include shopping websites during holiday periods, sporting events
(Olympics) and traffic during rush hours.

Furthermore, when an application is running with stable resource utilization and peak once over time, it
is considered once-in-a-lifetime workload pattern. Payroll, billing and backup applications are examples of
once-in-a-lifetime tasks or jobs. An unpredicted workload pattern occurs when an application has a random
peak (constantly fluctuating) of resource utilization over time. Unpredictable traffic and forecasting are
examples of unpredicted workload. Finally, when the application is running with stable resource
utilization and rapidly decreases or increases over time, it experiences a continuously changing workload
pattern [37]. Examples of such type of workload include social networking (Facebook and Twitter),
open-source downloads and Android applications.

As mentioned early, these types of application workload patterns can have a different impact on energy
consumption based on the resources they consume.

3.2 Benchmarking

Benchmark suites are adopted to evaluate cloud services to support the configuration and adaptation of
applications before they start utilizing cloud resources, such as VMs and containers. Benchmarking aims at
defining and reproducing execution conditions for the target system (application, resource, service) to be
evaluated [38]. It also provides a set of metrics in order to quantify the relative software and hardware
performance, and understand how cloud application workloads behave as the underlying cloud resources
are stretched and approach full capacity [39].

In this regard, the Standard Performance Evaluation Corporation (SPEC) [40] launched a tool that
provides a set of synthetic workloads, which exercises the CPU, memory and disk performance as well as
tests the energy efficiency of a system at different load levels. Generally, this benchmark exerts graduated
levels of load on a given machine, normally evaluating the energy consumption and performance of
server hardware between (idle 0% and fully active 100%) load at 10% graduated load levels.

Similarly, a simple benchmarking tool for POSIX systems, called Stress-ng [41], has been designed as a
workload generator. This tool has the capability to simulate a wide range of workload patterns such as static,
periodic, continuously changing, and once-in-a-lifetime workload patterns. Further, the Stress-ng workload
generator is able to simulate both single and multi-threaded applications, as well as test workloads that are
resource-bound in many ways, e.g., applications that are both CPU and memory intensive.

Figure 1: Cloud application workload patterns [37]
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4 Dynamic Resource Management in Cloud Computing

Resource management is one of the most important problems in cloud infrastructures, which can be
expressed as a multi-objective problem since there are several conflicting objectives (e.g., maintain the
performance, reduce energy and costs) that need to be optimized [9,42]. Therefore, cloud service
providers have applied dynamic resource management through VMs’ consolidation and resource
provisioning techniques in order to meet the performance requirements of applications, while minimizing
the operation costs and energy consumptions in cloud data centers.

4.1 VM Consolidation

One of the benefits of virtualization is the VMs’ consolidation strategy, which allows cloud service
providers to migrate and reallocate the VMs from one host to another in order to increase resource
utilization and reduce energy costs in cloud data centers. The aggregation of VMs through live migration,
therefore, has a significant impact on energy efficiency by gathering several VMs into the minimum
number of hosts and switching the idle hosts into a power-saving mode. However, VM consolidation is
not a trivial task in case of unpredicted increases in demand, as it can result in generates unnecessary
migrations, violations of the SLA and increases the operation cost due to the migration processes [43].
Therefore, dynamic VMs consolidation requires an estimate of the workload demand in order to handle
the fluctuating demands of cloud customers, efficiently manage cloud resources and avoid unnecessary
migrations [44].

VM live migration acts as a backbone of the VM consolidation process, which can be defined as the
capability of transferring a complete state of the VM (including CPU states, memory pages, storage and
network connections) from the source host to the destination host, without any interruption in the service
or application [45,46]. There are two types of VM migration, which are currently used in cloud data
centers, namely, post-copy and pre-copy migration.

� Post-copy: Transfers a VM’s memory contents after its processor state has been sent to the destination
host. However, this method can take a long migration time, which consumes the resources on both
source and destination hosts due to the residual dependency. Also, it has some downtime initially,
which makes the VM’s service unavailable for a certain time period [47].

� Pre-copy: First copies the memory state to the destination, through iterative phases, after which its
processor state is transferred to the destination. In this way, the VM can be migrated from one host
to another with a close to zero downtime [48].

Live migration efficiency of multiple VMs has been investigated in various research studies. For
instance, Ye et al. [45] presented a live migration framework of multiple VMs based on different resource
reservation mechanisms. This framework aims to improve migration efficiency by using parallel
migration and workload-aware migration strategies. Experimental results show that the performance
overheads of the live migration process are affected by workload types, memory size and the number of
CPUs. Thus, parallel migration and workload-aware migration strategies can efficiently improve the
performance of migrated VMs. However, the performance overhead incurred by concurrent VM
migrations may increase the migration interference on the destination host.

Zhao et al. [49] presented a VM placement method based on VM service performance, which aims to
address VMs performance degradation issue when placing the VMs. This method takes the application-
aware resource consumption characteristic into consideration to place the VMs on appropriate PMs in
order to guarantee the VM performances and ensure customers’ Quality of Experience (QoE). The
proposed method is evaluated in a real cloud platform (OpenStack) using video streaming applications.
The results show that the proposed method can minimize PM performance degradation and guarantee the
VM performance compared to other methods. However, their approach only focuses on the resource
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consumption characteristic when performing VMs placement and does it not take the power consumption of
the PMs and VMs into account.

Moreover, Ferreto et al. [50] proposed an approach called dynamic consolidation with migration control,
which aims to reduce the number of VMmigrations and the number of active hosts using linear programming
formulation. This approach gives a higher priority to migrate VMs with variable workload instead of the
VMs with a stable workload in order to reduce the number of migrations and required hosts with a
minimal SLA violation. They compared the proposed approach with static and dynamic consolidation
approaches using TU-Berlin and Google data center workloads. The evaluation results demonstrate that
the suggested approach performs well in terms of the number of PMs used and VMs migrated. However,
this approach does not take into account VMs power consumption and migration costs when
consolidating the VMs.

Farahnakian et al. [46] presented a modified approach of Best Fit Decreasing (BFD) algorithm, named a
Utilization Prediction-aware Best Fit Decreasing (UP-BFD) algorithm. This approach employed a utilization
prediction model to eliminate unnecessary VM migrations and reduce SLA violations using K-Nearest
Neighbor Regression (K-NNR) model. The prediction model is trained by generating historical data based
on different types of workloads developed in the CloudSim. This approach also considers both the
current and future utilization of resources in order to perform VM consolidation based on the hosts CPU
and memory utilization thresholds. Although this work focuses on reducing PMs energy consumption, the
number of VM migrations and SLA violations, they do not consider the impact of energy consumption
that occurs by VMs live migration decisions in their approach.

Further, Beloglazov et al. [51] addressed the problem of VMs consolidations under Quality of Service
(QoS) constraints in cloud data centers. They employed the Markov chain model and the control algorithm to
detect the overloaded hosts and then migrate some VMs in order to achieve a specified QoS goal. This
dynamic VMs consolidation aims to improve the PMs resource utilization (particularly CPU utilization)
for stationary workloads, which also can be applied for non-stationary workloads using the Multisize
Sliding Window workload estimation technique. Simulation results using workload traces on PlanetLab
servers demonstrate that the introduced method outperforms the benchmark methods while meeting the
QoS goal. However, this method focused on improving the performance of cloud applications by
reducing the number of overloaded hosts, but without explicitly considering energy and cost of VMs
migrations, as a part of VMs consolidation decision criterion.

Xu et al. [52] proposed a lightweight interference-aware VM live migration strategy, called iAware. It
focuses on the performance of VMs during and after live migration, considering the interference of the
migration process on both source and destination PMs. The iAware jointly estimates, analyses and
minimizes both the migration time and co-location interference among VM’s based on a multi-resource
demand and supply estimation model. The experiments are conducted in a real cloud environment with
different workloads using a Xen hypervisor cluster platform. The results are compared with traditional
interference-unaware algorithms and show that the iAware can estimate VM performance interference
during live migration and meet the SLA requirements. However, their work does not consider the energy
consumption overhead of VMs migrations.

Beloglazov et al. [53] presented an energy efficient resource management policy for cloud data centers.
The proposed method mainly focuses on dynamic re-allocation of VMs using live migration in order to
minimize the energy consumption, while maintaining the QoS requirements. They evaluated the proposed
method using a CloudSim and the results show a reduction of energy consumption in a cloud data center.
However, the proposed method does not show the effectiveness of the heterogeneity of the PMs in terms
of energy efficient when performing the live migration of the VMs.
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Furthermore, Beloglazov et al. [54] presented an energy-aware VM consolidation policies to optimize
the resources utilization and energy efficiency in a cloud data center. In this approach, the VMs are migrated
from one host to another in order to increase the overall servers’ utilization and reduce infrastructure costs
(energy costs) by switching off the idle hosts. Thus, upper and lower CPU utilization thresholds for each host
are set along with several VM selection policies, in order to identify from which host the selected VMs
should be migrated. The experiment results conducted in the CloudSim show that this approach leads to
an improvement of energy efficiency in cloud data centers. Likewise, Farahnakian et al. [42] proposed a
Self-Adaptive Resource Management System (SARMS) for efficient resource management in cloud
infrastructure. The SARMS provides an adaptive utilization threshold (CPU and memory) mechanism to
dynamically identify the overloaded and underloaded PMs. This system has two steps, migration of VMs
from the overloaded PMs to prevent SLA violations, and consolidation of VMs into a minimum number
of active PMs in order to reduce energy consumption. They evaluated the proposed system using the
CloudSim based on real workloads from Google and PlanetLab. The obtained results show that the
SARMS can achieve performance requirements, while reducing PMs energy consumption and the number
of VM migrations. Nevertheless, these approaches do not consider the energy consumption overhead and
the costs of VMs consolidation.

Beloglazov et al. [55] proposed a technique for dynamic VM consolidation based on CPU utilization
thresholds. This technique focuses on cloud resource management strategies (e.g., VM migration) with
the aim to optimize resource usage and reduce energy consumption, while maintaining the SLAs. It can
be achieved by migrating the VMs from the underloaded hosts in order to reduce the number of active
hosts and saving energy. To re-allocate the VMs, a Modified Best Fit Decreasing (MBFD) algorithm is
used to sort the selected hosts based on their CPU utilization and energy efficiency. They evaluated the
proposed technique through simulations with different types of workloads using PlanetLab servers. The
results show that this technique outperforms other migration policies in terms of the number of VM
migrations and SLA violation, while showing a similar level of energy consumption. However, the
proposed technique lacks to consider the actual cost and power consumption caused by VMs consolidation.

Also, Malekloo et al. [56] introduced a Multi-objective Ant Colony Optimization (MACO) approach for
VMs placement and consolidation algorithms. In this regard, the VMs’ placement algorithm aims to
minimize energy consumption, CPU resource wastage and communication cost. While, the VM
consolidation algorithm aims to reduce SLA violations, VMs migration and the number of active PMs.
They evaluated the proposed approach using the CloudSim based on eight performance metrics. The
results show that this approach outperforms the other approaches in terms of achieving the balance
between energy consumption, system performance and QoS requirements. Yet, this approach focused on
minimizing PMs energy consumption without taking into consideration the energy consumption incurred
by VMs consolidation.

Zhou et al. [57] proposed an adaptive strategy for energy and performance efficient VM consolidation,
called (DADTA). The DADTA strategy aims to minimize energy consumption while satisfying the SLAs in
the cloud data center. They applied a specific adjustment of thresholds to adapt the dynamic workload
changes and then performed VM consolidation by using the DADTA in order to improve the overall
optimization. To evaluate the proposed strategy, a modified prediction model conducted on the CloudSim
is used to deal with the time-series data obtained from the Google cluster workload trace, and the
findings show that the proposed DADTA outperforms other benchmarks in terms of minimizing the PMs
energy consumption and SLA violations. In their work, the consolidated VMs are homogeneous and only
considers PMs power consumption.

Moreover, Beloglazov et al. [43] presented adaptive algorithms for dynamic VM consolidation based on
a statistical analysis of historical workload data. Statistical models are used to calculate the upper and lower
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CPU utilization thresholds of each host. If the host is determined to be overloaded, one or more VMs are
selected to be migrated from the host to another suitable one in order to optimize the resource usage and
maintain a high level of SLAs. On the other hand, if the host is determined as underloaded, all hosted
VMs are selected to be migrated from the host and switch it to the sleep mode in order to reduce the
energy consumption. They evaluated the proposed algorithms through the CloudSim using workload
traces from PlanetLab, considering the heterogeneity of PMs and VMs. The results of the experiments
show that the proposed algorithms outperform other dynamic VM consolidation algorithms in terms of
the level of SLA violations and the number of VM migrations. However, this work only considers PMs
energy consumption and does not refer to VMs energy consumption.

Verma et al. [58] emphasized the importance of taking migration cost into account for a fine-grain VM
consolidation strategy. Therefore, Zakarya et al. [59] proposed a VM consolidation technique, named a
Consolidation with Migration Cost Recovery (CMCR). This technique aims to explore the ability of the
VMs to recover their migration costs. In order to achieve that, the VMs should firstly be migrated to an
energy efficient host and then continue to run them for a certain period of time. A linear power model is
used to identify the power consumption for the target host in order to check the ability of the VMs to
recover their migration costs. They evaluated the CMCR through CloudSim using real workload traces
from a Google cluster. The results show that by using the CMCR the majority of the migrated VMs can
recover their migration cost. However, their work is applicable only to the hosts that follow a linear
power model and does not consider the heterogeneity of PMs or VMs. Similarly, Verma et al. [58]
introduced a power-aware application placement framework for virtualized server clusters, called
pMapper, which dynamically places the VMs to minimize the power consumption and the migration cost,
while meeting the performance requirements. In their framework, they have extended the First Fit
Decreasing (FFD) heuristic algorithm in order to migrate the VMs to suitable hosts. This is aimed to
minimize the data center’s energy consumption by reducing the number of active hosts, while taking into
account the VMs migration cost. They have implemented the pMapper framework on IBM testbed with
heterogeneous hosts using a set of benchmark applications. The results show that the pMapper
outperforms other power unaware algorithms in terms of minimizing the PMs power consumption and
VMs migration costs, while meeting the application performance guarantees. However, their framework
does not provide any information regarding the migration costs calculation.

4.2 Resource Provisioning

Cloud service providers support an on-demand resource provisioning model, called auto-scaling, which
provides additional resources requested by applications using vertical and horizontal scaling techniques.
Generally, the auto-scaling can be defined as the ability of a system or users to add and remove resources
(such as CPU, memory), which is beneficial for adapting to workload variations and ensuring consistent
performance with lower costs [8,12]. Cloud providers such as Amazon Web Services (AWS) [60] offer
this service.

Auto-scaling is a dynamic property for cloud computing, and it comes in two types, namely, vertical and
horizontal scaling. The vertical scaling is used to add or release virtual resources dynamically (e.g., virtual
CPUs and memory) inside the VMs, whereas horizontal scaling is used to create or delete VMs, all of which
were based on application requirements. However, the latter mechanism may take a few minutes to initiate
[10,61–63], which may be unsuitable for VMs that need to rapidly scale during the computation [11,64].

To achieve the scalability of cloud resources a combination of these two scaling techniques can help to
find an optimal scaling strategy [63]. However, most of the vertical and horizontal scaling approaches are
reactive methods which happen after detecting there are not enough resources for an application [64,65].
Thus, it is desirable if the methods can be scaled earlier than the time when the workload actually
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increases. This can be achieved by using proactive methods that can predict workloads of applications and
scale the resources commensurate with the predicted workload.

A number of solutions have been proposed to support resource elasticity for cloud applications. For
example, Ficco et al. [9] presented a new approach for managing elastic resources reallocation in cloud
infrastructures using the coral-reefs algorithm and game theory optimization. This approach uses a multi-
objective optimization to maintain customers SLAs, minimize resource consumption and cost during the
auto-scaling and migration processes. In their work, the coral-reefs algorithm is used to model the
elasticity of cloud resources, whereas the game theory is used to optimize the aims of the service provider
expressed through resource reallocation strategies with respect to the customer’s requirements. The
experimental results show that the combination of coral-reefs algorithm and game theory optimization
achieves the elasticity of cloud resources and leads to significant performance improvements. However,
the energy-related cost when performing the auto-scaling and migration is not considered in their approach.

Likewise, Tighe et al. [66,67] developed a rule-based approach that combines the auto-scaling of
applications with dynamic VM allocation to match current workload demands and maintain SLA
achievement. In their approach, vertical scaling is performed to scale up and down the VMs according to
their resource requirements to run applications, as well as the VMs are consolidated into a minimal
number of PMs using live migrations in order to switch off the idle PMs and saving energy costs. As
shown on their simulation results, they argued that their combined approach can achieve better
application performance with a reduction in VM live migrations compared to the independent approaches.
However, their approach only considers the vertical scaling of the scaled resources and do not consider
the prediction of these resources. In addition, the costs of the scaled resources are not considered.

Dawoud et al. [68] proposed a dynamic resource provisioning approach that aims to allocate the
minimum resources required to handle the future workload demands while maintaining the Service Level
Objectives (SLOs). Their approach includes three controllers for CPU, memory, and application to
guarantee efficient resource allocation and optimize the application performance. A linear prediction
model is used to predict the future resource requirements for efficient allocation and correspond with the
workload demands. They have evaluated the proposed approach using the Xen hypervisor with a
synthetic workload, and the results show that their controllers are capable to horizontally scale the VMs
to correspond with the workload demands while mitigating the SLO violation. However, their approach
only considers the horizontal scaling to cope with VMs workload demands without considering the
vertical scaling technique. Also, the energy consumption of provisioned resources is not considered.

Moreover, Meng et al. [69] proposed a joint-VM provisioning approach that estimates the VMs capacity
needs through statistical multiplexing principles based on their workload patterns. The main idea of this
approach is to borrow unused resources from low utilized VMs and reallocated these resources to the
VMs with high utilization in order to achieve the application performance requirements. The proposed
approach is evaluated based on data collected from commercial data centers using simulations. The
results demonstrate that the proposed joint-VM provisioning approach has improved the overall resource
utilization by 45% compared to the individual-VM provisioning approaches.

Also, Gandhi et al. [12] investigated the impact of resource auto-scaling on cost, performance and
provisioning times for cloud applications. They employed the Amdahl’s Law formula to model service
time scaling, the queueing-theoretic concepts to model performance scaling, and a Kalman filtering
approach to estimate the performance model parameters. They implemented their approach on OpenStack
and the results show the ability of the proposed approach to determining the most cost-effective scaling
option for a given workload, considering both horizontal and vertical scaling. However, this approach
does not consider the prediction of resource requirements and their energy consumption when performing
the scaling decisions.
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Dutta et al. [8] presented an automatic scaling framework called (SmartScale), which uses a combination
of horizontal and vertical scaling in order to optimize the resource usage and the reconfiguration cost incurred
due to scaling. The SmartScale is a proactive technique that used a polynomial regression in order to estimate
the resource requirements to perform the scaling decisions for the next time interval. They evaluated their
framework using a real cloud testbed and the results show that the SmartScale can scale the required
resources to run applications with the lowest reconfiguration cost. However, this framework does not
consider the power consumption of required resources incurred due to scaling decisions.

5 Overall Discussion

Cloud resource management has the ability to adapt VMs’ consolidation and resource provisioning in
order to meet the performance requirements of applications, minimize the operation costs and energy
consumptions in cloud data centers.

Section 4 has reviewed the related work on VMs’ consolidation and resource provisioning mechanisms
in cloud environments.

In terms of VMs consolidation, a commonly known NP-hard optimization problem is closely related to
it, where the most important objectives are minimizing resource usage and energy consumption, while
satisfying the SLAs. As discussed in Section 4.1, the work in Ye et al. [45,49,52] aimed to improve the
VMs performance during the migration process, considering the application-aware resource consumption
characteristic, but their models only focused on the resource consumption and do not consider the energy
consumption overhead of VMs migrations. Moreover, the work presented in Farahnakian et al.
[42,43,53–56] mainly focused on dynamic re-allocation of VMs using live migration to increase the
overall servers’ utilization and minimize the energy consumption, while maintaining the required QoS.
Yet, these approaches focused on minimizing PMs energy consumption without taking into consideration
the energy consumption incurred by VMs consolidation. Also, the work presented in Verma et al. [58,59]
have addressed the issue with migration cost, considering the energy consumption at both PMs and VMs
levels. Though there are still limited as the model in Verma et al. [58] does not provide any information
regarding the migration cost calculation, whereas, the work in Zakarya et al. [59] is only applicable to the
hosts that follow a linear power model and does not consider the heterogeneity of PMs or VMs. Further,
the work presented in Farahnakian et al. [46,51,57] employed workload prediction models based on
historical data to eliminate unnecessary VM migrations, minimize energy consumption and SLA
violations. These models focused on improving the performance of cloud applications by reducing the
number of overloaded hosts, but without explicitly considering energy and cost of VMs migrations, as a
part of VMs consolidation decision criterion.

In terms of VMs resource provisioning, a fine-grained resource provisioning while ensuring the
performance and the SLAs for applications are required, which makes finding the optimal and efficient
scaling option a very challenging problem. In Section 4.2, the work in Gandhi et al. [12] investigated the
impact of resource auto-scaling on cost, performance, and provisioning times in order to determine the
most cost-effective scaling option for cloud applications. Further, the work presented in Ficco et al.
[9,66,67] combined the auto-scaling of applications with dynamic VM allocation to match current
workload demands and maintain SLA achievement. However, the energy consumption related to the
auto-scaling and migration decisions is not considered in their approaches. Moreover, the work presented
in Dawoud et al. [8,68,69] considered the prediction of resources provisioning to handle the future
workload demand while maintaining the SLOs, but these approaches do not consider the power
consumption of required resources incurred due to scaling decisions.

Thus, there is still a need for predictive modelling that dynamically supports VMs live migration and
auto-scaling decisions, considering the trade-off between cost, power consumption, and performance
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during service operation, which can help cloud providers to make better use of their infrastructures and
efficiently manage cloud resources [70,71].

The following Tab. 2 provides a comparison summary of the closely related works on VMs’
consolidation and resource provisioning that considers the workload, energy consumption and cost in
cloud environments, followed by a comparison summary of the closely related works on the prediction of
these mechanisms, as shown in Tab. 3.

Table 2: Summary of existing models for VMs’ consolidation and resource provisioning

Criteria
by

Workload consideration Energy consumption consideration Cost consideration

PMs level VMs level PMs level VMs level Cost of
migration

Cost of
scaling

[45] Homogeneous
PMs only

Homogeneous
VMs only

Not considered Not considered Not
considered

__

[49] Heterogeneous
PMs

Heterogeneous
VMs

Not considered Not considered Not
considered

__

[52] Homogeneous
PMs only

Heterogeneous
VMs

Homogeneous
PMs only

Not considered Not
considered

__

[53,54,56] Heterogeneous
PMs

Not considered Heterogeneous
PMs

Not considered Not
considered

__

[42] Heterogeneous
PMs

Heterogeneous
VMs

Heterogeneous
PMs

Not considered Not
considered

__

[43,55] Heterogeneous
PMs

Not considered Heterogeneous
PMs

Not considered Considered __

[59] Homogeneous
PMs only

Homogeneous
VMs only

Homogeneous
PMs only

Homogeneous
VMs only

Considered __

[58] Heterogeneous
PMs

Heterogeneous
VMs

Heterogeneous
PMs

Heterogeneous
VMs

Considered __

[9] Homogeneous
PMs only

Not considered Not considered Not considered Considered Considered

[66,67] Homogeneous
PMs only

Homogeneous
VMs only

Homogeneous
PMs only

Not considered Not
considered

__

[12] Homogeneous
PMs only

Homogeneous
VMs only

Not considered Not considered __ Considered

Table 3: Summary of prediction models for VMs’ consolidation and resource provisioning

Criteria
by

Workload prediction consideration Energy prediction
consideration

Cost estimation consideration

PMs level VMs level PMs level VMs level Cost of
migration

Cost of scaling

[46] Heterogeneous
PMs

Heterogeneous
VMs

Not considered Not
considered

Not
considered

__

[51] Homogeneous
PMs only.

Not considered Not considered Not
considered

Not
considered

__

472 CSSE, 2021, vol.36, no.3



6 Conclusion

This paper has introduced a comprehensive review on the subject of dynamic resource management in
cloud computing environments. Firstly, it has introduced the fundamental aspects of cloud computing
including its definition, services types, deployment types and virtualization technologies. Secondly, it has
presented the concepts of cloud applications and their workload patterns as well as related benchmarks.
This is followed by positioning the work in the relevant literature, focusing on cloud resource
management issues. A thorough review of related works that focus on VMs consolidation and resource
provisioning as well as their predictive technologies has presented. This paper has finally concluded with
an overall discussion served as potential research directions, along with a comparison summary of the
closely related works.
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