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Abstract: Blockchain is a technology that provides security features that can be
used for more than just cryptocurrencies. Blockchain achieves security by saving
the information of one block in the next block. Changing the information of one
block will require changes to all the next block in order for that change to take
effect. Which makes it unfeasible for such an attack to happen. However, the
structure of how blockchain works makes the last block always vulnerable for
attacks, given that its information is not saved yet in any block. This allows mal-
icious node to change the information of the last block and generate a new block
and broadcast it to the network. Given that the nodes always follow the longer
chain wins rule, the malicious node will win given that it has the longest chain
in the network. This paper suggests a solution to this issue by making the nodes
send consistency check messages before broadcasting a block. If the nodes man-
age to successfully verify that the node that generated a new block hasn’t tam-
pered with the blockchain than that block will be broadcasted. The results of
the simulation show suggested protocol provided better security compared to
the regular blockchain.

Keywords: Blockchain; security; forking; blockchain consistency check
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1 Introduction

Blockchain technology was proposed in 2008 and implemented in 2009 by Satoshi Nakamoto from
Japan, and since then the technology has been gaining more attention every year [1]. Blockchain is a
distributed ledger that contains the history of all transactions made in the network. The ledger is kept by
volunteer nodes. This is done by using a consensus mechanism, which means that the state of the shared
ledger is updated by achieving an agreement using consensus algorithms [2]. Since its implementation
started, blockchain technology has been received positively by many for providing a reliable security
mechanism, allowing the ability to get rid of the middleman in transactions, and providing anonymity for
users. The reliability of the system comes from the consensus algorithms. These algorithms run all over
the network in every node. The algorithm guarantees that all nodes in the network have the same ledger
and any updates added to that ledger are added to every node in a reliable way. Hence, achieving
consensus across the network, and making it hard to tamper with the ledger. Bitcoin, for example, uses
proof of work consensus algorithm. In this algorithm, the nodes try to find a targeted value in order to be
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allowed to build the next block and be rewarded for its work to find the targeted value. Blocks are added to
the blockchain in a timely fashion. These blocks contain transactions made by other nodes in the network and
the hash of the previous block. This means that until the next block is added to the blockchain, the last block
is it a risk of being tampered with. The remainder of this paper covers the mechanism of how blockchain
works, how its mechanism can be exploited, and the proposed work to mend this issue.

2 Background and Related Works

2.1 Blockchain Operation

Blockchain is a technology that allows multiple nodes to update a shared ledger in a peer-to-peer
fashion. This technology allows the participating nodes to make transactions with one another in a secure
and confidential manner. The use of P2P helps in getting rid of any intermediaries by allowing the nodes
to communicate directly with each other. Blockchain is considered a shared database with an append-only
functionality that cannot be changed. Any new entry to the database in one node gets reflected across the
network, which ensures that all nodes have the same entry. Making all the nodes in the network maintain
the same database.

Blockchain was designed to work as a decentralized system. A decentralized system is a system that
does not have a single authority, and all nodes in the system have equal authority. Decentralized systems
have a lack-of-trust problem because there is not any governing party. And in the case of blockchain,
there is no third party to ensure that the sender and the receiver of transactions are safe. However,
blockchain inherently has trust integrated into its network [3].

2.2 Background

Forking is a very important aspect of blockchain. Forking means that the blockchain is branching into
two or more branches, and each branch has its own set of blocks [4]. The branches continue growing until
one of them gets longer than the other(s). The network will continue with the longer branch and drop all the
other branches [5]. Fig. 1 shows an example of a fork.

Forks happen when two miners or more generate a block nearly at the same time; this is called an
accidental fork [6]. However, malicious nodes can cause an accidental fork on purpose in order to
manipulate the blockchain by either engaging in a process called selfish mining or trying to manipulate
the last block. Selfish mining attack is an attack where a node holds the block that it had generated and
wait until it generates more blocks, and then broadcast these blocks to the network at once. This will
cause the network to fork and create a new branch. In case the branch that was caused by the selfish node
was longer, that branch will be used by the network and the other honest as the main branch. And the
short branch will be discarded. This is due to the longest chain rule used by the blockchain to resolve any
forks that might occur [7].

A different method to fork the chain intentionally is manipulating the last block. This method can be
done by leveraging on the fact that blockchain achieves security by saving the information of the
previous block in the next block. Thus, it can be concluded that the last block is always vulnerable, given

Figure 1: Example of forking in blockchain
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that its information has not been stored in any block yet. This means that a malicious node can manipulate the
last block (block #500 for example) and generate a new block (block #501) and broadcast it to the network.
Now given that the malicious node has the longest chain, a chain with 501 blocks, that chain will win because
of the longest chain rule [8]. More explanation on the last block manipulation in Chapter 3.

2.3 Related Works

The authors of Eyal et al. [9] suggested the most straightforward solution to amend the last block
vulnerability, suggested that a node should randomly choose a fork to extend whenever it finds multiple
forks of the same length. If all the nodes in the network randomly choose what fork to extend, the
probability of extending the fork that was caused by the malicious node will decrease. The writers of
Heilman [10] introduced the concept of Freshness Preferred (FP), which places the unforgeable
timestamps in blocks and prefer blocks with recent timestamps. This approach uses Random Beacons to
stop miners from using timestamps from the future. As selfish mining uses a strategic block withholding
technique, the proposed strategy will decrease the incentives for selfish mining because withheld blocks
will lose block races against newly minted or fresh blocks. A similar solution for selfish mining that
requires no changes in the existing Bitcoin protocol was proposed in Zhang et al. [11]. The authors
suggested a fork-resolving policy that selectively neglects blocks that were not published in time, and it
appreciates blocks that include a pointer to competing blocks of their predecessors. Therefore, if the
secretly mined block was not published in the network until a competing block was published, it will
contribute to neither or both branches. Hence, it will not get benefits in winning the fork race. The writers
of Zhang et al. [12] proposed another defense against selfish mining, in which miners need to publish
intermediate blocks (or in-blocks). These blocks will only reward the miners who do a lot of work.
Although miners who didn’t do a lot of work can generate blocks, they won’t be rewarded. When a fork
happens, miners adopt the branch with the largest total amount of work, rather than the longest chain.

Unlike most of the aforementioned solutions against malicious forking, the writers of Solat et al. [13]
proposed a timestamp-free prevention of block withholding attack called ZeroBlock. In ZeroBlock, if a
selfish miner keeps a mined block private for more than a specified interval called mat, than later when
this block is published on the network, it will be rejected by the honest miners. The key idea is that each
consecutive block must be published in the network, and it should be received by honest miners within a
predefined maximum acceptable time for receiving a new block (i.e., mat interval). In particular, an
honest miner either receives or publishes the next block in the network within the mat interval.
Otherwise, to prevent the block withholding, the miner itself generates a specific dummy block called
Zeroblock. These signed dummy Zeroblocks will accompany the solved blocks to prove that the block is
witnessed by the network and that a competing block is absent before miners can work on it. In Courtois
et al. [14], Bahack suggested that the only viable option to countermeasure a block withholding attack
launched within a pool is that the pool managers should involve ONLY miners who are personally known
to them. Hence, they can be trusted. The pool manager should simply dissolve and close a pool as soon
as the earning of the pool goes lower than expected from its computational effort.

While both selfish mining and manipulating the last block in the blockchain cause the blockchain to fork
and stealing the efforts of honest nodes, it is important to note that these two attacks are different. Which in
turn means that the solutions for them are different. Unlike all the previous works, this paper suggests a
solution to prevent manipulating the last block in the blockchain by using a consistency check message
between the nodes.
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3 The Proposed Work

In blockchain, the hash of the previous block is saved in the next block. This means that the last block
is always in danger of being manipulated with (since its information has not been hashed and stored in
another block).

3.1 Original Blockchain Behavior

From the above rules regarding the blockchain behavior, it can be concluded that there is a possibility for
a malicious node to alter the information of the last block, and generate another block to make its chain longer
and broadcasts it to the network. In order to understand blockchain better, a closer look at the following
equation written by Satoshi Nakamoto’s paper about Bitcoin is needed [1].

p: Probability of an honest node finding the next block.

q: Probability of a malicious node finding the next block.

qz: Probability of a malicious node catching up to the honest nodes. (z is explained in detail on the
next page).

qz ¼
1; if p � q
q

p

� �z

; if p > q

8<
: (1)

This means that the malicious node will win and can manipulate the blocks if its probability is higher
than or equal to the probability of the honest nodes to mine the next block [1]. (A better probability
means that the malicious node has a better hashing power, or the number of the malicious nodes is larger
than the honest nodes). However, if the hashing power or the number of the malicious nodes is less than
the honest nodes, then the winning probability of the malicious node is smaller (i.e., the manipulation is
not guaranteed to happen). The more blocks generated by the honest nodes (dictated by z), the less likely
the malicious node will win. The following example explains more:

Assume the following, Node A is an honest node, and Node B is a malicious node. Both nodes have the
same hashing power. Node B wants to manipulate the last block, block #500.

In this chain, the value of z is 0. Because right now both the honest and the malicious nodes have the
same number of blocks after block #500, which is 0 as seen in Fig. 2.

Suppose now that block #501 was generated by Node A (an honest node) and broadcasted to Node B as
seen in Fig. 3. Now the value of z = 1. This means that in order for Node B (the malicious node) to be able to
manipulate block #500, it has to manipulate block #500 and generate two more blocks (block #501 and block
#502) and broadcast them in order to successfully manipulate the blockchain. Suppose now that block
#502 was generated by Node A (an honest node) and broadcasted to Node B as seen in Fig. 4.

Figure 2: Blockchain example
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Now the value of z is 2. This means that in order for Node B (the malicious node) to be able to
manipulate block #500, it has to manipulate block #500 and generate three more blocks, block #501,
block #502, and block #503 in order to successfully manipulate the blockchain. This logic can be
represented in the following equation:

z ¼ zþ 1; if block generated by A
z� 1; if block generated by B

�
(2)

The bigger the value of z, the less likely B will be able to catch up and manipulate the chain. However,
when the value of z = 0 (i.e., when the malicious node tries to attack the last block) the malicious node has a
higher probability of manipulating the blockchain, and in theory, it can succeed. It can be concluded from this
that the last block is always in danger because its hash is not saved yet in any block [15].

Once the malicious node manipulates the last block (block #500) and manages to generate the next block
(block #501) the value of z becomes -1. Fig. 5 shows the blockchains in Nodes A and B after Node B
broadcasted its new block (#501).

Figure 3: The value of z increments by 1

Figure 4: The value of z increments by 2

Figure 5: The value of z decrements by 1
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3.2 Last Block Consistency Check Protocol

The way of how blockchain works currently does not give a chance for the honest nodes to defend
themselves against this attack. Because as mentioned previously, the honest nodes will always trust the
longest chain.

The malicious node managed to win in the previous example because the nodes in the network do not
question the block and immediately accept it. There is not any form of inspection to ensure that the block
hasn’t been manipulated. As long as the block was generated by a node that has the longest chain, the
other nodes will immediately trust the new block. Therefore, in order to amend this issue, this paper
suggests the use of a blockchain consistency check (BCC) protocol. BCC protocol exchanges message
between a node and its neighbors before a new block is broadcasted throughout the network. Unlike the
regular blockchain where a block is broadcasted once it is generated, in the proposed method, any node
that generates a new block as seen in Fig. 6 has to send a consistency check message to its neighbors first
in order for them to decide whether the new block should be broadcasted or not.

The BCC message consists of the two Merkle-Tree hashes of the last two blocks. Which are the Merkle-
Tree hash of the second to last block (e.g., block #499), and the Merkle-Tree of the last block that was newly
generated (e.g., block #500) as seen in Fig. 7.

Once the message arrives at the neighboring nodes, every node will compare the hash of the second to
last block (block #499) in the message to its own local hash as seen in Fig. 8.

Right after that, the node that generated the new block will send the new block (block #500) to its
neighbors as seen in Fig. 9.

Once the block arrives at the neighboring nodes, every node will compare the Merkle-Tree hash of the
received block (block #500) to the Merkle-Tree hash of block #500 in the consistency check message as seen
in Fig. 10.

In case the hash of block #500 was the same after inspecting it, the neighboring nodes (Node 2 and
Node 3) will accept the block, and broadcast it. Otherwise, in case a mismatch was detected by the
neighboring nodes, the neighboring nodes will not broadcast the new block preventing the malicious
node from winning over the network.

Figure 6: BCC protocol Step 1: Node 1 generated a new block (#500)
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Figure 7: BCC protocol Step 2: Node 1 sends the BCC message to its neighbors

Figure 8: BCC protocol Step 3: The neighboring nodes compare their local hashes to hash included in the CCM

Figure 9: BCC protocol Step 4: Node 1 broadcasts the new block to its neighbors
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4 Experiments and Results

The environment of the simulation was developed using Python programming language. Anaconda
environment was used to build the network in order to send and receive requests between the nodes. The
simulation implementation has been performed in an Ubuntu operating system with Core i5-8500U CPU
3 GHz. The installed RAM is 4.00 GB. In order to implement Proof of Work, SHA-256 cryptographic
hashing algorithm was used. The first block (also known as the genesis block) which does not contain
any transactions or previous hash was hardcoded. The tests were carried out on three different networks,
that had different topologies and a different number of nodes. 50 nodes, 200 nodes, and 500 nodes were
used accordingly.

On the small network, 100 tests were made. 50 tests on the original blockchain, and 50 tests on
the proposed blockchain. On the medium size network, 100 tests were made. 50 tests on the original
blockchain, and 50 tests on the proposed blockchain. Lastly, on the large network, 100 tests were made.
50 tests on the original blockchain, and 50 tests on the proposed blockchain.

When it comes to block generating, the blockchain was generating 1 block every 10 min. This is done
by adjusting the difficulty of the network, also known as the number of leading zeros in a hash. Bitcoin
network adjusts the difficulty by comparing how long it took to mine the last 2016 blocks (every two
weeks), and adjust the difficulty based on the result. If mining the last 2016 blocks took more than two
weeks, then, the network will make the target value easier and vice versa.

After multiple experiments in selecting the network difficulty, it has been decided that the best choice for
this simulation’s environment was to produce a hash with leading 11 zeros or more. Lastly, in order to give a
better probability for the malicious node to generate a block, it was given less strict rules for generating a
block. The malicious node was allowed to produce a block by generating a hash that starts with 9 zeros
or more. The reason this decision was made is to save time in order to carry more experiments. However,
in order to ensure that there is a balance in the network the malicious node was allowed to attack once
when the value of z from Eq. (2) equals zero. Remember that if the value of z is 0. Once the value of z
became 1, the simulation round was over, indicating that the malicious node did not succeed in attacking
the network. In theory, this should balance out the network’s performance. Over time, the malicious node
will fall behind and never catch up to the honest nodes who form the majority. Giving the scope of the

Figure 10: BCC protocol Step 5: The neighboring nodes compare the hash in the new block to the hash that
was included in the CCM
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simulation, every node is connected to 8 other nodes maximum, and 1 one node minimum. The metrics
measured in the simulation are:

� The number of times the malicious node generated a block before any honest node.

� The number of times the attack has succeeded.

� The number of exchanged messages.

4.1 The Number of Time the Malicious Node Successfully Generated a Block before Any Honest Node

Tab. 1 shows that the malicious node in both the original blockchain and the proposed blockchain
managed to successfully generate a block within the given condition in order for the malicious node to
carry out the simulation. Although the number of times for the malicious node to succeed is purely based
on hashing, and has nothing to do with the differences between the original blockchain and the suggested
one. However, generating a block does not necessarily mean that the malicious node will be able to
successfully manipulate the network.

4.2 The Number of Times an Attack Has Succeeded

� The 50 nodes network: Tab. 1 shows the number of times the proposed blockchain managed to
prevent an attack on the network compared to the original blockchain. It can be seen that the
original blockchain didn’t defend itself against any attack out of the 6 attacks. While in the
proposed blockchain, the network managed to defend itself against all attacks.

� The 200 nodes network: Tab. 1 shows the number of times a successful attack has happened. It can be
seen that the original blockchain didn’t defend itself against any attack out of the 6 attacks. While in
the proposed blockchain, the network managed to defend itself against all attacks.

� The 500 nodes network: Tab. 1 shows the number of times a successful attack has happened. Given the
large number of nodes in the large network, the original blockchain network managed to defend itself
against one attack. The network managed to defend itself because an honest node generated a new block
at the same time as the attack was happening, and the block generated by the honest node propagated to
more nodes in the network before the block that was generated by the malicious node. Meaning that the
original blockchain network managed to defend itself against 1 attack out of 4 as seen in Fig. 11. While
in the proposed blockchain, the network managed to defend itself against all attacks.

4.3 The Number of Exchanged Messages

The number of exchanged messages in the proposed blockchain is a little bit higher than the original
blockchain. This is due to the fact that the nodes in the suggested blockchain exchange CCM messages
every time a new block is generated. Denoting the number of nodes in the network by n, the nodes in the

Table 1: Metrics used in the simulation

Regular
blockchain
(50 nodes)

Proposed
blockchain
(50 nodes)

Regular
blockchain
(200 nodes)

Proposed
blockchain
(200 nodes)

Regular
blockchain
(500 nodes)

Proposed
blockchain
(500 nodes)

The Number of Time the Malicious Node
Successfully Generated a Block Before
Any Honest Node

6 5 6 7 4 4

The Number of Times an Attack Has
Succeeded

6 0 6 0 3 0

The Percentage of successful attacks 100% 0% 100% 0% 75% 0%
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original blockchain exchanged n-1 messages over a 10 minutes period of time (the average time it takes to
generate a block). All of the messages were block broadcasting messages. In the proposed blockchain,
however, Denoting the neighbors of a node by m, the nodes in the network exchanged (n-1) + (m*CCM)
messages over the same period of time as seen in Fig. 12.

Fig. 12 shows the number of exchanged messages over a 10 min period in the three networks. (A) show
that the nodes in the small network exchanged 98 messages in the original blockchain and 105 messages
in the proposed blockchain. While (B) shows that the nodes in the medium network exchanged
398 messages over 10 minutes period in the original blockchain and 403 in the proposed blockchain.
Lastly, (C) shows that the nodes exchanged 998 in the original blockchain in the large network, and
1002 messages in the proposed blockchain.

5 Conclusion

The original structure of the blockchain is not secure enough. Because in blockchain security is achieved
by saving the transaction information of a block in the next block. However, this means that the last block
will be always vulnerable and open for manipulation by malicious nodes. There is a lot of room for such an

Figure 11: The success rate of the malicious node attack on the network

Figure 12: (A) The number of exchanged messages over a 10 minute period in the 50 nodes network (B)
The number of exchanged messages over a 10 minute period in the 200 nodes network (C) The number of
exchanged messages over a 10 minute period in the 500 nodes network
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attack to happen since the nodes in the network contact each other only when a new block is generated.
Moreover, the “longest chain wins” rule forces the nodes to trust whatever node has the longest chain,
even if the longest chain contained fake blocks.

This paper proposes an algorithm that further enhances the security of the blockchain and ensures that
the last block in the blockchain remains secure even when a malicious node tries to manipulate it. The
proposed algorithm makes the nodes send a consistency check message to its neighbors every time a new
block is generated. This message contains the Merkle-Tree hashes of the last two blocks in the
blockchain. The neighbors of a node will investigate the hashes included in the CCM and based on the
result, the neighbors will decide whether or not to broadcast the new block.

The simulation results show that the proposed blockchain managed to prevent 100% of the attacks in the
small size network. And managed to prevent 100% of the attacks in the medium-size network. And managed
to prevent 100% of the attacks in the large size network

While it is been proven that the proposed method offers more security to the network, this security
comes at the price of the number of exchanged messages. Because in the proposed method the nodes
send an extra message before broadcasting a block, while in the original blockchain the nodes only
contact each other when a new block needs to be broadcasted.
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