
Highway Cost Prediction Based on LSSVM Optimized by Intial Parameters

Xueqing Wang1, Shuang Liu1,* and Lejun Zhang2

1School of Mechanics and Civil Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
2School of Information Engineering, Yangzhou University, Yangzhou, 225127, China

�Corresponding Author: Shuang Liu. Email: liushuang_0122@163.com
Received: 15 September 2020; Accepted: 19 October 2020

Abstract: The cost of highway is affected by many factors. Its composition and
calculation are complicated and have great ambiguity. Calculating the cost of
highway according to the traditional highway engineering estimation method is
a completely tedious task. Constructing a highway cost prediction model can fore-
cast the value promptly and improve the accuracy of highway engineering cost.
This work sorts out and collects 60 sets of measured data of highway engineering;
establishes an expressway cost index system based on 10 factors, including main
route mileage, roadbed width, roadbed earthwork, and number of bridges; and
processes the data through principal component analysis (PCA) and hierarchical
cluster analysis. Particle swarm optimization (PSO) is used to obtain the optimal
parameter combination of the regularization parameter c and the kernel function
width coefficient � in least squares support vector machine (LSSVM). Results
show that the average relative and mean square errors of the PCA-PSO-LSSVM
model are 0.79% and 10.01%, respectively. Compared with BP neural networks
and unoptimized LSSVM model, the PCA-PSO-LSSVM model has smaller rela-
tive errors, better generalization ability, and higher prediction accuracy, thereby
providing a new method for highway cost prediction in complex environments.

Keywords: Highway; least squares support vector machine (LSSVM); particle
swarm optimization (PSO); principal component analysis (PCA); hierarchical
cluster analysis

1 Introduction

According to traditional highway engineering estimation method, calculating its cost is an extremely
perplexed task. With the rapid development of mathematical modeling methods and computer technology,
experts at home and abroad have studied various mathematical models or computer simulation means for
project cost forecasting. Regression analysis methods were commonly used [1] in the early foreign
literature and were later combined with other probability analysis model [2]. In recent years, artificial
neural network-based cost prediction approaches have become prevalent. Domestic scholars have applied
methods, such as fuzzy mathematics [3], grey system theory [4], genetic algorithm [5], system dynamics
[6], and big data [7], for the cost prediction of engineering projects.
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A large number of documents apply BP neural network [8] for cost prediction. Owing to the slow
convergence speed, these documents are liable to fall into a local minimum. Support vector machine
(SVM) has excellent learning ability and can be used for small sample size, thereby avoiding structure
selection, and the local minima of the neural network. SVM has elicited extensive attention for in-depth
study. SVM has several problems. First, its algorithm setting parameters are based on empirical values.
Second, its implementation is complicated and difficult. Lastly, it has slow training speed. The least
squares support vector machine (LSSVM), as an improved SVM algorithm, inherits a series of excellent
features, such as the SVM kernel function, the principle of structural risk minimization, and small sample
size. Complex quadratic programming problem is transformed into a simpler linear equation solving
problem, which shortens training time and improves solution speed greatly [9].

Particle swarm optimization (PSO) algorithm uses real numbers to find the optimal parameters. The
algorithm has strong versatility, fast convergence, and is easier to leap to local optimal information. It has
been widely used in parameter optimization. Consequently, the PSO algorithm is used to determine the
optimal parameters of LSSVM and improve calculation accuracy [10].

Through preliminary research on the aforementioned algorithms, this work sorts out and collects the data
of existing highways, establishes a sample set, processes the samples through hierarchical cluster analysis
and principal component analysis (PCA), builds a PCA-PSO-LSSVM [11] highway engineering
prediction model, and compares the proposed model with the BP neural network and the unoptimized
LSSVM model.

2 Basic Principle of PCA-PSO-LSSVM

2.1 PCA

PCA is an index dimensionality reduction method based on mathematical ideas. It uses the orthogonal
transformation in linear programming to reduce the given variables with correlation to a small number of
uncorrelated comprehensive variables. These new comprehensive variables carry most of the important
information of the original indicators, and the relationship of complex matrix is simplified to achieve the
dimensionality reduction of indicators [12]. The specific steps are presented as follows:

Step 1: Select the initial sample. Assuming that population X has n samples X1;X2; � � � ;Xnð Þ, and each
sample has m-dimensional variables. Thus, the matrix of the observation data is denoted as:

Xm�n ¼
x11 x12 � � � x1n
x21 x22 � � � x2n
..
. ..

. . .
. ..

.

xm1 xm2 � � � xmn

2
6664

3
7775

Step 2: Standardize the original data. The formula is expressed as follows:

e�j ¼ x�j � x̂�j
S�j

(1)

where

x�j: j is a random variable;

x̂�j: mean of the jth variable;

S�j: standard deviation of the jth variable.

Step 3: Calculate the correlation coefficient matrix of e ¼ e1; e2; � � � ; enð ÞT and use
P

u ¼ �u to find
the eigenvalue �i and its eigenvector ui. �1 � �2 � � � ��m � 0.
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Step 4: Obtain M m � nð Þ principal components by calculation:

F1 ¼ u11X1 þ u12X2 þ � � � þ u1nXn

F2 ¼ u21X1 þ u22X2 þ � � � þ u2nXn

..

.

Fm ¼ um1X1 þ um2X2 þ � � � þ umnXn

8>>><
>>>:

(2)

ui1
2 þ ui2

2 þ � � � þ uin
2 ¼ 1 i ¼ 1; 2; � � � ;mð Þ (3)

Step 5: Calculate the principal component contribution rate and cumulative contribution rate. Compute

the contribution rate of the ith principal component according to Pi ¼ �iPm
j¼1 �j

. The cumulative contribution

rate of the first q principal component is Pi ¼
Pq

i¼1 �iPm
i¼1 �i

. When the cumulative contribution rate of the current q

principal component reaches over 85%, the first q principal component is used as a new indicator.

2.2 PSO

Kennedy and Eberhart proposed PSO in 1995. This algorithm has the advantages of simplicity, easy
implementation, no gradient information, and few parameters. It is particularly suitable for real number
optimization problems. It also has a profound intelligent background that is suitable for scientific
research, particularly for engineering applications [13]. The main principles are presented as follows:

M particles are found in the D-dimensional space; Particle i position: xi ¼ ðxi1; xi2; . . . ; xiD); Particle i
velocity: vi ¼ ðvi1; vi2; . . . ; viDÞ; 1 � i � m; and the best position in history that particle i has experienced:
pi ¼ pi1; pi2; . . . ; piDð Þ.
vtþ1
im ¼ xvtim þ c1rand1 Pt

im � xtim
� �þ c2rand2 Pt

gm � xtim

� �
(4)

xtþ1
im ¼ xtim þ vtþ1

im (5)

where

x: inertia weight factor;

c1; c2: learning factors, usually a value of 2;

rand: [0,1] random function of value;

t: number of iterations.

2.3 LSSVM

The main principle of the mathematical model of the LSSVM regression algorithm is presented as
follows. The training sample set D ¼ xi; yið Þ; i ¼ 1; 2; � � � ; nf g, where xi 2 Rd is the ith d-dimensional
input vector, and yi 2 R is the predicted value of the corresponding input, is given. Subsequently, the
regression function is:

yi ¼ wf xið Þ þ b (6)

where

x: weight vector;

b: offset.
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Different from SVM, LSSVM selects the square of the error ni as the loss function in the optimization
objective while changing the constraints into equality constraints. When using the principle of structural risk
minimization, the optimization problem becomes:

min
1

2
k xk2 þ c

1

2

Xn

i¼1
ei
2

st:wf xið Þ þ bþ ei ¼ yi (7)

where

c: regularization parameters;

ei: error vector.

The Lagrangian function is established to solve the above-mentioned problem:

L w; b; e; nð Þ ¼ min
1

2
k xk2 þ c

1

2

Xn

i¼1
ei
2 �

Xn

i¼1
ni wf xið Þ þ bþ ei � yi½ � (8)

The optimal solution satisfies the KKT optimization condition, and the partial derivatives of w; b; e; n in
Eq. (8) are calculated and are equal to zero.

@L

@w
¼ 0 ! w ¼

Xn

i¼1
nif xið Þ

@L

@b
¼ 0 !

Xn

i¼1
ni ¼ 0

@L

@e
¼ 0 ! ni ¼ cei

@L

@n
¼ 0 ! wf xið Þ þ bþ ei � yi ¼ 0

8>>>>>>>>><
>>>>>>>>>:

(9)

After transforming the above-mentionedconditions using the same solution, variables x and e are
eliminated, and the optimal solution matrix of b and n can be obtained.

0
Y

� �
¼ 0 ZT

Z K þ c�1E

� �
b
n

� �
(10)

where

n : n ¼ n1; n2; � � � ; nn½ �T , Lagrange multiplier;

Z : Z ¼ 1; 1; � � � ; 1½ �T ;
Y : Y ¼ y1; y2; � � � ; ynð ÞT ;
E : n-order identity matrix;

K : K ¼ K xi; xj
� � ¼ f xið Þf xj

� �
, kernel function matrix.

The final decision function of LSSVM is:

y xð Þ ¼
Xn

i¼1
niK x; xið Þ þ b (11)

The kernel function adopts the Gaussian radial basis kernel function and is expressed as:

K xi; xð Þ ¼ exp �k x� xi k2
2r2

� 	
(12)
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3 PSO-LSSVM Model Based on PCA

The PSO algorithm is used to determine the optimal solution of the key parameters c and r of LSSVM
and build the PCA-PSO-LSSVM highway engineering cost prediction model. The specific flow chart is
shown in Fig. 1.

The steps, which are based on the PCA-PSO-LSSVM model, are presented as follows:

Step 1: Sort and collect samples and perform systematic cluster and principal component analyses on the data.

Step 2: Initialize the particle swarm. The regularization parameter c and the kernel function width
coefficient r in the LSSVM model must be optimized. Set the value range of c; rð Þ given that the
number of particle swarms q, the maximum number of iteration tmax, learning factors c1 and c2, and
inertial weighting factors xmax and xmin . Generate the first-generation particle swarm randomly.

Step 3: Train the generated parameter combinations of each generation c and r as the parameters of the
LSSVM model. Calculate the fitness value of each particle swarm generation through the fitness function,
and select the root mean square error (MSE) as the function to evaluate the fitness of the particles.

Step 4: Compare the current fitness value f xið Þ of each particle with the fitness value f Pbestið Þ of the
historical optimal position. If f xið Þ < f Pbestið Þ, then update Pbesti ¼ xi. Compare the fitness value f xið Þ
of the optimal position of each particle with the optimal position fitness value f Gbestð Þ of the entire
particle swarm. If f xið Þ < f Gbestð Þ, then update Gbest ¼ xi. Continue these steps until the optimal solution
combination is achieved.

Step 5: Construct the PCA-PSO-LSSVM training model, the fitness graph, and the sample regression
curve figure.

Step 6: Input the test sample and obtain the prediction result.

Figure 1: Flow chart of PCA-PSO-LSSVM model implementation
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4 Application and Analysis

4.1 Selection of Model Evaluation Indicators

Sorting out and collecting 60 groups of highway data in different regions, the main factors that affect
highway project cost, namely, main route mileage X1=km, subgrade width X2=m, subgrade earthwork
volume X3=103 m3 � km�1ð Þ, number of bridges X4=m � km�1, number of interchanges X5=road � km�1,
number of separated interchanges X6=place � km�1, number of tunnels X7=m � km�1, pavement form X8,
landform features X9, and area X10. The predicted value refers to the highway engineering cost per
kilometer: Y=10 million yuan. The pavement form is determined according to different pavement forms,
landform characteristics, and the degree of influence of the area on the construction cost of expressway.
The values 0.8 and 0.6 represent the asphalt and cement concrete pavements, respectively. The
geomorphic features are presented as follows: 0.2 represents plain and hilly area, 0.5 represents heavy hill
area, and 0.8 represents mountainous area. Weighted summation is used when different sections of a road
have diverse geomorphic features. In the region, China’s provinces are divided into I, II, and III taking
0.3, 0.6, and 0.9, respectively.

4.2 Sample Data Processing

First, hierarchical cluster analysis is used to classify the samples, and several projects with higher
similarity can be selected to improve prediction accuracy. A total of 60 groups of highway engineering
data are standardized in the SPSS software (Tab. 1). The clustering method selects clustering between
groups, and the measurement interval uses square European clustering.

After hierarchical cluster analysis, the 10 sets of data (e.g., 1, 2, 43, 15, 29, 23, 28, 27, 36, and 16) were
screened out, and the remaining 50 sets of data were standardized to obtain the data in Tab. 2. The characteristic
value and cumulative contribution rate of each component were obtained through PCA (Tab. 3). The first
6 factors with a cumulative contribution rate of 85% were selected as the new principal components. The
coefficient matrix (Tab. 4) is acquired according to the coefficient ¼ component load 	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eigenvalue
p

.
Finally, by using formula Z1 ¼ �0:0366X1 � 0:29835X2 þ 0:20789X3 þ 0:46073X4 � 0:25574X5�
0:32196X6 þ 0:48084X7 � 0:13289X8 þ 0:47095X9 þ 0:12073X10 and so on, the input sample matrix is
obtained (Tab. 5).

Table 1: Standardization of original data of highway construction

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y

1 –1.49427 2.05733 –0.57764 –0.33949 6.66921 1.38474 –0.86545 0.388 –1.28160 1.98326 5.115842

2 –1.41891 5.60477 0.73310 3.57918 –0.30064 –1.13625 –0.86724 0.388 –1.10422 –0.49582 11.32167

3 –1.22782 2.06324 0.35260 0.24037 0.28477 1.27352 –0.86622 0.388 –1.28160 –0.49582 3.72445

4 –0.9374 0.29247 0.35261 –0.70322 0.45566 1.01169 –0.86549 0.388 –1.28160 –0.49582 3.62909

5 –0.92144 0.29837 –1.00874 –0.70322 –0.30336 0.53900 –0.86587 0.388 –1.28160 1.98326 3.89426

6 –0.85565 –0.44535 –0.17051 0.95306 –0.30264 –0.60322 3.09739 0.388 1.37916 –0.49582 8.89118

7 –0.77088 –0.44535 0.55095 1.18386 –0.30246 –0.87488 0.70101 0.388 1.11309 –0.49582 8.224901

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

60 0.40435 –0.44535 1.72603 0.71118 –0.30267 0.15205 0.6807 0.388 0.49224 1.98326 8.78174
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Table 2: Standardization sample data

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Y

1 –1.3900 3.5456 0.4081 0.3647 0.8043 2.1664 –0.9197 0.2021 –1.4069 –0.4321 3.72445

2 –1.0321 0.7406 0.4081 –0.8649 1.1534 1.7735 –0.9190 0.2021 –1.4069 –0.4321 3.62909

3 –1.0124 0.7410 –1.0432 –0.8649 –0.3969 1.0641 –0.9194 0.2021 –1.4069 2.2683 3.89426

4 –0.9314 –0.4281 –0.1499 1.234 –0.3542 –0.6502 2.8866 0.2021 1.2678 –0.4321 8.89118

5 –0.8269 –0.4281 0.6199 1.5942 –0.3951 –1.0578 0.5853 0.2021 1.0003 –0.4321 8.224901

6 –0.7716 –0.4281 –0.1570 1.0171 0.3951 –1.1075 1.2213 0.2021 0.9112 –0.4321 9.680698

7 –0.7195 –0.4235 –0.1750 –1.2092 –0.3968 0.3478 –0.9184 0.2021 0.5993 –0.4321 4.39933

8 –0.6843 –0.4281 –0.0703 1.6030 –0.3951 –1.3109 1.4166 0.2021 –1.4069 –0.4321 6.79503

9 –0.3762 –0.4281 0.3579 –1.1465 0.3969 –0.1773 –0.9190 0.2021 –1.4069 –0.4321 4.46452

10 –0.1870 –0.1944 –1.1110 –1.1634 0.3969 –0.4068 –0.9192 0.2021 –1.4069 –0.4321 4.07081

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50 0.6215 –0.4281 1.8723 0.9782 –0.3955 0.4834 0.5658 0.2021 0.3763 2.26826 8.78174

Table 3: Eigenvalue, contribution rate, and cumulative contribution rate

Ingredient Eigenvalues Contribution rate/% Cumulative contribution rate/%

1 2.774 27.744 27.744

2 1.520 15.197 42.941

3 1.476 14.756 57.697

4 1.225 12.250 69.947

5 0.811 8.106 78.052

6 0.724 7.243 85.296

7 0.548 5.475 90.771

8 0.450 4.501 95.271

9
10

0.297
0.176

2.970
1.759

98.241
100

Table 4: Coefficient matrix

1 2 3 4 5 6

X1 –0.03660 0.24245 0.60285 –0.16337 0.53826 –0.15261

X2 –0.29835 –0.14402 –0.37438 0.44428 0.13241 0.00973

X3 0.20789 0.37533 0.22249 0.48797 –0.20796 0.52819

X4 0.46073 –0.02943 –0.03134 0.41220 –0.11068 –0.26665

X5 –0.25574 0.18524 0.44497 0.25020 –0.49556 –0.43301

X6 –0.32196 0.18671 –0.05762 0.47734 0.51664 –0.16687

X7 0.48084 –0.24122 –0.04715 0.18820 0.26038 –0.27967

X8 –0.13289 –0.50348 0.36945 0.17009 0.12506 0.52798

X9 0.47095 –0.03821 0.16807 –0.00255 0.14270 0.04872

X10 0.12073 0.62947 –0.27820 –0.11432 0.14287 0.22860
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4.3 PCA-PSO-LSSVM Prediction Model

The PCA-PSO-LSSVM prediction model is established using the MATLAB2016(a) simulation
platform, and the initialization parameters of the prediction model are set as follows: population size
q ¼ 40, maximum number of iterations tmax ¼ 500, learning factor c1 ¼ 2 ; c2 ¼ 2, inertia weight
coefficient xmax ¼ 0:9 ;xmin ¼ 0:4, regularization parameters c 2 0; 100½ �, and kernel function width
coefficient r 2 0; 10000½ �. The first 40 groups of the input sample data are applied as the training
samples to exercise and learn the PCA-PSO-LSSVM model, and the last 10 groups are utilized as the test
samples for prediction. The output is the cost of highway engineering per kilometer/10 million yuan. The
fitness curve of the PCA-PSO-LSSVM model is shown in Fig. 2.

Table 5: Input sample matrix

Z1 Z2 Z3 Z4 Z5 Z6 Y

1 –2.84115 –0.24979 –1.85119 3.301447 –0.15993 –0.14825 3.72445

2 –2.54631 0.268266 –0.36882 1.389823 –0.57841 0.011945 3.62909

3 –1.90084 1.007213 –2.08352 –0.35267 0.522654 0.649525 3.89426

4 2.943145 –1.57143 –0.34164 0.636575 0.190138 –0.7438 8.89118

5 2.136404 –0.77696 –0.02976 0.49193 –0.89906 0.264725 8.224901

6 1.986912 –1.19738 –0.19329 –0.03775 –0.51672 –0.1739 9.680698

7 –0.68971 –0.32717 –0.13401 –0.67825 –0.08684 0.743458 4.39933

8 2.515087 –1.25283 –0.10724 0.171007 –0.58139 –0.30968 6.79503

9 –0.39249 –0.14302 0.221569 –0.70136 –0.29185 1.043547 4.46452

10 –1.65322 –0.64778 –0.4021 –1.45658 –0.25661 0.186208 4.07081

. . . . . . . . . . . . . . . . . . . . . . . .

50 1.586654 2.078496 0.197199 1.037475 0.776276 1.204973 8.78174

Figure 2: Fitness function diagram
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Fig. 2 shows that the fitness curves have reached a stable state when the number of iterations reaches
210. The optimal parameter combination of the prediction model is c; rð Þ ¼ 0:0434; 3547:4806ð Þ, and the
average relative error of the training sample is MRE ¼ 0:0017. The sample regression curve with good
fitting effect is shown in Fig. 3.

4.4 Comparative Analysis with BP neural network and LSSVM model

The regression fitting of the training samples proves that the PCA-PSO-LSSVM model has good
learning ability. To verify whether the model also has excellent generalization ability, the prediction is
performed by inputting 10 sets of test sample data and by comparing them with the unoptimized LSSVM
model and BP neural network model (Fig. 4).

Figure 3: Regression curve of highway engineering cost training sample

Figure 4: Forecast results of highway engineering cost by different models
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Preliminarily, Fig. 4 shows that the effect of the PCA-PSO-LSSVM model prediction is better than
those of the BP neural network and the LSSVM model, which have values closest to the actual one. To
verify the superiority of the PCA-PSO-LSSVM model more intuitively, the average relative error (MRE)
and root mean square relative error (RMSE) are calculated to evaluate the performance of the model
(Tabs. 6 and 7, respectively).

Tabs. 6 and 7 suggest that the accuracy of the BP neural network for highway project cost prediction is
poor with an average relative error and root mean square relative error of 8.55% and 56.92%, respectively.
The reason is that the BP neural network needs to rely on large sample data, which have poor
generalization ability for small sample learning. Meanwhile, the average relative error and root mean
square relative error of the unoptimized LSSVM model are 4.69% and 47.35%, which are more
accurate than the BP neural network prediction. The PCA-PSO-LSSVM model has an average relative
error and root mean square relative error of 0.79% and 10.01%, respectively. Through comparative
analysis, the MRE and RMSE of the PCA-PSO-LSSVM model are the smallest. Thus, this model can
predict the cost of highway engineering more accurately.

Table 6: Comparison of the relative errors of the three prediction models

Output
variable

Actual
value

PCA-PSO-LSSVM
model

LSSVM model BP neural network

Predictive
value

Relative
error/%

Predictive
value

Relative
error/%

Predictive
value

Relative
error/%

Highway cost/
10 million yuan · km-1

6.49211 6.21329 4.2947 6.41092 1.2506 6.61376 1.8738

4.06781 4.11126 1.0681 4.19473 3.1202 3.65821 10.0693

8.260201 8.21326 0.5682 8.26570 0.0665 8.34940 1.0798

4.89237 4.89725 0.0998 4.74419 3.0287 4.83629 1.1463

6.79466 6.79510 0.0065 8.03372 18.2358 7.07926 4.1886

3.62897 3.63017 0.0331 3.58667 1.1657 4.48618 23.6212

3.70859 3.70905 0.0123 3.72601 0.4698 3.11486 16.0097

3.54613 3.55405 0.2232 3.45936 2.4470 3.55175 0.1585

5.3321 5.32938 0.0511 4.55616 14.5522 3.97144 25.5182

8.78174 8.64644 1.5407 8.55743 2.5543 8.62063 1.8346

Table 7: Comparison of evaluation indexes of the three models

Predictive model Unit cost

MRE RMSE

BP neural network 8.55% 56.92%

LSSVM model 4.69% 47.35%

PCA-PSO-LSSVM model 0.79% 10.01%
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5 Conclusions

Based on the principal component analysis method, the least squares support vector machine prediction
model is established. It combined with the PSO algorithm to optimize the regularization parameter c and the
kernel function width coefficient r in LSSVM. Overcome the fact that the traditional LSSVM model
determines the parameters through experience, thereby resulting in a lower prediction accuracy.

Through the predictive analysis of highway engineering, the PCA-PSO-LSSVM model has the average
relative error of 0.79% and the root mean square relative error of 10.01%. Compared with the BP neural
network and the unoptimized LSSVM model, the PCA-PSO-LSSVM model has better learning
generalization ability and prediction accuracy.
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