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Abstract: In this research article, we interrogate two new modifications in inverse
Weierstrass iterative method for estimating all roots of non-linear equation simul-
taneously. These modifications enables us to accelerate the convergence order of
inverse Weierstrass method from 2 to 3. Convergence analysis proves that the
orders of convergence of the two newly constructed inverse methods are 3. Using
computer algebra system Mathematica, we find the lower bound of the conver-
gence order and verify it theoretically. Dynamical planes of the inverse simulta-
neous methods and classical iterative methods are generated using MATLAB
(R2011b), to present the global convergence properties of inverse simultaneous
iterative methods as compared to classical methods. Some non-linear models
are taken from Physics, Chemistry and engineering to demonstrate the perfor-
mance and efficiency of the newly constructed methods. Computational CPU
time, and residual graphs of the methods are provided to present the dominance
behavior of our newly constructed methods as compared to existing inverse
and classical simultaneous iterative methods in the literature.

Keywords: Non-linear equation; inverse iterative method; simultaneous method;
basins of attraction; lower bound of convergence

1 Introduction

A large number of physical and theoretical problems arise in various fields of mathematical, physical and
engineering sciences which can be formulated as a non-linear equation:

f ðrÞ ¼ 0: (1)

The most primitive and popular iterative technique for approximating single root of Eq. (1) is Newton’s
method [1] (abbreviated as NM) having local quadratic convergence.
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sðtÞ ¼ rðtÞ � f ðrðtÞÞ
f 0ðrðtÞÞ ; ðt ¼ 0; 1;…Þ: (2)

In the year 2016, Nedzhibov et al. [2] presented inverse method (abbreviated as INM) corresponding to
method Eq. (2) given as:

sðtÞ ¼ rðtÞ
� �2

f 0ðrðtÞÞ
rðtÞf 0ðrðtÞÞ þ f ðrðtÞÞ ; (3)

In the last few years, lot of work has been done on those numerical iterative methods which approximate
single root at a time. Besides these methods in literature, there is another class of derivative free iterative
schemes which approximate all roots of Eq. (1) simultaneously. These methods are very popular due to
their global convergence and parallel implementation on computer (see, e.g., Weierstrass’ [3], Cholakov
et al. [4], Ivanov [5], Kyncheva [6], Mir et al. [7], Proinov [8], Shams et al. [9], Farmer [10] and
reference cited there in [11–13]).

Among derivative free simultaneous methods, Weierstrass-Dochive method (abbreviated as WDK) is
the most attractive method given by:

sðtÞi ¼ rðtÞi � wðrðtÞi Þ; (4)

where

wðrðtÞi Þ ¼ f ðrðtÞi Þ

�
n

j6¼i
j¼1
ðrðtÞi � rðtÞj Þ

; ði; j ¼ 1; 2; 3;…; nÞ;

is Weierstrass’ Correction, Eq. (4) has local quadratic convergence.

G.H Nedzibove presented two new modifications of Eq. (4) namely, inverse WDK and modified inverse
WDK as:

First modification (abbreviated as INHB):

uðtÞi ¼ rðtÞi

1� f ðrðtÞi Þ
b0 �

n

j 6¼i
j¼1
ð rðtÞj
rðtÞj �rðtÞi

Þ
; (5)

where b0 ¼ �1ð Þn Qn
j¼1

fj is Vietas formula for monic polynomial.

Second modification (abbreviated as INHH):

uðtÞi ¼
rðtÞi

� �2

�
n

j6¼i
j¼1
ðrðtÞi � rðtÞj Þ

rðtÞi �
n

j6¼i
j¼1
ðrðtÞi � rðtÞj Þ þ f ðrðtÞi Þ

: (6)

The main aim of this research article is to accelerate the convergence order of Eqs. (5) and (6) from 2 to
3. The programs written in CAS-Mathematica are presented to find the lower bound of the convergence order
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of both the new and the existing inverse simultaneous methods and verify the local convergence theoretically.
We take some engineering applications as numerical test examples to show the convergence behavior of
simultaneous iterative schemes. Computational efficiency, dynamical planes, basins of attraction and
residual graphs are presented to demonstrate the dominance performance of our newly constructed
methods over existing methods in the literature of same convergence order.

2 Construction of Simultaneous Methods

Here, we propose the following methods by replacing rðtÞj by sðtÞj in Eqs. (5) and (6) i.e.,

uðtÞi ¼ rðtÞi

1� f ðrðtÞi Þ
b0 �

n

j 6¼i
j¼1
ð sðtÞj
sðtÞj �rðtÞi

Þ
; (7)

and

ui
ðtÞ ¼

riðtÞ
� �2

�
n

j 6¼i
j¼1
ðriðtÞ � sjðtÞÞ

riðtÞ �
n

j6¼i
j¼1
ðriðtÞ � sjðtÞÞ þ f ðriðtÞÞ

; (8)

where sjðtÞ ¼
rjðtÞ
� �2

f 0ðrjðtÞÞ
rjðtÞf 0ðrjðtÞÞ þ f ðrjðtÞÞ : Newly proposed inverse simultaneous methods Eqs. (7) and (8) are

abbreviated as IWKM1 and IWKM2 respectively.

2.1 Convergence Frame Work

In this section, we prove third order convergence of the methods IWKM1 and IWKM2.

Let D 2 Cn be an open convex subset, � : D ! Cn and u-times differentiable operators �ðuÞðrÞ,
�ðrÞ ¼ ð�1ðrÞ;…; �nðrÞÞT be continuous and the sequence rðkÞ

� �
k2N be defined by rðkþ1Þ ¼ �ðrðkÞÞ,

rðkÞ ¼ ðrðkÞ1 ;…; rðkÞn Þ:
, rðkþ1Þ

i ¼ �iðrðkÞÞ8i 2 f1;…; ng; k 2 N ; (9)

where norm in Cn be defined by norm rk k ¼ maxf r1j j;…; rnj jg:
Theorem 1 [2]: Let X , Y be normed spaces. Take an open convex subset D of X for a u-times Frēchet

differential Operator �, i.e., � : D ! Y : Then, for any x,y 2 D:

�ðyÞ � �ðxÞ �
Xu�1

j¼1

1

j!
�ðjÞðxÞ ðy� xÞ…ðy� xÞ|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

j�times

0
BBB@

1
CCCA

���������

���������
� y� xk ku

u!
sup

f2ðx; yÞ
�ðuÞðfÞ�� �� (10)

Using Theorem 1, we have:

Theorem 2: Let b 2 D; if

ðiÞ �ðbÞ ¼b

ðiiÞ �ðbÞ ¼�0ðbÞ ¼ �00ðbÞ ¼ … ¼ �ðuÞðbÞ ¼ 0;

then there exists, s > 0 such that for any rð0Þ 2 D; rð0Þ � b
�� �� < s; the sequence rðkþ1Þ ¼ �ðrðkÞÞk2N ;

converges to b:
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Proof: Let s0 > 0 be such that

v0 ¼ r 2 C : r � bk k � s0f g � D

and C 0 ¼ max �ðuÞðz0Þ
�� ��
z2v0

then, there exists, 0 < s � s0; such that

C0su

u!
< s , C0

u!

� 	 1
u�1

< s;

where v ¼ r 2 Cn : r � bk k � sf g: If r 2 v; then (ii) and Theorem 1 implies:

�ðrÞ � bk k ¼ �ðrÞ � �ðbÞ �
Xu�1

j¼1

1

j!
�ðjÞðbÞ ðr � bÞ…ðr � bÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

j�times

0
BBB@

1
CCCA

���������

���������
� 1

u!
r � bk ku sup

f2ðb; rÞ
�ðuÞðfÞ�� ��u � C0su

u!
< s

Thus, �ðrÞ 2 v: Using above relation for r ¼ rðkÞ; we have:

rðkþ1Þ � b
�� �� ¼ �ðrðkÞÞ � b

�� �� � C0

u!
rðkÞ � b

�� ��u: (11)

Using Eq. (11), recursively, we have:

rðkÞ � b
�� �� � C0

u!
rðkÞ � b

�� ��u � C0

u!

C0

u!
rðkÞ � b

�� ��u� 	u

� … � C0

u!

� 	1þuþ…þuk

rð0Þ � b
�� ��uk

� C0

u!

� 	 1
u�1

s

0
@

1
A

uk

! 0 for k ! 0:

Thus, from last inequality, the convergence order of rð ÞðkÞk2N is at least u: Now, consider IWKM1 as a
vector function, i.e., �ðrÞ ¼ �1ðrÞ;…; �nðrÞð Þ, where

�ðrÞ ¼ rðtÞi

1� f ðrðtÞi Þ
b0 �

n

j6¼i
j¼1
ð sðtÞj
sðtÞj �rðtÞi

Þ
: (12)

For a fixed point b ¼ ðb1;…; bnÞ , it is not difficult to prove @�iðfÞ
@ri

¼ @2�iðfÞ
@ri@rj

¼ 0 and higher order partial

derivative is not equal to zero. Thus, IWKM1 has at least third order convergence.

Theorem 3: Let f1;…; fn be simple roots of Eq. (1) and for sufficiently close initial distinct estimations
rð0Þ1 ;…; rð0Þn of the roots respectively, IWKM2 then has convergence order 3.

Proof: Let ei ¼ rðtÞi � fi; e
0
i ¼ uðtÞi � fi be the errors in ri and ui respectively. From the first-step of

IWKM2, we have:
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ui � fi ¼ ri � fi �

rif ðriÞ

�
n

j6¼i
j¼1

ðri�sjÞ

ri þ f ðriÞ

�
n

j6¼i
j¼1

ðri�sjÞ

:

Thus, we get:

e0i ¼ ei 1�

Qn
j 6¼i
j¼1

ðri�fjÞ
ðri�sjÞ

1þ f ðriÞ

�
n

j6¼i
j¼1

ðri�sjÞ

2
666664

3
777775 ¼ ei

1�Qn
j6¼i
j¼1

ðri�fjÞ
ðri�sjÞ þ

f ðriÞ

�
n

j6¼i
j¼1

ðri�sjÞ

1þ f ðriÞ

�
n

j 6¼i
j¼1

ðri�sjÞ

2
6666664

3
7777775
: (13)

Using the expression
Qn
j 6¼i
j¼1

ðri�fjÞ
ðri�sjÞ � 1 ¼ Pn

k 6¼i

e2k
ri�sk

Qk�1

j6¼i

ðri�fkÞ
ðri�sjÞ [2] in Eq. (13), we have:

e0i ¼ ei

e2i
ri

Qn
j6¼i
j¼1

ðri�fjÞ
ðri�sjÞ �

Pn
k 6¼i

e2k
ri�sk

Qk�1

j 6¼i

ðri�fkÞ
ðri�sjÞ

1þ e2k
ri

Qn
j6¼i
j¼1

ðri�fjÞ
ðri�sjÞ

2
666664

3
777775: (14)

If we assume all error are of the same order, i.e., eij j ¼ ekj j ¼ O ej jð Þ, then

e0i ¼ ej j3
1
ri

Qn
j 6¼i
j¼1

ðri�fjÞ
ðri�sjÞ �

Pn
k 6¼i

1
ri�sk

Qk�1

j 6¼i

ðri�fkÞ
ðri�sjÞ

1þ e2k
ri

Qn
j 6¼i
j¼1

ðri�fjÞ
ðri�sjÞ

2
666664

3
777775 ¼ O ej j3

� �
: (15)

Hence, from Eq. (15), third order convergence is proved.

2.2 Using CAS for Verification of Convergence Order

Consider

f ðrÞ ¼ ðr � hÞðr � fÞðr � ’Þ; (16)

and the first components of �1ðrÞ iterative scheme to find roots of Eq. (16), rðkþ1Þ ¼ �ðrðkÞÞ simultaneously.
In order to verify conditions of Theorem 2, we have to express the differential of an operator �ðrÞ in terms of
their partial derivate of its component as �iðrÞ .
@�1ðrÞ
@r1

@�1ðrÞ
@r2

@�1ðrÞ
@r3
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@2�1ðrÞ
@r21

@2�1ðrÞ
@r1@r2

@2�1ðrÞ
@r22

@2�1ðrÞ
@r2@r3

@3�1ðrÞ
@r31

@3�1ðrÞ
@r21@r2

@3�1ðrÞ
@r1@r22

@3�1ðrÞ
@r32

@3�1ðrÞ
@r22@r3

..

...
...
...
...
. � � �

and so on.

The lower bound of the convergence is obtained until the first non-zero element of row is found. The
Mathematica codes are given for each of the considered methods as:

Weierstrass-Dochive Method WDK

�1ðr1; r2; r3Þ :¼ r� f ðrÞ

�
n

j 6¼i
j¼1
ðri � rjÞ

; ði; j ¼ 1; ::; �nÞ

In½1� :¼ D½�1½r1;r2;r3�;r1�=:fr1 ! h; r2 ! f; r3 ! ’g
Out½1� :¼ 0

In½2� :¼ D½�1½r1;r2;r3�;r2�=:fr1 ! h; r2 ! f; r3 ! ’g
Out½2� :¼ 0

In½2� :¼ D½�1½r1;r2;r3�;r2�=:fr1 ! h; r2 ! f; r3 ! ’g
Out½2� :¼ 0

In½3� :¼ Simplify½D½�1½r1;r2;r3�;r1; r2�=:fr1 ! h; r2 ! f; r3 ! ’g�
Out½3� :¼ 1

�hþ f

Modified Inverse Weierstrass Method-INHH

�1ðr1; r2; r3Þ :¼
rð Þ2 �

n

j 6¼i
j¼1
ðri � rjÞ

r �
n

j6¼i
j¼1
ðri � rjÞ þ f ðrÞ

;

In½1� :¼ D½�1½r1;r2;r3�;r2�=:fr1 ! h; r2 ! f; r3 ! ’g
Out½1� :¼ 0

In½2� :¼ D½�1½r1;r2;r3�;r3�=:fr1 ! h; r2 ! f; r3 ! ’g
Out½2� :¼ 0

In½3� :¼ Simplify½D½�1½r1;r2;r3�;r1; r1�=:fr1 ! h; r2 ! f; r3 ! ’g�

Out½3� :¼ 2hðh� fÞðh�’Þ
hf’
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Inverse Weierstrass Method - INHB

�1ðr1; r2; r3Þ :¼ r

1� f ðrÞ
hf’ �

n

j 6¼i
j¼1
ð rj
rj�ri

Þ

In½1� :¼ D½�1½r1;r2;r3�;r2�=:fr1 ! h; r2 ! f; r3 ! ’g
Out½1� :¼ 0

..

.

In½3� :¼ Simplify½D½�1½r1;r2;r3�;r1; r2�=:fr1 ! h; r2 ! f; r3 ! ’g�
Out½3� :¼ 1

�hþ f

IWKM1 Method

�1ðr1; r2; r3Þ :¼ r

1� f ðrÞ
hf’ �

n

j 6¼i
j¼1
ð sj
sj�ri

Þ
, where sj ¼ rjð Þ2f 0ðrjÞ

rjf
0ðrjÞþf ðrjÞ:

In½1� :¼ D½�1½r1;r2;r3�;r2�=:fr1 ! h; r2 ! f; r3 ! ’g
Out½1� :¼ 0

..

.

In½14� :¼ Simplify½D½�1½r1;r2;r3�;r1; r1; r1�=:fr1 ! h; r2 ! f; r3 ! ’g�

Out½14� :¼ 6ð�1þ ’Þ
h2’3

IWKM2 Method

�1ðr1; r2; r3Þ :¼
rð Þ2 �

n

j 6¼i
j¼1
ðri � sjÞ

r �
n

j6¼i
j¼1
ðri � sjÞ þ f ðrÞ

, where sj ¼ rjð Þ2f 0ðrjÞ
rjf

0ðrjÞþf ðrjÞ:

In½1� :¼ D½�1½r1;r2;r3�;r1�=:fr1 ! h; r2 ! f; r3 ! ’g
Out½1� :¼ 0
..
.

In½13� :¼ Simplify½D½�1½r1;r2;r3�;r1; r1; r1�=:fr1 ! h; r2 ! f; r3 ! ’g�

Out½13� :¼ ��12

h2

3 Basins of Attraction

To provoke the basins of attraction of iterative schemes NM, INM, WDK, INHB, INHH, IWKM1,
IWKM2 for the roots of non-linear equation, we execute the real and imaginary parts of the starting
approximations represented as two axes over a mesh of 250� 250 in complex plane. We use
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rðtþ1Þ � rðtÞ


 

 < 10�3 as a stopping criteria or maximum number of iterations as 5 due to wider convergence
region of simultaneous methods. We allow different colors to mark to which root the iterative schemes
converge and black in other cases. Color brightness in basins shows less number of iterations. For the
generation of basins of attraction, we consider a non-linear polynomial equation f1ðrÞ ¼ r3 þ r þ 40.

The basins of attraction of single root finding iterative schemes NM and INM are shown in Figs. 1 and 2.
The basins of attraction of simultaneous iterative schemes WDK, INHB, INHH, IWKM1 and IWKM2 are
presented in Figs. 3–6 and Fig. 7 respectively. The elapsed time from Tab. 1 and brightness in color in Figs. 6
and 7 show the dominance behavior of IWKM1 and IWKM2 as compared to NM, INM, WDK, INHB and
INHH respectively.

Figure 1: Basin of attraction of iterative method NM for polynomial equation f1ðrÞ ¼ r3 þ r þ 40

Figure 2: Basin of attraction of iterative method INM for polynomial equation f1ðrÞ ¼ r3 þ r þ 40
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4 Numerical Results

Some non-linear models from engineering and applied sciences are considered to illustrate the
performance and efficiency of WDK, INHB, INHH, IWKM1 and IWKM2. All calculations are done with
64 digits floating point arithmetic. The following stopping criteria are used to terminate the computer program:

ei ¼ r tþ1ð Þ
i �r tð Þ

i

��� ���
2
<2,

where ei represents the absolute error and 2¼ 10�30. In Tabs. 2–4, CO represents convergence order of
iterative simultaneous schemes.

Example 1 [14]: Fractional Conversion

Figure 3: Basin of attraction of iterative method WDK for polynomial equation f1ðrÞ ¼ r3 þ r þ 40

Figure 4: Basin of attraction of iterative method INHB for polynomial equation f1ðrÞ ¼ r3 þ r þ 40
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As described in [14,15],

f2ðrÞ ¼ r4 � 7:79075r3 þ 14:7445r2 þ 2:511r � 1:674; (17)

is the fractional conversion of nitrogen, hydrogen feed at 250 atm and 227k.

The exact roots of Eq. (17) are:

f1 ¼ 3:9485þ 0:3161i; f2 ¼ 3:9485� 0:3161i; f3 ¼ �0:3841; f4 ¼ 0:2778:

The initial calculated values of Eq. (17) have been taken as:

r1
ð0Þ ¼ 3:5þ 0:3i; r2

ð0Þ ¼ 3:5� 0:3i; r3
ð0Þ ¼ �0:3þ 0:01i; r4

ð0Þ ¼ 1:8þ 0:01i:

Example 2 [16]: Beam Designing Model

Figure 5: Basin of attraction of iterative method INHH for polynomial equation f1ðrÞ ¼ r3 þ r þ 40

Figure 6: Basin of attraction of iterative method IWKM1 for polynomial equation f1ðrÞ ¼ r3 þ r þ 40
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Figure 7: Basin of attraction of iterative method IWKM2 for polynomial equation f1ðrÞ ¼ r3 þ r þ 40

Table 1: Elapsed time in seconds

NM INM WDK INHB INHH IWKM1 IWKM2

1.00205 0.08826 0.12388 0.09124 0.12212 0.04352 0.03521

Table 2: Simultaneous determination of all roots of f2ðrÞ
Method CO CPU n e

^
1 e

^
2 e

^
3 e

^
4

WDK 2 0.188 8 2.5e-13 2.1e-13 5.1e-9 1.5e-9

INHB 2 0.172 8 0.009 0.009 7.2e-17 3.3e-18

INHH 2 0.140 8 4.0e-12 3.9e-12 3.4e-14 6.8e-12

IWKM1 3 0.141 8 0.0 0.0 5.8e-40 6.8e-13

IWKM2 3 0.125 8 8.2e-25 6.1e-25 8.2e-23 6.7e-13

Table 3: Simultaneous determination of all roots of f3ðrÞ
Method CO CPU n e

^
1 e

^
2 e

^
3 e

^
4

WDK 2 0.031 7 0.002 0.002 0.0 5.8e-26

INHB 2 0.031 7 0.002 0.002 4.9e-26 0.0

INHH 2 0.047 7 0.003 0.003 4.3e-24 3.3e-21

IWKM1 3 0.016 7 2.5e-4 2.5e-4 3.8e-25 1.0e-28

IWKM2 3 0.015 7 5.5e-4 5.6e-4 0.0 4.9e-25
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Problem of beam positioning [16], results a non-linear function as:

f3ðrÞ ¼ r4 þ 4r3 � 24r2 þ 16r þ 16: (18)

The exact roots of Eq. (18) are:

f1; 2 ¼ 2; f3 ¼ �4� 2
ffiffiffi
3

p
; f3 ¼ 2; f4 ¼ �4þ 2

ffiffiffi
3

p
:

The initial calculated values of Eq. (18) have been taken as:

r1;
ð0Þ ¼ 1:9; r2

ð0Þ ¼ 1:6; r3
ð0Þ ¼ �7:4641; r4

ð0Þ ¼ �0:5359:

Example 3 [17]: Predator-Prey Model

In Predator-Prey model, predation rate is denoted by

PðrÞ ¼ kr3

a3 þ r3
; a; k > 0 (19)

where r is number of aphids as preys [17] and lady bugs as a predator. Obeying the Malthusian Model, the
growth rate of aphids is defined asGðrÞ ¼ r1r; r1 > 0 . To find the solution of the problem, we take the aphid
density for which PðrÞ ¼ GðrÞ implies

r1r
3 � kr2 þ r1a

3 ¼ 0: (20)

Taking k = 30 (aphids eaten rate), a = 20 (number of aphids) and r1 ¼ 2�
1
3 (rate per hour) in Eq.

(20), we get:

f4ðrÞ ¼ 0:7937005260r3 � 30r2 þ 6349:604208: (21)

The exact roots of Eq. (21) are:

f1 ¼ 25:198; f2 ¼ 25:198; f3 ¼ 12:84:

The initial estimates for f2ðrÞ are taken as:

r1
ð0Þ ¼ 1:8þ 8:7i; r2

ð0Þ ¼ 1:8� 8:7i; r3
ð0Þ ¼ 0:1þ 0:1i

5 Conclusion

Here, we have developed two new inverse simultaneous methods of order three for determining all the
roots of non-linear equations simultaneously. It must be pointed out that so far there exists an inverse

Table 4: Simultaneous determination of all roots of f4ðrÞ
Method CO CPU n e

^
1 e

^
2 e

^
3

WDK 2 0.017 4 7.2 7.4 9.8

INHB 2 0.013 4 5.2 5.2 0.05

INHH 2 0.016 4 6.4e-18 7.8e-18 1.3e-12

IWKM1 3 0.011 4 1.5e-18 5.0e-17 0.8e-20

IWKM2 3 0.010 4 8.0e-20 8.0e-20 3.2e-65
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Figure 8: Residual graphs of WDK, INHB, INHH, IWKM1 and IWKM2 for non-linear function f2ðrÞ

Figure 9: Residual graphs of WDK, INHB, INHH, IWKM1 and IWKM2 for non-linear function f3ðrÞ

Figure 10: Residual graphs of WDK, INHB, INHH, IWKM1 and IWKM2 for non-linear function f4ðrÞ
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simultaneous iterative scheme of order two only in the literature. We have made here comparison with the
methods INHB, INHH and with classical Weierstrass-Dochive methodWDK all of order two. The dynamical
behavior/basins of attractions of iterative methods IWKM1, IWKM2 are also discussed here to show the
global convergence behavior. Single root finding methods may have divergence region. From Tabs. 1–4
and Figs. 1–10, we observe that our numerical results are much better in terms of absolute error, number
of iterations, CPU time and lapsed time of dynamical planes.
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