
Efficient Training of Multi-Layer Neural Networks to Achieve Faster Validation

Adel Saad Assiri*

Management Information Systems Department, College of Business, King Khalid University, Abha, Saudi Arabia
�Corresponding Author: Adel Saad Assiri. Email: adaseri@kku.edu.sa

Received: 25 October 2020; Accepted: 26 December 2020

Abstract: Artificial neural networks (ANNs) are one of the hottest topics in com-
puter science and artificial intelligence due to their potential and advantages in
analyzing real-world problems in various disciplines, including but not limited
to physics, biology, chemistry, and engineering. However, ANNs lack several
key characteristics of biological neural networks, such as sparsity, scale-freeness,
and small-worldness. The concept of sparse and scale-free neural networks has
been introduced to fill this gap. Network sparsity is implemented by removing
weak weights between neurons during the learning process and replacing them
with random weights. When the network is initialized, the neural network is fully
connected, which means the number of weights is four times the number of neu-
rons. In this study, considering that a biological neural network has some degree
of initial sparsity, we design an ANN with a prescribed level of initial sparsity.
The neural network is tested on handwritten digits, Arabic characters, CIFAR-10,
and Reuters newswire topics. Simulations show that it is possible to reduce the num-
ber of weights by up to 50% without losing prediction accuracy. Moreover, in both
cases, the testing time is dramatically reduced compared with fully connected ANNs.

Keywords: Sparsity; weakweights;multi-layer; neural network; NN; trainingwith
initial sparsity

1 Introduction

The powerful tools of artificial intelligence are increasingly attractive for the analysis of real-life problems.
Due to the proven efficiency of deep learning, artificial neural networks (ANNs) are the most frequently used
strategy, with substantial applications and results in areas such as physics [1], engineering [2], and biology [3].
ANNs are usually composed of multiple layers of (artificial) neurons designed to replicate the functioning of
biological neurons. In traditional ANN designs, all neurons are interconnected; that is, there exists a weight
between all neurons, meaning that the number of weights is quadratic in the number of neurons. This leads
to significant complexity of the learning process associated with a solution of an appropriate error
minimization problem with respect to these weights. When the number of neurons is small, the complexity
is feasible, but this can change as the number of neurons increases.

To resolve this issue, various fast and efficient learning strategies have been developed, including the
scaled [4] and adaptive [5] conjugate gradient algorithms, adaptive learning rate method [6], sensitivity

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI:10.32604/csse.2021.014894

Article

echT PressScience

mailto:adaseri@kku.edu.sa
http://dx.doi.org/10.32604/csse.2021.014894
http://dx.doi.org/10.32604/csse.2021.014894

analysis [7], normalized perceptron-based methods [8], improved search methods [9], distributed Newton
methods [10], and accelerated methods [11]. Alaba et al. [12] offered a comprehensive review of some
recent advanced deep learning strategies. Pruning algorithms have also been shown to be quite effective
in the analysis of various types of data. For a comparative study, see [13].

A novel method inspired by biological neural networks was proposed by Le Cun et al. [14] and
developed by Mocanu et al. [15], in which weights between neurons are adaptively updated. Specifically,
network initialization is accompanied by the creation of random weights. At each learning stage (epoch),
weak weights, that is, those smaller than a prescribed threshold, are removed and new weights are created
(see Fig. 1). Eventually, the training of the network is carried out only for strongly connected neurons,
substantially reducing the complexity of the associated minimization problem. The pseudocode of the
training algorithm, called the sparse evolutionary training (SET) algorithm, is shown in Algorithm 1.

Figure 1: Schematic representation of an ANN with sparse connectivity

Algorithm 1: Sparse evolutionary training pseudocode

1 Initialization of ANN model;

2 for Each fully connected layer do

3 replace connections with a random sparse connection set;

4 End

5 Initialize training algorithm parameters;

6 %Training

7 for Each training epoch do

8 perform training procedure to update weights;

9 for each sparse layer of network do

10 remove weights with small absolute values;

11 add new random connections;

12 End

13 End

436 CSSE, 2021, vol.36, no.3

A similar approach [16] suggested random dropouts of neurons together with their connections with
other neurons. This “dropout” technique is often used to overcome overfitting problems. However, as
shown below, it can also be used to train sparse ANNs.

This study aims to develop the idea of sparse connectivity by training networks with an initially reduced
number of weights. Unlike Mocanu et al. [15], whose network was initially designed as fully connected and
whose weights were adaptively updated during the learning process, we suggest the training with initial
sparsity (TIS) method, which uses a reduced number of weights at network initialization and reduces
weak weights during training. The simplest gradient descent algorithm is used for backpropagation (BP).
A more advantageous learning algorithm can be developed using more advanced minimization techniques.

The rest of the paper is organized as follows. Section 3 presents the details and pseudocode of the
algorithm. In Section 4, we apply TIS to the recognition of handwritten digits and Arabic characters and
document the performance advantages of ANNs with reduced connectivity over the fully connected
network. In Section 5, we compare TIS with similar methods. Conclusions and future research directions
are discussed in Section 6.

2 Literature Review

Multi-layer neural networks have received significant attention and wide interest from scholars and
scientists, as they are a powerful tool and efficient method in many fields, such as image processing [17],
pattern recognition [18], natural language processing [19], VLSI design [20], and system diagnosis [21].

Yu et al. [22] developed a new ANN training technique in which neurons are computed neuron by
neuron; they also implemented two different methods, namely, the Leveuberg–Marquardt (LM) and error
backpropagation (EBP) methods. Schwenk et al. [23] presented a detailed survey on the best methods and
practices of training a large ANN with more than 5.5 billion words. Adhikari et al. [24] developed a
novel high-performance strategy for implementation in chip learning in multi-layer neural network hardware.

Recently, researchers used a metaheuristics algorithm in a multi-layer perceptron (MLP). Metaheuristics
include the lightning search algorithm [25], ant lion optimization [26], the Salp swarm algorithm [27], moth-
flame optimization [28], the whale optimization algorithm [29–32], and the crow search algorithm [33].
These algorithms have been successfully applied in training MLPs. MLPs can be employed in three
different ways, which are each very efficient. First, an MLP can be used to obtain the weights of optimal
connections. Second, it can be used to find the optimal architecture. Finally, it can be used to tune the
arguments (parameters) of the algorithms.

3 TIS Algorithm

TIS is a training algorithm for an ANN with reduced connectivity. By reducing the number of weights,
we aim to improve the computational effectiveness of the testing (validation) process compared with a fully
connected ANN. The reduction of weights should not substantially affect the accuracy. Thus, we seek faster
validation without reducing accuracy and possibly improving it.

To illustrate, we construct a standard neural network with two hidden layers, where WI ¼ WI
i;l

� �
n1�n2

,

WH ¼ WH
i;l

� �
n1�n2

, and WO ¼ WO
i;l

� �
n1�n2

are matrices of the weights between the input and first hidden

layer, first and second hidden layers, and second hidden layer and output layer, respectively;
bH1 ; bH2 ; and bO are bias vectors of the layers corresponding to their superscripts; and n1; n2; and n0 are
the numbers of neurons in the corresponding layers.

CSSE, 2021, vol.36, no.3 437

The training process has two steps: forward and backward propagation. Forward propagation can be
described as follows. Given an input vector xj 2 RnI and a target vector t 2 RnO ; j ¼ 1; 2; . . . ; n1,
consider the standard sigmoid function as the activation function:

f xð Þ ¼ 1

1þ exp �xð Þ ; (1)

whose responses for the first and second hidden layers will be

h1 ¼ f W IXj þ bH1
� �

; (2)

h2 ¼ f WHh1 þ bH2
� �

: (3)

The real output yj 2 RnO will then be evaluated as

yj ¼ f WOh2 þ bO
� � ¼ yj1; yj2; . . . ; yjnO

� �
: (4)

In the BP stage, the standard quadratic error function is considered:

Ej W
1; bH1 ;WH ; bH2 ;WO; bO

� � ¼ 1

2

Xn0
k¼1

tjk � yjk W 1; bH1 ;WH ; bH2 ;WO; bO
� �� �2

: (5)

The gradient of E with respect to the weight matrices and bias vectors has the following components:

@Ej

@WI
i;l

¼ �xih1l 1� h1lð Þ
Xn2
n¼1

h2l 1� h2lð ÞWh
l;n �

XnO
k¼1

tjk � yjk
� �

yjk 1� yjk
� �

WO
n;k

" #
; (6)

@Ej

@bH1
l

¼ �h1l 1� h1lð Þ
Xn2
n¼1

h2l 1� h2lð ÞWh
l;n �

XnO
k¼1

tjk � yjk
� �

yjk 1� yjk
� �

WO
n;k

" #
; (7)

@Ej

@WH
i;l

¼ �h1ih2l 1� h2lð Þ �
XnO
k¼1

tjk � yjk
� �

yjk 1� yjk
� �

WO
l;k ; (8)

@Ej

@bH2
l

¼ �h2l 1� h2lð Þ �
XnO
k¼1

tjk � yjk
� �

yjk 1� yjk
� �

WO
l;k ; (9)

@Ej

@WO
i;l

¼ �ðtji � yjiÞyji 1� yji
� �

h2l; (10)

@Ej

@bOl
¼ �ðtji � yjiÞyji 1� yji

� �
: (11)

At the NN initialization step, random weights and biases are set. A prescribed level of initial sparsity is
set by randomly removing the corresponding portions of the weights. Standard gradient descent is then used
to update the remaining weights and biases according to the iterative procedure defined by

Wnew ¼ W � a
@E

@W
; bnew ¼ b� a

@E

@b
where a is a constant learning rate.

At each epoch from the first to the last, after updating all weights, the weak weights (those with absolute
values close to zero) are removed and replaced by random weights. At the last epoch, weak weights are
removed and not replaced. The pseudocode of this process is presented as Algorithm 2, and the
corresponding flowchart is shown in Fig. 2.

438 CSSE, 2021, vol.36, no.3

Algorithm 2: Pseudocode for the sparse network process

W lð Þ create Initial Sparse Weight size; Sparsity percentð Þ
b lð Þ random small bias

epoch set the number of epochs

a set the learning rate

for i such that 1 � i � epoch do

W lð Þ back propagation
..
.

b lð Þ back propagation

if i = epoch then

add = false

Else

add = true

Add Delete connections W lð Þ; percent; add
� �

1: procedure create Initial Sparse Weight size; percentð Þ
W random small number sizeð Þ
Delete random percent � Total Number Of Weights connections

return W

2: end procedure

3: procedure Add Delete Connections W ; percent; addð Þ
W Sorted sort abs Wð Þð Þ Increasing order

Number Of Weights That Would be deleted floor Total Number Of Weights � percentð Þ
Value value of W Sorted at the position Number Of Weights That Would be deleted

forall w 2 W do

if abs wð Þ � Value then

w 0

k 0

while k < Number Of Weights That Would be deleted do

if add is true then

random w 2 W that is 0 w random Small Number k k þ 1

4: end procedure

4 Results of Simulation

As a simple application of the algorithm, we compare the performance of ANNs with reduced
connectivity to that of fully connected ANNs. The algorithm was implemented in MATLAB and run on
an Intel Core i7-4700MQ CPU @ 2.40 GHz (8 CPUs).

CSSE, 2021, vol.36, no.3 439

4.1 Handwritten Digits (MNIST Dataset)

First, we consider the publicly accessible MNIST dataset of handwritten digits, which contains 6·104

samples for learning and 104 for testing1 (see also [34] for a comparison of different machine learning
algorithms for the MNIST dataset). Each sample was a 28 pixel × 28 pixel image. The data were in the
xj; tj

� � 2 R785; j ¼ 1; 2; 7; 104 format, where xj is the input vector and tj is the perfect output guess. We
set n1 ¼ 784; n1 ¼ 16; n2 ¼ 500; and n0 ¼ 10. Training was carried out with a fixed learning rate
/ ¼ 0:1 in 200 epochs with 5,000 learned samples per epoch.

By experimenting with different levels of initial sparsity, we observed that it is possible to achieve
accuracy comparable to that of a corresponding fully connected NN even with substantially fewer
weights. Tab. 1 shows that the NN with reduced number of weights has slightly better accuracy than the
fully connected NN. Specifically, the accuracy of the NN with 50% initial sparsity was 0.65% higher.

Tab. 2 presents more quantitative information about the number of remaining weights, including the
complexity of error minimization in the appropriate layer. Specifically, for a fully connected network, (1)
must be minimized with respect to 25,544 weights; with 50% reduced weights, this number is 11,497.

Figure 2: Flowchart

1
https://www.kaggle.com/oddrationale/mnist-in-csv

440 CSSE, 2021, vol.36, no.3

However, as expected, higher levels of initial sparsity affect convergence. As Fig. 3 shows, when the
level of initial sparsity is 50%, the error starts to decrease later than for a fully connected network. The
difference occurs within the first 40 epochs.

The connectivity of visible neurons is plotted at different epochs of the training process in Fig. 4. A path
between connectivity can be observed through the epochs, and it concentrates strong weights at the center of
the sample. Weights near the sample boundary are too weak and therefore are removed. Such a picture should
be expected, as the digits appear exactly in the domain of the samples where the visible neurons have the
strongest weights.

Table 1: Accuracy of ANN for different levels of initial and total sparsity: MNIST dataset

Initial sparsity (%) Total sparsity (%) Accuracy (%)

0 93.6

10 94.58

14.5 94.68

19.0 94.07

23.50 94.52

27.99 94.61

32.50 94.76

45.99 95.04

54.99 94.25

Table 2: Number of remaining connections between layers for different levels of initial sparsity: MNIST
dataset

Initial sparsity (%) WI WH WO Total connections

12544 8000 5000 25544

10726 6840 4275 21841

9597 6120 3825 19542

8468 5400 3375 17243

5646 3600 2251 11497

Figure 3: Error propagation through epochs

CSSE, 2021, vol.36, no.3 441

4.2 Handwritten Arabic Characters

The TIS algorithm was also applied to analyze the publicly accessible Arabic Handwritten Characters
Dataset,2 which contains 13,440 samples for learning and 3,360 for testing. Each sample was a 32 pixel ×
32 pixel image that was reshaped to a row vector of 1,024 elements. We set nI ¼ 1024, n1 ¼ 250,
n2 ¼ 250, and nO ¼ 28. Training was carried out with a fixed learning rate of a ¼ 0:5 in 100 epochs with
5,000 learned samples per epoch.

In this case also, initially sparse NNs provided accuracies comparable to those of fully connected NNs
even with substantially fewer weights. It can be seen from Tab. 3 that the indicators of accuracy of the NN
with 5%, 15%, and 50% initial sparsity were higher than those of the corresponding fully connected NN by
0.6%, 1.02%, and 0.21%, respectively.

The number of remaining weights for different levels of initial sparsity is presented in Tab. 4. It is worth
noticing that compared with 325,500 weights in the case of a fully connected network, there are only
146,476 weights for the case of 50% initial sparsity.

The connectivity of visible neurons at different epochs of the training process is plotted for this case in
Fig. 5. Through epochs, strong weights were concentrated around the domain where Arabic letters appear.
Weaker weights were concentrated near sample boundaries and therefore were removed.

Figure 4: Evolution of connectivity of visible neurons through epochs: handwritten digits

Table 3: Accuracy of ANN for different levels of initial and total sparsity: Arabic handwritten characters

Initial sparsity (%) Total sparsity (%) Accuracy (%)

0 75.71

14.5 76.31

23.50 76.73

32.50 75.92

55 75.18

2
https://www.kaggle.com/mloey1/ahcd1

442 CSSE, 2021, vol.36, no.3

A straightforward consequence of reduced weights is the dramatic reduction of the time spent testing the
test samples (see Fig. 6).

It is easy to see that our algorithm does not depend on the choice of the BP algorithm.

Table 4: Number of remaining connections between layers for different levels of initial sparsity: Arabic
handwritten characters

Initial sparsity (%) WI WH WO Total connections

256,000 62,500 7,000 325,500

218,880 53,438 5,985 278,303

195,840 47,813 5,355 249,008

172,800 42,188 4,725 219,713

115,200 28,125 3,151 146,476

Figure 5: Evolution of connectivity of visible neurons through epochs: handwritten Arabic characters

Figure 6: Dependence of testing time on initial sparsity level: (a) MNIST, with 104 testing samples; (b)
Arabic handwritten characters, with 3,360 testing samples

CSSE, 2021, vol.36, no.3 443

4.3 Comparing Validation Accuracies of Various Training Algorithms

As mentioned above, we chose the simplest training algorithm for BP, namely, gradient descent. We
compare the validation time versus initial sparsity with some other BP algorithms. These are the well-
known conjugate gradient, quasi-Newton, and Levenberg–Marquardt algorithms (see Tab. 5).

5 Comparison with Existing Methods

We compare TIS with the SET [15] and DO [16] methods on three datasets: MNIST, CIFAR-10,3 and
Keras Dataset Reuters newswire topics (RNT). The CIFAR-10 dataset consists of 60,000 32 pixel × 32 pixel
color images in 10 classes with 6,000 images per class. There are 50,000 training samples and 10,000 test
samples. RNT consists of 11,228 newswires from Reuters, labeled over 46 topics. Each wire is encoded
as a sequence of word indices. We used the following BP algorithms: conjugate gradient, gradient
descent, quasi-Newton, and Levenberg–Marquardt. Comparative analysis indicates that TIS has
advantages over SET and DO for all BP algorithms. Therefore, in the interest of brevity, we carry out the
comparison analysis only for the gradient descent BP algorithm.

Open-source implementations are freely available for both SET4 and DO.5 We use these
implementations to benchmark the performance of TIS against the other two methods.

5.1 MNIST Dataset

We compare the performance of SET, DO, and TIS on the MNIST dataset considered in Section 3.1. For
TIS with 50% initial sparsity (Fig. 7b), the accuracy of TIS increases much faster. It is also evident that TIS
ensures a faster convergence rate. Fig. 7b shows that TIS with 50% initial sparsity has the highest
convergence acceleration among the tested methods.

5.2 CIFAR-10 Dataset

We compare the performance of TIS, SET, and DO on the CIFAR-10 dataset. Fig. 8 demonstrates that
TIS has an advantage over SET and DO in both accuracy and convergence.

5.3 RNT Dataset

We compare the performance of SET, DO, and TIS on the RNT dataset. For TIS with 50% initial sparsity
(Fig. 9b), the accuracy of TIS increases much more quickly. It is also evident that TIS ensures a faster
convergence rate. Fig. 9b shows that TIS with 50% initial sparsity has the highest convergence
acceleration among the tested methods.

3
https://www.cs.toronto.edu/~kriz/cifar.html

4 https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks
5 https://www.tensorflow.org/api_docs/python/ tf/keras/layers/Dropout

Table 5: Accuracies of different backpropagation algorithms with 50% initial sparsity

Dataset CG Grad. Desc. q.-Newton Levenberg–Marquardt

MNIST 94.25% 94.8% 94.85% 95.3%

HAC 75.18% 75.46% 75.8% 76.5%

444 CSSE, 2021, vol.36, no.3

Figure 7: Benchmarking TIS, SET, and DO on the MNIST dataset: (a) accuracy plot for TIS with 25%
initial sparsity, DO with 7.5% rate, and SET with 25% sparsity; (b) accuracy plot for TIS with 50% initial
sparsity, DO with 5% rate, and SET with 50% sparsity; (c) convergence plot for TIS with 25%
initial sparsity, DO with 7.5% rate, and SET with 25% sparsity; (d) convergence plot for TIS with 50%
initial sparsity, DO with 5% rate, and SET with 25% sparsity

CSSE, 2021, vol.36, no.3 445

Figure 8: Benchmarking TIS, SET, and DO on the CIFAR-10 dataset: (a) accuracy plot for TIS with 25%
initial sparsity, DO with 10% rate, and SET with 25% sparsity; (b) accuracy plot for TIS with 50% initial
sparsity, DO with 7.5% rate, and SET with 50% sparsity; (c) convergence plot for TIS with 25%
initial sparsity, DO with 10% rate, and SET with 25% sparsity; (d) convergence plot for TIS with 50%
initial sparsity, DO with 7.55% rate, and SET with 25% sparsity

446 CSSE, 2021, vol.36, no.3

6 Conclusions and Future Work

As artificial neurons are designed to mimic the functioning of biological neurons, it is natural to expect
that artificial neural networks should possess the key features of biological neural networks, which would
lead to efficient learning. Features reported to have a significant impact on learning efficiency include
sparsity [35,36], scale-freeness [37], and small-worldness [38]. Mocanu et al. [15] designed a sparse and
scale-free ANN, which was shown to substantially enhance learning efficiency. In our method, at the
initial step, the ANN is assumed to be fully connected; weights with small absolute values are removed;
and new random weights are added (see Algorithm 1).

In this study, we introduced the concept of initial sparsity, that is, the ANN is assumed to be sparse at the
initial step, with the possibility to prescribe the level of initial sparsity. At each training epoch, weights that
are close to zero in absolute value are removed, and random weights are added (see Algorithm 1). The test
network has two hidden layers. Comparative analysis shows that networks with initial sparsity of up to 50%
exhibit better accuracy than the initial fully connected network. Moreover, it is observed that after training is
finished, the testing time dramatically decreases with the increase of the initial sparsity level. It is also

Figure 9: Benchmarking TIS, SET, and DO on RNT dataset: (a) accuracy plot for TIS with 25% initial
sparsity, DO with 15% rate, and SET with 25% sparsity; (b) accuracy plot for TIS with 50%
initial sparsity, DO with 10% rate, and SET with 50% sparsity; (c) convergence plot for TIS with
25% initial sparsity, DO with 15% rate, and SET with 25% sparsity; (d) convergence plot for TIS with
50% initial sparsity, DO with 10% rate, and SET with 50% sparsity

CSSE, 2021, vol.36, no.3 447

observed that convergence of the error is slower for initial sparsity levels greater than 40% (compared with an
initially fully connected network). Comparative analysis shows that the gradient descent, quasi-Newton, and
Levenberg–Marquardt BP algorithms increase the accuracy of validation compared with gradient descent BP
(with 50% initial sparsity).

The proposed method was also compared with other similar methods, namely, SET and DO. An analysis
was carried out on the MNIST, CIFAR-10, and RNT datasets. The analysis showed that TIS outperforms
both SET and DO in accuracy and convergence rate. These observations apply to the four tested BP
algorithms: conjugate gradient, gradient descent, quasi-Newton, and Levenberg–Marquardt.

These observations motivate us to improve the general algorithm, which will be a focus of future work.
In this study, we used gradient descent, one of the simplest BP methods, for error minimization. A priority of
future work will be to implement the developed algorithm with more advanced minimization strategies, such
as the modified conjugate gradient descent and distributed Newton methods, combined with a more efficient
line search strategy. We also intend to test the algorithm on some variants of convolutional neural networks.
Another challenging problem is the optimal choice of the level of initial sparsity in the context of the network
structure and the particular dataset.

Acknowledgement: I express my gratitude to King Khalid University, Saudi Arabia, for administrative and
technical support.

Funding Statement: The author received no specific funding for this study.

Conflicts of Interest: The author declares no conflicts of interest regarding the present study.

References
[1] R. Iten, T. Metger, H. Wilming, L. del Rio and R. Renner, “Discovering physical concepts with neural networks,”

arXiv:1807.10300, 2018.

[2] A. Y. Alanis, N. Arana-Daniel and C. López-Franco, Artificial Neural Networks for Engineering Applications.
Cambridge, MA, USA: Academic Press, 2019.

[3] H. M. Cartwright, “Artificial neural networks in biology and chemistry—the evolution of a new analytical tool,”
in Artificial Neural Networks: Methods and Applications. Totowa, NJ, USA: Humana Press, pp. 1–13, 2008.

[4] M. F. Møller, “A scaled conjugate gradient algorithm for fast supervised learning,” Neural Networks, vol. 6, no. 4,
pp. 525–533, 1993.

[5] H. Adeli and S. L. Hung, “An adaptive conjugate gradient learning algorithm for efficient training of neural
networks,” Applied Mathematics and Computation, vol. 62, no. 1, pp. 81–102, 1994.

[6] H. B. Kim, S. H. Jung, T. G. Kim and K. H. Park, “Fast learning method for back-propagation neural network by
evolutionary adaptation of learning rates,” Neurocomputing, vol. 11, no. 1, pp. 101–106, 1996.

[7] E. Castillo, B. Guijarro-Berdiñas, O. Fontenla-Romero and A. Alonso-Betanzos, “Avery fast learning method for
neural networks based on sensitivity analysis,” Journal of Machine Learning Research, vol. 7, pp. 1159–1182,
2006.

[8] X. Xie, H. Qu, G. Liu and M. Zhang, “Efficient training of supervised spiking neural networks via the normalized
perceptron based learning rule,” Neurocomputing, vol. 241, pp. 152–163, 2017.

[9] J. Wang, B. Zhang, Z. Sun, W. Hao and Q. Sun, “A novel conjugate gradient method with generalized Armijo
search for efficient training of feedforward neural networks,” Neurocomputing, vol. 275, pp. 308–316, 2018.

[10] C. C. Wang, K. L. Tan, C. T. Chen, Y. H. Lin, S. S. Keerthi et al., “Distributed newton methods for deep neural
networks,” Neural Computation, vol. 30, no. 6, pp. 1673–1724, 2018.

[11] P. Skryjomski, B. Krawczyk and A. Cano, “Speeding up k-Nearest Neighbors classifier for large-scale multi-label
learning on GPUs,” Neurocomputing, vol. 354, pp. 10–19, 2019.

448 CSSE, 2021, vol.36, no.3

[12] P. A. Alaba, S. I. Popoola, L. Olatomiwa, M. B. Akanle, O. S. Ohunakin et al., “Towards a more efficient and cost-
sensitive extreme learning machine: A state-of-the-art review of recent trend,” Neurocomputing, vol. 350, pp. 70–
90, 2019.

[13] M. Augasta and T. Kathirvalavakumar, “Pruning algorithms of neural networks—a comparative study,” Central
European Journal of Computer Science, vol. 3, no. 3, pp. 105–115, 2013.

[14] Y. Le Cun, J. S. Denker and S. A. Solla, “Optimal brain damage,” in Proc. NIPS'89, Denver, CO, USA, pp. 598–
605, 1989.

[15] D. C. Mocanu, E. Mocanu, P. Stone, P. H. Nguyen, M. Gibescu et al., “Scalable training of artificial neural
networks with adaptive sparse connectivity inspired by network science,” Nature Communications, vol. 9, pp.
2383, 2018.

[16] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov, “Dropout: A simple way to prevent
neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

[17] O. A. Ahmed and M. M. Fahmy, “Application of multi-layer neural networks to image compression,” in
1997 IEEE International Sym. on Circuits and Systems (ISCAS), IEEE, vol. 2, pp. 1273–1276, 1997.

[18] G. Daqi and W. Shouyi, “An optimization method for the topological structures of feed-forward multi-layer neural
networks,” Pattern Recognition, vol. 31, no. 9, pp. 1337–1342, 1998.

[19] M. Guan, S. Cho, R. Petro, W. Zhang, B. Pasche et al., “Natural language processing and recurrent network
models for identifying genomic mutation-associated cancer treatment change from patient progress notes,”
JAMIA Open, vol. 2, no. 1, pp. 139–149, 2019.

[20] K. Cameron and A. Murray, “Minimizing the effect of process mismatch in a neuromorphic system using spike-
timing-dependent adaptation,” IEEE Transactions on Neural Networks, vol. 19, no. 5, pp. 899–913, 2008.

[21] J. F. Martins, V. Ferno Pires and A. J. Pires, “Unsupervised neural-network-based algorithm for an on-line
diagnosis of three-phase induction motor stator fault,” IEEE Transactions on Industrial Electronics, vol. 54,
no. 1, pp. 259–264, 2007.

[22] H. Yu and B. M. Wilamowski, “Efficient and reliable training of neural networks,” in 2009 2nd Conf. on Human
System Interactions, IEEE, pp. 109–115, 2009.

[23] H. Schwenk, F. Bougares and L. Barrault, “Efficient training strategies for deep neural network language models,”
in NIPS workshop on Deep Learning and Representation Learning, Montreal, Canada, 2014.

[24] S. P. Adhikari, C. Yang, K. Slot, M. Strzelecki and H. Kim, “Hybrid no-propagation learning for multilayer neural
networks,” Neurocomputing, vol. 321, pp. 28–35, 2018.

[25] L. Abualigah, M. Abd Elaziz, A. G. Hussien, B. Alsalibi, S. M. J. Jalali et al., “Lightning search algorithm: A
comprehensive survey,” Applied Intelligence, pp. 1–24, 2020.

[26] A. S. Assiri, A. G. Hussien and M. Amin, “Ant Lion Optimization: Variants, hybrids, and applications,” IEEE
Access, vol. 8, pp. 77746–77764, 2020.

[27] A. G. Hussien, A. E. Hassanien and E. H. Houssein, “Swarming behaviour of salps algorithm for predicting
chemical compound activities,” in 2017 Eighth Int. Conf. on Intelligent Computing and Information Systems
(ICICIS), IEEE, pp. 315–320, 2017.

[28] A. G. Hussien, M. Amin and M. Abd El Aziz, “A comprehensive review of moth-flame optimisation: Variants,
hybrids, and applications,” Journal of Experimental & Theoretical Artificial Intelligence, vol. 32, no. 4, pp. 1–21,
2020.

[29] A. G. Hussien, D. Oliva, E. H. Houssein, A. A. Juan and X. Yu, “Binary whale optimization algorithm for
dimensionality reduction,” Mathematics, vol. 8, no. 10, pp. 1821, 2020.

[30] A. G. Hussien, A. E. Hassanien, E. H. Houssein, M. Amin and A. T. Azar, “New binary whale optimization
algorithm for discrete optimization problems,” Engineering Optimization, vol. 52, no. 6, pp. 945–959, 2020.

[31] A. G. Hussien, A. E. Hassanien, E. H. Houssein, S. Bhattacharyya and M. Amin, “S-shaped binary whale
optimization algorithm for feature selection,” in Recent trends in signal and image processing. Singapore:
Springer, pp. 79–87, 2019.

CSSE, 2021, vol.36, no.3 449

[32] A. G. Hussien, E. H. Houssein and A. E. Hassanien, “A binary whale optimization algorithm with hyperbolic
tangent fitness function for feature selection,” in 2017 Eighth Int. Conf. on Intelligent Computing and
Information Systems (ICICIS), IEEE, pp. 166–172, 2017.

[33] A. G. Hussien, M. Amin, M. Wang, G. Liang, A. Alsanad et al., “Crow search algorithm: Theory, recent advances,
and applications,” IEEE Access, vol. 8, pp. 173548–173565, 2020.

[34] H. Xiao, K. Rasul and R. Vollgraf, “Fashion-mnist: A novel image dataset for benchmarking machine learning
algorithms,” arXiv:1708.07747, 2017.

[35] S. H. Strogatz, “Exploring complex networks,” Nature, vol. 410, no. 6825, pp. 268–276, 2001.

[36] L. Pessoa, “Understanding brain networks and brain organization,” Physics of Life Reviews, vol. 11, no. 3, pp.
400–435, 2014.

[37] A. L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509–
512, 1999.

[38] E. Bullmore and O. Sporns, “Complex brain networks: Graph theoretical analysis of structural and functional
systems,” Nature Reviews: Neuroscience, vol. 10, no. 3, pp. 186–198, 2009.

450 CSSE, 2021, vol.36, no.3

	Efficient Training of Multi-Layer Neural Networks to Achieve Faster Validation
	Introduction
	Literature Review
	TIS Algorithm
	Results of Simulation
	Comparison with Existing Methods
	Conclusions and Future Work
	flink7
	References

