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Abstract: Forecasting stock prices using deep learning models suffers from pro-
blems such as low accuracy, slow convergence, and complex network structures.
This study developed an echo state network (ESN) model to mitigate such pro-
blems. We compared our ESN with a long short-term memory (LSTM) network
by forecasting the stock data of Kweichow Moutai, a leading enterprise in China’s
liquor industry. By analyzing data for 120, 240, and 300 days, we generated fore-
cast data for the next 40, 80, and 100 days, respectively, using both ESN and
LSTM. In terms of accuracy, ESN had the unique advantage of capturing non-
linear data. Mean absolute error (MAE) was used to present the accuracy results.
The MAEs of the data forecast by ESN were 0.024, 0.024, and 0.025, which were,
respectively, 0.065, 0.007, and 0.009 less than those of LSTM. In terms of con-
vergence, ESN has a reservoir state-space structure, which makes it perform faster
than other models. Root-mean-square error (RMSE) was used to present the con-
vergence time. In our experiment, the RMSEs of ESN were 0.22, 0.27, and 0.26,
which were, respectively, 0.08, 0.01, and 0.12 less than those of LSTM. In terms
of network structure, ESN consists only of input, reservoir, and output spaces,
making it a much simpler model than the others. The proposed ESN was found
to be an effective model that, compared to others, converges faster, forecasts more
accurately, and builds time-series analyses more easily.
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1 Introduction

In the era of big data, time-series data are present in domains such as stocks, traffic, electricity, and
website traffic [1–3]. Research in this area, along with the mining of time-series data, has thus become
valuable and challenging work [4,5]. Finance professionals devote a great deal of time and money to
tapping the potential value of economic-, industry-, and enterprise-related data [6]. The forecasting and
analysis of stock data have significant effects on countries, enterprises, and individuals. For countries,
stock data forecasting can facilitate the macrocontrol of economic risks to promote financial reforms and
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stabilize economies [7,8]. Predictive data analysis can help enterprises raise funds. Further, using basic stock-
trade data, investors can assess future market conditions to avoid risks and obtain higher returns [9].

The financial community has always focused on the difficult task of accurate stock trend forecasting
[10,11]. In the era of big data, stock markets are influenced by the interactions of internal and external
factors, including the effects of emergencies, and their complexity poses challenges for stock price
research [12]. In the 1870s, most companies and researchers used traditional multiple linear
statistical models to forecast stock trends, and with good results [13]. However, the amount of data
has grown dramatically. Multiple linear models cannot capture big data—which have characteristics
such as nonlinearity and spatiotemporal correlation—and have therefore fallen into disuse [14].
Neural networks and artificial intelligence subsequently appeared. With rapid increases in computing
power, forecasting methods have moved in more intelligent directions [15,16]. For example,
recurrent neural networks (RNN) have achieved high accuracy in stock forecasting [17,18]. However,
neural networks have problems such as complex network structures, slow convergence, and high
computational power consumption.

To deal with such challenges, this study used an echo state network (ESN) to forecast complex nonlinear
stock data. Although ESN was introduced in 2001, its practical significance was not initially recognized, and
it was only applied to pattern recognition. ESN’s advantages over RNNs and other neural networks include a
simple structure, fast convergence, and the ability to capture nonlinearity [19].

The major contributions of this study can be summarized as follows:

� We used a lightweight ESN to solve problems in stock price forecasting related to complex network
structures, slow convergence, and high computational costs.

� We conducted experiments using both ESN and long short-term memory (LSTM). We obtained error
rates and convergence times and, analyzing the statistics, concluded that ESN performed better than
traditional models.

� The experiments used in this study are universal and have great practical significance. The ESN
structure is easily expanded and can be applied to other fields after modification.

2 Echo State Network

Proposed by Herbert in 2001 [20], ESN is a type of RNN that uses reservoir calculation [21]. Initially,
the study of ESN was only theoretical, and it was not until 2004 that Herbert applied it to wireless
communication–related fields. Since then, researchers have worked to improve the model. Previous RNNs
were unstable, had high computational complexity, and had slow convergence. ESN is simpler to
calculate, has a shorter cycle, and is faster. ESN has thus made significant contributions to time-series
forecasting and is widely applied in fields such as dynamic mode classification, robot control, object
tracking, moving-target detection, and incident monitoring [22,23]. Fig. 1 shows the standard ESN
structure. Consisting of an input, reservoir state, and output spaces [24], it can be described as a structural
model with K input units, N reservoir processing elements, and L output units. Solid lines in the figure
represent necessary connections, and dotted lines show possible or unnecessary connections. Dotted lines
can also connect units in the input and output layers [25].

The input stock data vector u, output forecast value vector y, and reservoir state space x are expressed as
vectors of size m, n, and p, respectively:

u tð Þ ¼ u1 tð Þ; . . . ; uK tð Þð Þ; (1)
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y tð Þ ¼ y1 tð Þ; . . . ; yL tð Þð Þ; (2)

x tð Þ ¼ x1 tð Þ; . . . ; xN tð Þð Þ: (3)

The reservoir is a sparse matrix whose degree is generally 0.01–0.1. The weight from the input layer to
the reservoir, of order N� K, is

win ¼
w11 w12 � � � w1k

w21 w22 � � � w2k

� � � � � � � � � � � �
wn1 wn2 � � � wnk

2
664

3
775: (4)

The feedback weight from the output layer to the reservoir is an N� L matrix:

wback ¼
w11 w12 � � � w1l

w21 w22 � � � w2n

� � � � � � � � � � � �
wn1 wn2 � � � wnl

2
664

3
775: (5)

The reservoir is connected to the processing elements by an N� N matrix:

wr ¼
w11 w12 � � � w1n

w21 w22 � � � w2n

� � � � � � � � � � � �
wn1 wn2 � � � wnn

2
664

3
775: (6)

The reservoir is connected to the output layer units by an L� K þ Nþ Lð Þ matrix:

wout ¼ L� K þ Nþ Lð Þ: (7)

The connection between the output layer and the reservoir is unnecessary and is presented as a dotted
line in Fig. 1.

The main difference between this model and that of a traditional neural network is that win, wr, and wback

in ESN are initialized and set randomly when the network is established. Hence, little training is required,
except the training of wout.

Figure 1: ESN structure
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The reservoir will update its state when u tð Þ is input at each moment. The state update equation is

x t þ 1ð Þ ¼ f win � u t þ 1ð Þ þ wback � x tð Þ� �
; (8)

and the state output equation is

y tþ 1ð Þ ¼ fout � wout � u tþ 1ð Þ; x tþ 1ð Þð Þð Þ; (9)

where x tþ 1ð Þ is the state of the reservoir at the current moment, x tð Þ is the state at the previous
moment,u tþ 1ð Þ is the input at the current moment, f is the activation function of the internal node of
the reservoir, and fout is the activation function of the node of the output layer. The hyperbolic tangent
function (tanh) is usually used for both f and fout.

3 Experiment

The experiment had four steps: collect and clean data, set the experiment, forecast and analyze the data,
and draw the experimental conclusion. Fig. 2 presents a flowchart of the experiment.

Figure 2: Flowchart of the experiment
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3.1 Data Collection and Cleaning

We collected stock data for Kweichow Maotai (6000519. SH) on 360 trading days, from November 2,
2009, to April 26, 2011. Kweichow Maotai is a leading enterprise in China’s liquor industry, and no major
equity changes occurred during the selected years. These stock data include volumes and opening, closing,
highest, lowest, and adjusted closing prices. Data were sourced from Yahoo! Finance1.

3.1.1 Experimental Data
Tab. 1 shows the closing prices in the 360-day transaction data for Kweichow Moutai (6000519. SH).

Closing prices are the volume-weighted average prices of all trades (including the last trade) within the last
minute of trading. Closing price could channel working funds in the next trading day while volumes, opening
prices, highest prices, lowest prices, and adjusted prices cannot. Therefore, the closing price is very important
for stock price forecasting and research.

3.1.2 Evaluation Standard
We tested the closing prices in the 360-day transaction data for Kweichow Moutai. We compared the

accuracy of different forecasting models and evaluated the performance of ESN based on the fitting
degrees of forecast data and actual data, the mean absolute error (MAE) of forecast values and actual
values, and the root-mean-square error (RMSE) of convergence time. MAE and RMSE are defined as

MAE ¼ 1

N

XN

t¼1
yt � yptj j; (10)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

t¼1
yt � yptj jð Þ2

r
; (11)

where yt and y
p
t are the actual and forecast values, respectively, at time t, and N is the total number of forecast

values, which equals 360 in the experiment.

3.2 Experimental Settings

The proposed ESN has three key parameters: spectral radius, size of reservoirs, and sparsity of
reservoirs. If the spectral radius of the weighting wr within the reservoir is less than 1, ESN will stay in
an echo state. Reservoir size represents the number of neurons in the pool and is generally 300–500. Size
is related to the number of samples, and it has a certain effect on network performance. A larger
size means a more accurate stock forecast, but there will be an overfitting problem, while too small a size
leads to underfitting. The sparsity of a reservoir represents the connections between its neurons, and not
all neurons have connections. The more connections, the stronger the nonlinear approximation ability.

Table 1: Stock data for Kweichow Moutai

Date Opening price Closing price Highest price Lowest price Adjusted
closing price

Volume

11/2/2009 117.2050 120.2180 120.2850 116.8140 98.7907 4,261,898

11/3/2009 120.2099 120.1204 121.2620 119.5039 98.7102 2,677,824

11/4/2009 120.1129 122.1113 122.4726 119.4597 100.3463 4,473,808

1
https://finance.yahoo.com/quote/600519.SS?p=600519.SS&.tsrc=fin-srch
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In this study, the reservoir was made up of 500 units. It scaled to a spectral radius of 0.999, and its
sparsity was 0.02. The activation function for the reservoir processing elements was implemented as the
tanh function, and the output function foutwas implemented as an identity function. We did not adopt the
connection method denoted by the dotted line in Fig. 1.

The operating environment was Python 3.7.3 and Jupyter Notebook on Windows 10 Pro (64 bit). We
used the pandas library to read closing stock prices and conduct experiments.

Conventional LSTM was modified to simplified LSTM by reducing training times. Simplified rather
than conventional LSTM was used because stock price forecasts are in real time, and conventional LSTM
cannot make valid calculations in a limited real-time range. We set up three experimental groups of
40-/80-/100-day data, which adopt ESN and simplified LSTM and one control group to compare the
forecast data of ESN and LSTM. The three experimental groups used 120-day data to forecast the next
40 days’ closing prices, 240-day data for the next 80 days’ closing prices, and 300-day data for the next
100 days’ closing prices.

3.3 Experiment Results and Analyses

3.3.1 Experiment 1
Experiment 1 was used to fit the forecast curves and practical curves. For both ESN and simplified

LSTM, we used stock data for 120, 240, and 300 days as the training sample and data for 40, 80, and
100 days as the test sample.

The forecasting results were output by the two models over the three time-series data sets. We compared
the forecasting results with the practical results through fitting graphs. Tab. 2 shows the results of the fitting
tests for ESN and simplified LSTM. ESN fit well, and the overall effect of the model was good.

Figs. 3–5 show the fitting of the practical and forecasting results as output by the two forecasting models
over three data sets. We used 120, 240, and 300 days of data to forecast stock closing prices in the next 40, 80,
and 100 days.

The fitting of the practical and forecasting results was better with ESN than with simplified LSTM. The
forecasting results output by ESN fit the practical results well with lower curve amplitudes. These results
indicate high forecasting accuracy. Meanwhile, because of poor data characteristics and parameter
settings, the performance of simplified LSTM varied significantly. In conclusion, the proposed ESN
exhibited advantages over simplified LSTM in time-series application.

Table 2: Forecasting results

Stock Training
sample

Test
sample

Day True date Forecast
data of ESN

Forecast data of
simplified LSTM

Kweichow
Moutai

120 40 11/2/2009 99.2712 99.3652 99.5633

240 80 114.9606 114.9246 114.8312

300 100 121.0512 120.9537 120.8535

120 40 11/3/2009 100.8639 100.7527 101.0473

240 80 112.3105 112.1773 112.1620

300 100 118.0439 117.9011 117.8489
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Figure 3: Comparison of ESN and LSTM price forecasts over 120 and 40 days

Figure 4: Comparison of ESN and LSTM price forecasts over 240 and 80 days
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3.3.2 Experiment 2
We used the MAEs of the forecasting models on different data sets to evaluate forecasting accuracy.

Tab. 3 shows the MAEs of different data sets output by the two forecasting models. A lower MAE
indicates better performance. The MAE of data output by ESN was lower than that output by simplified
LSTM. Thus, the result indicated that ESN performed well for forecasting.

In forecasting, the error value trend of ESN gradually stabilized. In the three experimental groups, its
error value was stable at around 0.024. Simplified LSTM’s performance was unstable. Its forecasting
error sometimes fluctuated significantly while ESN showed relatively stable error values. ESN was
consistent with actual stock fluctuation trends and could thus provide a reference for stock forecasting.

In summary, under the same conditions, the proposed ESN was more accurate than simplified LSTM.
Analyzing the data and errors of the three experimental groups, ESN had fewer errors than simplified

Figure 5: Comparison of ESN and LSTM price forecasts over 300 and 100 days

Table 3: Comparison of MAEs

Days Metric MAE

40 ESN 0.024

LSTM 0.089

80 ESN 0.024

LSTM 0.032

100 ESN 0.025

LSTM 0.034
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LSTM and was more consistent with the actual data. Therefore, ESN can forecast stock prices more quickly
and accurately in the short term, reflecting market fluctuations.

3.3.3 Experiment 3
Experiment 3 compared the convergence times of ESN and simplified LSTM with different data sets

(Tab. 4). RMSE was used to present convergence time.

Tab. 4 shows that ESN had relatively few convergence times on three data sets. Compared to simplified
LSTM, the convergence time advantage of ESN was not obvious for some data sets. However, the table also
shows that, under the premise of ensuring high forecasting accuracy, ESN had relatively fewer convergence
times than simplified LSTM.

3.3.4 Experiment 4
Experiment 4 compared the closing price forecasts of simplified and conventional LSTM using

120 days’ data inputs.

As shown in Fig. 6, when simplified and conventional LSTM was used to forecast the closing price of
the next 40 days, the more training time LSTM had, the more accurate the forecast. With an error value of
0.0078, the forecast of conventional LSTM fit the actual data well. However, in the experimental group, the
error value between the forecast data of simplified LSTM and the actual data was 0.089. The gap between the
error values of the different groups is obvious.

LSTM forecast data became more accurate as training times increased. This was because conventional
LSTM can use the temporal backward-transfer algorithm to modify the weight according to previous errors.
However, conventional LSTM took a lot of time. For ESN, while the training times are fixed, the updated
state of the reservoir will not be as accurate as the error gradient of conventional LSTM.

3.4 Experiment Conclusion

ESN and LSTM were found to have advantages and disadvantages. ESN could quickly obtain
forecasting results, which can help investors with short-term decision-making, but the error rate needs to
be reduced. Conventional LSTM, meanwhile, reflects the characteristics of important events, which have
long processing intervals and long delays in mid- and long-term stock forecasts. However, the problems
of large volumes of data and time requirements remain unresolved. Therefore, compared to conventional
LSTM, ESN has higher forecasting accuracy with a shorter processing time.

Table 4: Comparison of RMSEs

Days Metrics RMSE

40 ESN 0.22

LSTM 0.30

80 ESN 0.24

LSTM 0.25

100 ESN 0.26

LSTM 0.38
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4 Conclusion

Stock price forecasting has time-series features. A neural network is a machine learning algorithm. ESN
is a newer type of RNN. To obtain forecasting results using ESN, simply set the initial weights of the nodes
and then input the nodes into the reservoir for recursive operation. Whether the output layer needs further
training depends on the accuracy of the forecasting results. ESN requires less calculation because it does
not need to repeatedly carry out training by calculating the gradient. However, many studies have shown
that a stock forecast is a special nonlinear unstable event that is affected by both macro- and micro-
factors. Thus, for the computing power of any single ESN model, it is difficult to include all of the
complex influencing factors in the calculation and then obtain high forecasting accuracy. Therefore, in
future work, we intend to combine conventional LSTM and ESN to leverage their respective advantages.
ESN can improve convergence speed and better capture nonlinearity while conventional LSTM can
forecast stock prices with little error. We believe a combined ESN and conventional LSTM model can be
optimized to incorporate more factors that affect stock prices.
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Figure 6: Comparison of simplified and conventional LSTM in price forecasts over 120 and 80 days
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