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Abstract: Probability distributions have been in use for modeling of random phe-
nomenon in various areas of life. Generalization of probability distributions has
been the area of interest of several authors in the recent years. Several situations
arise where joint modeling of two random phenomenon is required. In such cases
the bivariate distributions are needed. Development of the bivariate distributions
necessitates certain conditions, in a field where few work has been performed.
This paper deals with a bivariate beta-inverse Weibull distribution. The marginal
and conditional distributions from the proposed distribution have been obtained.
Expansions for the joint and conditional density functions for the proposed distri-
bution have been obtained. The properties, including product, marginal and con-
ditional moments, joint moment generating function and joint hazard rate function
of the proposed bivariate distribution have been studied. Numerical study for the
dependence function has been implemented to see the effect of various parameters
on the dependence of variables. Estimation of the parameters of the proposed
bivariate distribution has been done by using the maximum likelihood method of
estimation. Simulation and real data application of the distribution are presented.

Keywords: Bivariate beta distribution; inverse Weibull distribution; conditional
moments; maximum likelihood estimation

1 Introduction

The probability distributions are widely used in many areas of life. Standard probability distributions
have been extended by various authors to increase the applicability of a given baseline distribution. The
exponentiated distributions, proposed by Gupta et al. [1], extend a baseline distribution by
exponentiation. The beta generated distributions, proposed by Eugene et al. [2], generalize a baseline
distribution by using logit of the beta distribution. The cumulative distribution function (cdf) of the Beta-
G distributions is

FBeta�G xð Þ ¼ 1

B a; bð Þ
Z G xð Þ

0
ua�1 1� uð Þb�1du; 0 < G xð Þ < 1; a; bð Þ. 0; (1)
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where G xð Þ is the cdf of any baseline distribution and B a; bð Þ is the complete beta function defined as

B a; bð Þ ¼
Z 1

0
ua�1 1� uð Þb�1du:

The density function of any member of the Beta–G family of distributions is written as

fBeta�G x; a; bð Þ ¼ 1

B a; bð Þ g xð Þ G xð Þ½ �a�1 1� G xð Þ½ �b�1 ; 0 < G xð Þ < 1: (2)

Another method of generating new distributions has been proposed by Cordeiro et al. [3] by using the
cdf of Kumaraswamy distribution, proposed by Kumaraswamy et al. [4]. The proposed family is referred to
as the Kumaraswamy–G (Kum–G) family of distributions and its cdf is

FKum�G xð Þ ¼ 1� 1� Ga xð Þ½ �b; 0 < G xð Þ < 1; a; b. 0: (3)

A general method of generating new distributions has been proposed by Alzaatreh et al. [5] by using the
cdf of any distribution and this method is known as the T-X family of distributions. The cdf of new
distribution by using the T-X family of distributions is

FT�X xð Þ ¼
Z W G xð Þ½ �

d1

r tð Þdt; (4)

where r tð Þ is the density of any random variable defined on d1; d2½ �, where d1 can be –∞ and d2 can be +∞,
and W G xð Þ½ � is any function of G xð Þ such that W 0ð Þ ¼ d1 and W 1ð Þ ¼ d2.

The Beta–G, the Kum–G and the T-X family of distributions provide basis to obtain a new univariate
distribution by using the cdf, G xð Þ, of any baseline distribution. Different authors have proposed several new
distributions by using these families, for example beta-normal by Eugene et al. [2], beta-Weibull by Famoye
et al. [6], beta-inverse Weibull by Hanook et al. [7], Kum-inverse Weibull by Shahbaz et al. [8], gamma-
normal by Alzaatreh et al. [9], exponentiated-gamma distribution by Nadarajah et al. [10], among others.

Several situations arise where we are interested in the simultaneous modeling of two random variables,
for example we may be interested in the simultaneous study of arrival and departure time of the customers at
a service station. In such situations some suitable bivariate distribution is required. The bivariate beta
distribution, proposed by Olkin et al. [11], is a useful bivariate distribution to model random variables
which represent proportion of some events of interest. The density function of the bivariate beta
distribution is

fX ;Y x; yð Þ ¼ xa�1yb�1 1� xð Þbþc�1 1� yð Þaþc�1

B a; b; cð Þ 1� xyð Þaþbþc ; 0 < x; yð Þ < 1; (5)

where B a; b; cð Þ is extended beta function defined as

B a; b; cð Þ ¼
Z 1

0

Z 1

0

ua�1vb�1 1� uð Þbþc�1 1� vð Þaþc�1

1� uvð Þaþbþc dudv ¼ �ðaÞ�ðbÞ�ðcÞ
�ðaþ bþ cÞ (6)

and � að Þ is the complete gamma function defined as

� að Þ ¼
Z 1

0
ua�1e�udu:

The bivariate beta distribution has been used by Sarabia et al. [12] to propose the bivariate Beta-G1G2

(BB-G1G2) family of distributions. The joint cdf of the proposed family is

84 CSSE, 2021, vol.36, no.1



FBeta�G1 xð ÞG2 yð Þ x; yð Þ ¼ FBeta�G1G2 x; yð Þ

¼ 1

B a1; a2; bð Þ
ZG2 yð Þ

0

ZG1 xð Þ

0

ua1�1va2�1 1� uð Þa2þb�1 1� vð Þa1þb�1

1� uvð Þa1þa2þb dudv;
(7)

for a1; a2; bð Þ > 0. The density function of the BB-G1G2 family of distributions is

fBeta�G1G2 x; yð Þ ¼ 1

B a1; a2; bð Þ g1 xð Þg2 yð Þ G1 xð Þ½ �a1�1 G2 yð Þ½ �a2�1 1� G1 xð Þ½ �a2þb�1

� 1� G2 yð Þ½ �a1þb�1 1� G1 xð ÞG2 yð Þ½ �� a1þa2þbð Þ ; 0 < G1 xð Þ;G2 yð Þ < 1;

(8)

and a1; a2; bð Þ > 0. It is also shown by Sarabia et al. [12] that the density (8) can be written as

fBeta�G1G2 x; yð Þ ¼ � a1 þ bð Þ� a2 þ bð Þ
� bð Þ� a1 þ a2 þ bð Þ

fBeta�G1 x; a1; a2 þ bð ÞfBeta�G2 y; a2; a1 þ bð Þ
1� G1 xð ÞG2 yð Þ½ � a1þa2þbð Þ ; (9)

where fBeta�G x; a; bð Þ is the density function of the beta-G distribution, given in (2).

The BB-G1G2 family of distributions has not be explored and in this paper we will propose a new
bivariate beta-inverse Weibull distribution. The structure of the paper is given below.

A new bivariate beta-inverse Weibull distribution is proposed in Section 2 alongside its marginal and
conditional distributions. Some properties of the proposed distribution are obtained in Section 3.
Estimation of the parameters of the proposed bivariate distribution is given in Section 4. Section
5 contains simulation and real data applications. Conclusions and recommendations are given in Section 6.

2 The Bivariate Beta-Inverse Weibull Distribution

The inverse Weibull distribution, also known as the Fréchet [13] distribution, is a useful lifetime
distribution. The density and distribution functions of the inverse Weibull distribution are

g xð Þ ¼ ba
xaþ1

exp �bx�að Þ ; x; b; a > 0; (10)

and

G xð Þ ¼ exp �bx�að Þ ; x;b; a > 0; (11)

where b is the rate and a is the shape parameter. A random variable X having the inverse Weibull distribution
is written as IW a; bð Þ. Now, suppose that the random variable X has IW a1; b1ð Þ and the random variable Y
has IW a2;b2ð Þ distribution with cdf’s

G1 xð Þ ¼ exp �b1x
�a1ð Þ and G2 yð Þ ¼ exp �b2y

�a2ð Þ:
Using the distribution functions of X and Y in (7), the distribution function of the bivariate beta-inverse

Weibull (BBIW for short) distribution is

FX ;Y x; yð Þ ¼ 1

B a1; a2; bð Þ
Zexp �b2y

�a2ð Þ

0

Zexp �b1y
�a1ð Þ

0

ua1�1va2�1 1� uð Þa2þb�1 1� vð Þa1þb�1

1� uvð Þa1þa2þb dudv;
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or

FX ;Y x; yð Þ ¼ Iexp �b1x
a1ð Þ; exp �b2y

a2ð Þ x; yð Þ ¼ Bexp �b1x
a1ð Þ;exp �b2y

a2ð Þ a1; a2; bð Þ
B a1; a2; bð Þ ; (12)

where

Bx;y a1; a2; bð Þ ¼
Z x

0

Z y

0

ua1�1va2�1 1� uð Þa2þb�1 1� vð Þa1þb�1

1� uvð Þa1þa2þb dudv (13)

is the extended incomplete beta function and

Ix;y a1; a2; bð Þ ¼ Bx;y a1; a2; bð Þ
B a1; a2; bð Þ (14)

is the extended incomplete beta function ratio. The density function of the BBIW distribution is written
from (8) as

fX ;Y x; yð Þ ¼ 1

B a1; a2; bð Þ
a1a2b1b2
xa1þ1ya2þ1

exp �a1b1x
�a1ð Þ exp �a2b2y

�a2ð Þ 1� exp �b1x
�a1ð Þ½ �a2þb�1

� 1� exp �b2y
�a2ð Þ½ �a1þb�1 � 1� exp �b1x

�a1ð Þ exp �b2y
�a2ð Þ½ �� a1þa2þbð Þ ; x; yð Þ > 0;

(15)

and b1; a1;b2; a2ð Þ > 0. The random variables X and Y having joint density (15) is written as
BBIW b1;b2; a1; a2; a1; a2; bð Þ. The plots of the density function for b1 ¼ b2 ¼ 1 and for different choices
of the other parameters are shown in Fig. 1 below.

The plot of joint distribution function for b1 ¼ b2 ¼ 1, a1 ¼ 2:5, a2 ¼ 1:5, a1 ¼ 1:5, a2 ¼ 2:5 and
b ¼ 2:0 is given in Fig. 2.

Figure 1: Plot of density function of bivariate beta inverse Weibull distributions for various choices of
parameters. (a) a1 ¼ 2:5; a2 ¼ 1:75; b ¼ 0:75; a1 ¼ 1:5; a2 ¼ 2:5 (b) a1 ¼ 2:5; a2 ¼ 1:75; b ¼
0:75; a1 ¼ 1:5; a2 ¼ 2:5
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The BBIW distribution provides various other distributions as special case. For example, for
a1 ¼ a2 ¼ 1 we have the bivariate beta inverse exponential (BBIE) distribution and for a1 ¼ a2 ¼ 2 the
distribution reduces to the bivariate beta inverse Rayleigh (BBIR) distribution.

The joint hazard rate function of the distribution is obtained by using

� x; yð Þ ¼ fX ;Y x; yð Þ
1� FX ;Y x; yð Þ

and is given as

� x; yð Þ ¼ a1a2b1b2
xa1þ1ya2þ1

exp �a1b1x
�a1ð Þ exp �a2b2y

�a2ð Þ 1� exp �b1x
�a1ð Þ½ �a2þb�1

�

� 1� exp �b2y
�a2ð Þ½ �a1þb�1 1� exp �b1x

�a1ð Þ exp �b2y
�a2ð Þ½ �� a1þa2þbð Þ

�
� B a1; a2; bð Þ � Bexp �b1x

a1ð Þ;exp �b2y
a2ð Þ a1; a2; bð Þ� �

:

(16)

The hazard rate function can be computed for different values of the parameters.

The density function of the BBIW distribution can also be written in the form of beta-inverse Weibull
density functions as

fX ;Y x; yð Þ ¼ � a1 þ bð Þ� a2 þ bð Þ
� bð Þ� a1 þ a2 þ bð Þ

fBeta�IW x; a1; a2 þ b;b1; a1ð ÞfBeta�IW y; a2; a1 þ b;b2; a1ð Þ
1� exp �b1x�a1ð Þ exp �b2y�a2ð Þ½ � a1þa2þbð Þ ; x; yð Þ > 0;

where fBeta�IW x; hð Þ is the density function of the beta-inverse Weibull random variable with parameter
vector h.

The marginal distributions of X and Y are obtained, from (15), below.

Figure 2: The distribution function of bivariate beta-inverse Weibull distribution
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Now

fX xð Þ ¼ 1

B a1; a2; bð Þ
a1b1
xa1þ1

exp �a1b1x
�a1ð Þ 1� exp �b1x

�a1ð Þ½ �a2þb�1
Z 1

0

a2b2
ya2þ1

exp �a2b2y
�a2ð Þ

� 1� exp �b2y
�a2ð Þ½ �a1þb�1 1� exp �b1x

�a1ð Þ exp �b2y
�a2ð Þ½ �� a1þa2þbð Þdy

Making the transformation exp �b2y
�a2ð Þ ¼ v, we have

fX xð Þ ¼ 1

B a1; a2; bð Þ
a1b1
xa1þ1

exp �a1b1x
�a1ð Þ 1� exp �b1x

�a1ð Þ½ �a2þb�1
Z 1

0

va2 1� vð Þa1þb�1

1� exp �b1x�a1ð Þv½ �a1þa2þb dv

or

fX xð Þ ¼ 1

B a1; bð Þ
a1b1
xa1þ1

exp �a1b1x
�a1ð Þ 1� exp �b1x

�a1ð Þ½ �b�1 ; x > 0; (17)

which is density function of BIW a1; b;b1; a1ð Þ. Similarly, it can be shown that the marginal distribution of
Y is BIW a2; b; b2; a2ð Þ.

The conditional distribution of Y given X is readily obtained from (15) and (17) and is

fY jX yjxð Þ ¼ 1

B a1; a2; bð Þ
a2b2
ya2þ1

exp �a2b2y
�a2ð Þ 1� exp �b2y

�a2ð Þ½ �a1þb�1 1� exp �b1x
�a1ð Þ½ �a2

� 1� exp �b1x
�a1ð Þ exp �b2y

�a2ð Þ½ �� a1þa2�bð Þ ; x; yð Þ > 0:

(18)

Similarly, the conditional distribution of X given Y is

fX jY xjyð Þ ¼ 1

B a1; a2; bð Þ
a1b1
xa1þ1

exp �a1b1x
�a1ð Þ 1� exp �b1x

�a1ð Þ½ �a2þb�1 1� exp �b2y
�a2ð Þ½ �a1

� 1� exp �b1x
�a1ð Þ exp �b2y

�a2ð Þ½ �� a1þa2�bð Þ ; x; yð Þ > 0:

(19)

The conditional distributions are useful in computing conditional moments.

In the following we will obtain some useful expansions for the joint density function of BBIW
distribution. For this, we will use following expansions, for any real a,

1� zð Þ�a ¼
X1
j¼0

� aþ jð Þ
j!� að Þ zj and 1� zð Þa ¼

X1
j¼0

�1ð Þj � aþ 1ð Þ
j!� a� jþ 1ð Þ z

j:

Now, the density function of the BBIW distribution is

fX ;Y x; yð Þ ¼ 1

B a1; a2; bð Þ
a1a2b1b2
xa1þ1ya2þ1

exp �a1b1x
�a1ð Þ exp �a2b2y

�a2ð Þ 1� exp �b1x
�a1ð Þ½ �a2þb�1

� 1� exp �b2y
�a2ð Þ½ �a1þb�1 1� exp �b1x

�a1ð Þ exp �b2y
�a2ð Þ½ �� a1þa2þbð Þ:

Using following series expansion

1� exp �b1x
�a1ð Þ exp �b2y

�a2ð Þ½ �� a1þa2þbð Þ ¼
X1
j¼0

� a1 þ a2 þ bþ jð Þ
j!� a1 þ a2 þ bð Þ exp �jb1x

�a1ð Þ exp �jb2y
�a2ð Þ
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we have

fX ;Y x; yð Þ ¼ 1

B a1; a2; bð Þ
a1a2b1b2
xa1þ1ya2þ1

exp �a1b1x
�a1ð Þ exp �a2b2y

�a2ð Þ 1� exp �b1x
�a1ð Þ½ �a2þb�1

� 1� exp �b2y
�a2ð Þ½ �a1þb�1

X1
j¼0

� a1 þ a2 þ bþ jð Þ
j!� a1 þ a2 þ bð Þ exp �jb1x

�a1ð Þ exp �jb2y
�a2ð Þ:

Re-arranging, the above density can be written as

fX ;Y x; yð Þ ¼
X1
j¼0

dA jð Þ 1

B a1 þ j; a2 þ bð Þ
a1b1
xa1þ1

exp � a1 þ jð Þb1x�a1½ � 1� exp �b1x
�a1ð Þ½ �a2þb�1

� 1

B a2 þ j; a1 þ bð Þ
a2b2
ya2þ1

exp � a2 þ jð Þb2y�a2½ � 1� exp �b2y
�a2ð Þ½ �a1þb�1

or

fX ;Y x; yð Þ ¼
X1
j¼0

dA jð Þ fBeta�IW x; a1 þ j; a2 þ bð Þ fBeta�IW y; a2 þ j; a1 þ bð Þ; (20)

where fBeta�IW x; a; bð Þ is the density function of beta-inverse Weibull distribution. Also

d ¼ � a1 þ bð Þ� a2 þ bð Þ
� a1ð Þ� a2ð Þ� bð Þ

and

A jð Þ ¼ � a1 þ jð Þ� a2 þ jð Þ
� a1 þ a2 þ bþ jð Þ �

1

j!

From (20), it is easy to see that the joint density function of the BBIW distribution is the weighted sum of
product of marginal density functions of the beta-inverse Weibull distributions.

The expansion of the density function, given in (20), can also be written as the weighted sum of density
functions of the inverse Weibull distributions. For this, we use following expansions

1� exp �b1x
�a1ð Þ½ �a2þb�1 ¼

X1
h¼0

�1ð Þh � a2 þ bð Þ
h!� a2 þ b� hð Þ exp �hb1x

�a1ð Þ

and

1� exp �b2y
�a2ð Þ½ �a1þb�1 ¼

X1
k¼0

�1ð Þk � a1 þ bð Þ
k!� a1 þ b� jð Þ exp �kb2y

�a2ð Þ:

Using these expansions in (20), the density function of the BBIW distribution is written as

fX ;Y x; yð Þ ¼
X1
j¼0

X1
h¼0

X1
k¼0

dA j; h; kð Þ a1 a1 þ jþ hð Þb1
xa1þ1

exp � a1 þ jþ hð Þb1x�a1½ �

� a2 a2 þ jþ kð Þb2
ya2þ1

exp � a2 þ jþ kð Þb2y�a2½ �;
(21)
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or

fX ;Y x; yð Þ ¼
X1
j¼0

X1
h¼0

X1
k¼0

dA j; h; kð Þ fIW x; a1 þ jþ hð Þb1; a1ð ÞfIW y; a2 þ jþ kð Þb2; a2ð Þ;

where fIW x; b; að Þ is the density function of the inverse Weibull random variable with parameters b; að Þ and

A j; h; kð Þ ¼ A jð Þ � �1ð Þhþk

h!k!
� � a1 þ bð Þ
� a1 þ b� hð Þ �

� a2 þ bð Þ
� a2 þ b� kð Þ �

1

a1 þ jþ hð Þ a2 þ jþ kð Þ :

From (21), we can see that the density function of the BBIW distribution is the weighted sum of
product of the inverse Weibull density functions. The expression (21) is useful in computing moments of
the distribution.

The expansion for the conditional density function of X given Y is readily obtained by using

1� exp �b1x
�a1ð Þ exp �b2y

�a2ð Þ½ �� a1þa2þbð Þ ¼
X1
j¼0

� a1 þ a2 þ bþ jð Þ
j!� a1 þ a2 þ bð Þ exp �jb1x

�a1ð Þ exp �jb2y
�a2ð Þ

in (19) and is

fX jY xjyð Þ ¼ 1

B a1; a2; bð Þ
a1b1
xa1þ1

exp �a1b1x
�a1ð Þ 1� exp �b1x

�a1ð Þ½ �a2þb�1 1� exp �b2y
�a2ð Þ½ �a1

�
X1
j¼0

� a1 þ a2 þ bþ jð Þ
j!� a1 þ a2 þ bð Þ exp �jb1x

�a1ð Þ exp �jb2y
�a2ð Þ;

or

fX jY xjyð Þ ¼ � a2 þ bð Þ
� a1ð Þ� a2ð Þ� bð Þ

X1
j¼0

� a1 þ jð Þ
j!

1

B a1 þ j; a2 þ bð Þ
a1b1
xa1þ1

exp � a1 þ jð Þb1x�a1½ �

� 1� exp �b1x
�a1ð Þ½ �a2þb�1 exp �jb2y

�a2ð Þ 1� exp �b2y
�a2ð Þ½ �a1 ;

or

fX jY xjyð Þ ¼ 1� exp �b2y
�a2ð Þ½ �a1

X1
j¼0

d1A1 jð Þ fBeta�IW x; a1 þ j; a2 þ bð Þ exp �jb2y
�a2ð Þ; (22)

where d1 ¼ � a2 þ bð Þ
� a1ð Þ� a2ð Þ� bð Þ and A1 jð Þ ¼ � a1 þ jð Þ

j!
:

The expansion of the conditional density function of Y given X is similarly written as

fY jX yjxð Þ ¼ 1� exp �b1x
�a1ð Þ½ �a2

X1
j¼0

d2A2 jð ÞfBeta�IW y; a2 þ j; a1 þ bð Þ exp �jb1x
�a1ð Þ; (23)

where d2 ¼ � a1 þ bð Þ
� a1ð Þ� a2ð Þ� bð Þ and A2 jð Þ ¼ � a2 þ jð Þ

j!
:

The expansions (22) and (23) are helpful in computing the conditional moments of the distribution.
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3 Properties of the Distribution

In this section some properties of the BBIW distribution are discussed. These properties include joint,
marginal and conditional moments and are discussed in the following sub-sections.

3.1 Product and Ratio Moments of the Distribution

The product and ratio moments of the BBIW distribution are obtained by using the joint density function,
given in (15), or the expansion of the density function, given in (21). It is easier to obtain the product and ratio
moments from (21) and are obtained below.

The (r,s)th product moment for two random variables is defined as

l0r;s ¼ E X rY sð Þ ¼
Z 1

�1

Z 1

�1
xrysfX ;Y x; yð Þdxdy:

Using the joint density function of the BBIW distribution, the expression for the product moment is

l0r;s ¼ E X rY sð Þ ¼
X1
j¼0

X1
h¼0

X1
k¼0

dA j; h; kð Þ
Z 1

0

Z 1

0
xrys

a1 a1 þ jþ hð Þb1
xa1þ1

exp � a1 þ jþ hð Þb1x�a1½ �

� a2 a2 þ jþ kð Þb2
ya2þ1

exp � a2 þ jþ kð Þb2y�a2½ �dxdy:

Making the transformations u ¼ a1 þ jþ hð Þb1x�a1 and v ¼ a2 þ jþ kð Þb2y�a2 , the expression for the
product moment for the BBIW distribution is

l0r;s ¼ E X rY sð Þ ¼
X1
j¼0

X1
h¼0

X1
k¼0

dA j;h; kð Þ a1 þ jþ hð Þb1½ �r=a1 a2 þ jþ kð Þb2½ �s=a2� 1� r

a1

� �
� 1� s

a2

� �
; (24)

which exists for r < a1 and s < a2.

The (r,s)th ratio moment for two random variables is defined as

l0r;�s ¼ E X rY�sð Þ ¼
Z 1

�1

Z 1

�1
xry�sfX ;Y x; yð Þdxdy:

Using the joint density function of the BBIW distribution, the ratio moment is

l0r;�s ¼ E X rY�sð Þ ¼
X1
j¼0

X1
h¼0

X1
k¼0

dA j; h; kð Þ
Z 1

0

Z 1

0
xry�s a1 a1 þ jþ hð Þb1

xa1þ1
exp � a1 þ jþ hð Þb1x�a1½ �

� a2 a2 þ jþ kð Þb2
ya2þ1

exp � a2 þ jþ kð Þb2y�a2½ �dxdy

Again making the transformations u ¼ a1 þ jþ hð Þb1x�a1 and v ¼ a2 þ jþ kð Þb2y�a2 , the expression
of the ratio moment for the BBIW distribution is

l0r;�s ¼ E
X r

Y s

� �
¼

X1
j¼0

X1
h¼0

X1
k¼0

dA j; h; kð Þ a1 þ jþ hð Þb1½ �r=a1
a2 þ jþ kð Þb2½ �s=a2

� 1� r

a1

� �
� 1þ s

a2

� �
: (25)
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Similarly, the expression for the ratio moment, l=�r;s, for the BBIW distribution is

l=�r;s ¼ E
Ys

X r

� �
¼

X1
j¼0

X1
h¼0

X1
k¼0

dA j; h; kð Þ a2 þ jþ kð Þb2½ �s=a2
a1 þ jþ hð Þb1½ �r=a1

� 1þ r

a1

� �
� 1� s

a2

� �
: (26)

It is to be noted that the parameters a1, a2 and b has no effect on the means and variances of the random
variables X and Y as these are controlled by parameters a1; a2;b1 and b2.

3.2 Conditional Moments of the Distribution

The conditional moment of a distribution is useful in studying the behavior of one variable under the
conditions on the other variable. In case of a bivariate distribution we can compute conditional moment
of X given Y = y and of Y given X = x. In the following, the conditional moments for the BBIW
distribution are obtained.

The conditional moment of X given Y = y is computed as

E X rjyð Þ ¼
Z 1

0
xrfX jY xjyð Þdx:

Now, using the conditional distribution of X given Y = y, from (22), we have

E X rjyð Þ ¼ 1� exp �b2y
�a2ð Þ½ �a1

X1
j¼0

d1A1 jð Þ exp �jb2y
�a2ð Þ

Z 1

0
xrfBeta�IW x; a1 þ j; a2 þ bð Þdx:

Using the density function of the beta-inverse Weibull distribution, we have

E X rjyð Þ ¼ 1� exp �b2y
�a2ð Þ½ �a1

X1
j¼0

d1A1 jð Þ exp �jb2y
�a2ð Þ

Z 1

0
xr

1

B a1 þ j; a2 þ bð Þ

� a1b1
xa1þ1

exp � a1 þ jð Þb1x�a1½ � 1� exp �b1x
�a1ð Þ½ �a2þb�1dx:

Now, using the expansion

1� exp �b1x
�a1ð Þ½ �a2þb�1 ¼

X1
k¼0

�1ð Þk � a2 þ bð Þ
k!� a2 þ b� kð Þ exp �kb1x

�a1ð Þ

in above equation we have

E X rjyð Þ ¼ 1� exp �b2y
�a2ð Þ½ �a1

X1
j¼0

X1
k¼0

d1A1 jð Þ exp �jb2y
�a2ð Þ �1ð Þk� a1 þ a2 þ jþ bð Þ

j!� a2 þ b� kð Þ� a1 þ jð Þ

�
Z 1

0
xr

a1b1
xa1þ1

exp � a1 þ jþ kð Þb1x�a1½ �dx;

or

E X rjyð Þ ¼ 1� exp �b2y
�a2ð Þ½ �a1

X1
j¼0

X1
k¼0

d1A11 j; kð Þ exp �jb2y
�a2ð Þ a1 þ jþ kð Þb1½ �r=a1� 1� r

a1

� �
; (27)
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where

A11 j; kð Þ ¼ �1ð ÞkA1 jð Þ� a1 þ a2 þ jþ bð Þ
a1 þ jþ kð Þk!� a2 þ b� kð Þ� a1 þ jð Þ :

Similarly, the expression for the conditional moment of Y given X = x is

E Ysjxð Þ ¼ 1� exp �b1x
�a1ð Þ½ �a1

X1
j¼0

X1
h¼0

d2A21 j; hð Þ exp �jb1x
�a1ð Þ a2 þ jþ hð Þb2½ �s=a2� 1� s

a2

� �
; (28)

where

A21 j; hð Þ ¼ �1ð ÞhA2 jð Þ� a1 þ a2 þ jþ bð Þ
a2 þ jþ hð Þh!� a1 þ b� hð Þ� a2 þ jð Þ :

The conditional means and variances can be obtained from (27) and (28).

3.3 The Dependence Function and Correlation Coefficient

The dependence function for a bivariate distribution is, given by Holland et al. [14],

c x; yð Þ ¼ @2

@x@y
ln fX ;Y x; yð Þ

and Sarabia et al. [12] has shown that the dependence function for the BB–G1G2 family is

c x; yð Þ ¼ a1 þ a2 þ bð Þg1 xð Þg2 yð Þ
1� G1 xð ÞG2 yð Þ½ �2 : (29)

Using the density and distribution functions of the inverse Weibull distribution in (29), the dependence
function for the BBIW distribution is

c x; yð Þ ¼ a1 þ a2 þ bð Þa1b1 exp �b1x
�a1ð Þ exp �b2y

�a2ð Þ
xa1þ1ya2þ1 1� exp �b1x�a1ð Þ exp �b2y�a2ð Þ½ �2 ; (30)

which is always positive. It is to be noted that the dependence function is different from the linear correlation
coefficient which is to be computed from the product moment. The values of correlation coefficient for different

Table 1: Correlation coefficient between X and Y for the BBIW distribution

a1 a2 b a1 ¼ 3 a1 ¼ 4 a1 ¼ 5

a2 ¼ 3 a2 ¼ 4 a2 ¼ 5 a2 ¼ 3 a2 ¼ 4 a2 ¼ 5 a2 ¼ 3 a2 ¼ 4 a2 ¼ 5

2 2 2 0.603 0.596 0.590 0.461 0.457 0.454 0.372 0.369 0.367

3 0.596 0.590 0.586 0.457 0.453 0.451 0.369 0.366 0.364

4 0.590 0.586 0.583 0.454 0.451 0.448 0.367 0.364 0.362

3 2 0.649 0.642 0.637 0.511 0.507 0.504 0.420 0.417 0.416

3 0.641 0.637 0.633 0.506 0.503 0.499 0.417 0.414 0.413

4 0.635 0.633 0.630 0.503 0.500 0.498 0.414 0.412 0.411

4 2 0.675 0.669 0.664 0.542 0.538 0.535 0.452 0.449 0.447

3 0.667 0.664 0.660 0.537 0.534 0.533 0.448 0.446 0.444

4 0.662 0.660 0.657 0.534 0.531 0.529 0.446 0.444 0.442
(Continued)
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combinations of the parameters are given in Tab. 1 below. The values of correlation coefficient indicate that the
effect of a1 and a2 on the correlation coefficient is positive, that is increase in the values of a1 and a2 will
increase the linear correlation between X and Y for the BBIW distribution. The effect of other parameters on
the correlation coefficient is negative, that is increase in b, a1 and a2 will decrease the correlation coefficient.

3.4 The Shannon Entropy

The Shannon entropy, Shannon [15], in a bivariate distribution is defined as

ISh fX ;Y x; yð Þ� � ¼ E � ln fX ;Y x; yð Þ� 	� � ¼ �
Z 1

�1

Z 1

�1
ln fX ;Y x; yð Þ� �

fX ;Y x; yð Þdxdy:

Now, for the BBIW distribution we have

ln fX ;Y x; yð Þ ¼ � lnB a1; a2; bð Þ þ ln a1a2b1b2ð Þ � a1 þ 1ð Þ ln x� a2 þ 1ð Þ ln y� a1b1x
�a1 � a2b2y

�a2

þ a2 þ b� 1ð Þ ln 1� exp �b1x
�a1ð Þ½ � þ a1 þ b� 1ð Þ ln 1� exp �b2y

�a2ð Þ½ �
� a1 þ a2 þ bð Þ ln 1� exp �b1x

�a1ð Þ exp �b2y
�a2ð Þ½ �:

Table 1 (continued).

a1 a2 b a1 ¼ 3 a1 ¼ 4 a1 ¼ 5

a2 ¼ 3 a2 ¼ 4 a2 ¼ 5 a2 ¼ 3 a2 ¼ 4 a2 ¼ 5 a2 ¼ 3 a2 ¼ 4 a2 ¼ 5

3 2 2 0.649 0.641 0.635 0.511 0.506 0.503 0.420 0.417 0.414

3 0.642 0.637 0.633 0.507 0.503 0.500 0.417 0.414 0.412

4 0.637 0.633 0.630 0.504 0.499 0.498 0.416 0.413 0.411

3 2 0.698 0.691 0.686 0.566 0.562 0.559 0.475 0.472 0.470

3 0.691 0.687 0.683 0.562 0.558 0.556 0.472 0.469 0.467

4 0.686 0.683 0.680 0.559 0.556 0.554 0.470 0.467 0.466

4 2 0.726 0.720 0.715 0.600 0.596 0.593 0.510 0.507 0.505

3 0.719 0.716 0.713 0.596 0.593 0.592 0.507 0.505 0.503

4 0.714 0.713 0.710 0.593 0.590 0.589 0.505 0.503 0.501

4 2 2 0.675 0.667 0.662 0.542 0.537 0.534 0.452 0.448 0.446

3 0.669 0.664 0.660 0.538 0.534 0.531 0.449 0.446 0.444

4 0.664 0.660 0.657 0.535 0.533 0.529 0.447 0.444 0.442

3 2 0.726 0.719 0.714 0.600 0.596 0.593 0.510 0.507 0.505

3 0.720 0.716 0.713 0.596 0.593 0.590 0.507 0.505 0.503

4 0.715 0.713 0.710 0.593 0.592 0.589 0.505 0.503 0.501

4 2 0.756 0.750 0.745 0.636 0.632 0.630 0.548 0.545 0.543

3 0.750 0.747 0.743 0.632 0.630 0.627 0.545 0.543 0.541

4 0.745 0.743 0.741 0.630 0.627 0.625 0.543 0.541 0.540

94 CSSE, 2021, vol.36, no.1



Using this in above equation, the Shannon entropy for the BBIW distribution is

ISh fX ;Y x;yð Þ� �¼X1
j¼0

X1
h¼0

X1
k¼0

dA j;h;kð Þ
Z 1

0

Z 1

0
½�lnB a1;a2;bð Þþ ln a1a2b1b2ð Þ� a1þ1ð Þlnx� a2þ1ð Þlny

�a1b1x
�a1�a2b2y

�a2þ a2þb�1ð Þln 1�exp �b1x
�a1ð Þf gþ a1þb�1ð Þln 1�exp �b2y

�a2ð Þf g

� a1þa2þbð Þln 1�exp �b1x
�a1ð Þexp �b2y

�a2ð Þf g�a1 a1þjþhð Þb1
xa1þ1

�exp � a1þjþhð Þb1x�a1½ �a2 a2þjþkð Þb2
ya2þ1

exp � a2þjþkð Þb2y�a2½ �dxdy;

or

ISh fX ;Y x; yð Þ� � ¼ X1
j¼0

X1
h¼0

X1
k¼0

dA j; h; kð Þ
"
� lnB a1; a2; bð Þ þ ln a1a2b1b2ð Þ � a1 þ 1ð Þ

a1

� cþ ln b1 þ ln a1 þ jþ hð Þf g � a2 þ 1ð Þ
a2

cþ ln b2 þ ln a2 þ jþ kð Þf g � a1b1
b1 a1 þ jþ hð Þ

� a2b2
b2 a2 þ jþ kð Þ �

a2 þ b� 1ð Þ
a1 þ jþ hþ 1ð ÞH a1þjþhþ1ð Þ � a1 þ b� 1ð Þ

a2 þ jþ k þ 1ð ÞH a2þjþkþ1ð Þ

þ a1 þ a2 þ bð Þ
a1 þ jþ hþ 1ð Þ a2 þ jþ k þ 1ð Þ2 a2 þ jþ k þ 1ð ÞH a1þjþhþ1ð Þ þ 1

� 	#
;

(31)

where c is the Euler’s gamma and Hk is the harmonic number of order k.

3.5 Random Number Generation

The random sample from the BBIW distribution can be generated by using the conditional distribution
method. In this method the random sample from a bivariate distribution is generated using following two steps

� Generate a random variate from the marginal distribution of X.

� Generate a random variate from the conditional distribution of Y given X = x.

Using this method, the random sample from the BBIW distribution can be generated by using following
algorithm

� Generate a random variate X from the beta-inverse Weibull distribution with given parameters
a1; b;b1; a1ð Þ and denote it by x.

� Generate a random variate Y from the conditional distribution of Y given X = x, given in (18).

� The pair (x,y) is a single random observation from the BBIW distribution.

� Repeat the process until sample of size n is obtained.

The random variates from the beta-inverse Weibull distribution can be easily obtained by using any of
the R package; for example Newdistns, by Nadarajah et al. [16] or MPS by Teimouri [17].

4 Statistical Inference

In this section, parameter estimation of the BBIW distribution is presented. For this, we first see that the
likelihood function for a sample of size n from the distribution is
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L x;y;hð Þ¼ 1

B a1;a2;bð Þ½ �n
an1a

n
2b

n
1b

n
2

xa1þ1ya2þ1
exp �a1b1

Xn

i¼1
x�a1
i �a2b2

Xn

i¼1
y�a2
i


 �Yn
i¼1

1�exp �b1x
�a1
ið Þ½ �a2þb�1

�
Yn
i¼1

1�exp �b2y
�a2
ið Þ½ �a1þb�1

Yn
i¼1

1�exp �b1x
�a1
ið Þexp �b2y

�a2
ið Þ½ �� a1þa2þbð Þ

;

where h ¼ a1; a2; b; a1; a2;b1; b2ð Þ. The log-likelihood function is

‘ x; y; hð Þ ¼ �n lnB a1; a2; bð Þ þ n ln a1 þ n ln a2 þ n ln b1 þ n ln b2 � a1 þ 1ð Þ
Xn
i¼1

xi � a2 þ 1ð Þ
Xn
i¼1

yi

� a1b1
Xn
i¼1

x�a1
i � a2b2

Xn
i¼1

y�a2
i þ a2 þ b� 1ð Þ

Xn
i¼1

ln 1� exp �b1x
�a1
ið Þ½ � þ a1 þ b� 1ð Þ

�
Xn
i¼1

ln 1� exp �b2y
�a2
ið Þ½ � � a1 þ a2 þ bð Þ

Xn
i¼1

ln 1� exp �b1x
�a1
ið Þ exp �b2y

�a2
ið Þ½ �:

(32)

The derivatives of the log-likelihood function with respect to the unknown parameters are

@

@a1
‘ x; y; hð Þ ¼ n w a1 þ a2 þ bð Þ � w a1ð Þ½ � � b1

Xn
i¼1

x�a1
i þ

Xn
i¼1

ln 1� exp �b2y
�a2
ið Þ½ �

�
Xn
i¼1

ln 1� exp �b1x
�a1
ið Þ exp �b2y

�a2
ið Þ½ �;

(33)

@

@a2
‘ x; y; hð Þ ¼ n w a1 þ a2 þ bð Þ � w a2ð Þ½ � � b2

Xn
i¼1

y�a2
i þ

Xn
i¼1

ln 1� exp �b1x
�a1
ið Þ½ �

�
Xn
i¼1

ln 1� exp �b1x
�a1
ið Þ exp �b2y

�a2
ið Þ½ �;

(34)

@

@b
‘ x; y; hð Þ ¼ n w a1 þ a2 þ bð Þ � w bð Þ½ � þ

Xn
i¼1

ln 1� exp �b1x
�a1
ið Þ½ �

þ
Xn
i¼1

ln 1� exp �b2y
�a2
ið Þ½ � �

Xn
i¼1

ln 1� exp �b1x
�a1
ið Þ exp �b2y

�a2
ið Þ½ �;

(35)

@

@a1
‘ x; y; hð Þ ¼ n

a1
�
Xn
i¼1

ln xi þ a1b1
Xn
i¼1

x�a1
i ln xi � a2 þ b� 1ð Þ

Xn
i¼1

b1x
�a1
i lnxi exp �b1x

�a1
ið Þ

1� exp �b1x
�a1
ið Þ

þ a1 þ a2 þ bð Þ
Xn
i¼1

b1x
�a1
i lnxi exp �b1x

�a1
ið Þ exp �b2y

�a2
ið Þ

1� exp �b1x
�a1
ið Þ exp �b2y

�a2
ið Þ ;

(36)

@

@a2
‘ x; y; hð Þ ¼ n

a2
�
Xn
i¼1

ln yi þ a2b2
Xn
i¼1

y�a2
i ln yi � a1 þ b� 1ð Þ

Xn
i¼1

b2y
�a2
i ln yi exp �b2y

�a2
ið Þ

1� exp �b2y
�a2
ið Þ

þ a1 þ a2 þ bð Þ
Xn
i¼1

b2y
�a2
i ln yi exp �b1x

�a1
ið Þ exp �b2y

�a2
ið Þ

1� exp �b1x
�a1
ið Þ exp �b2y

�a2
ið Þ ;

(37)
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@

@b1
‘ x; y; hð Þ ¼ n

b1
� a1

Xn
i¼1

x�a1
i þ a2 þ b� 1ð Þ

Xn
i¼1

x�a1
i exp �b1x

�a1
ið Þ

1� exp �b1x
�a1
ið Þ

� a1 þ a2 þ bð Þ
Xn
i¼1

x�a1
i exp �b1x

�a1
ið Þ exp �b2y

�a2
ið Þ

1� exp �b1x
�a1
ið Þ exp �b2y

�a2
ið Þ

(38)

and

@

@b2
‘ x; y; hð Þ ¼ n

b2
� a2

Xn
i¼1

y�a2
i þ a1 þ b� 1ð Þ

Xn
i¼1

y�a2
i exp �b2y

�a2
ið Þ

1� exp �b2y
�a2
ið Þ

� a1 þ a2 þ bð Þ
Xn
i¼1

y�a2
i exp �b1x

�a1
ið Þ exp �b2y

�a2
ið Þ

1� exp �b1x
�a1
ið Þ exp �b2y

�a2
ið Þ:

(39)

The maximum likelihood estimates are obtained by equating the derivatives, given in Eqs. (33) and (39),
to zero and simultaneously solving the resulting equations.

5 Applications

In this section some numerical applications of the proposed BBIW distribution are given. We will
first give a simulation study to see the performance of the maximum likelihood estimates and then we
will apply the proposed BBIW distribution on a real data set. These applications are discussed in the
following subsections.

5.1 Simulation Study

In the following, simulation results for the proposed BBIW distribution are given. The algorithm for the
simulation study is given below:

1. Draw random sample of a specific size from the BBIW distribution, for specific values of the
parameters, using the procedure given in Section 3.4.

2. Obtain maximum likelihood estimates of the parameters for the generated sample.

3. Repeat Steps 1 and 2 for the specific number of simulations.

4. Obtain average value of the estimates and the standard errors.

In our simulation study, random samples of sizes 50, 100, 200 and 500 are drawn and the results are
simulated for 50000 times. The results of simulation study are given in Tab. 2 below (standard error of
the estimate is in the parenthesis).

The simulation results indicate that the estimate converges to the true parameter value with increase in the
sample size. We can also see that the standard error of the estimate decreases with increase in the sample size.

5.2 Real Data Application

In this section, a real data application of the proposed BBIW distribution is given. We have used data on
GNI per capita of all the countries of the world for 2016 (as X) and for 2017 (as Y). The data is obtained from
UNDP site http://hdr.undp.org/en/data [18]. For the analysis, the data is transformed by dividing actual
values with 10000. The bivariate histogram of the data is shown in Fig. 3 below.

We have fitted three bivariate distributions to the data including the bivariate beta inverse Weibull
(BBIW) distribution, the bivariate Weibull (BW) distribution, proposed by Shahbaz et al. [19], and the
bivariate inverse Weibull (BIW) distribution obtained by using F-G-M family with density.
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fX ;Y x; yð Þ ¼ b1b2a1a2
xa1þ1ya2þ1

exp � b1
xa1

þ b2
ya2

� �� 

1þ b 2 exp � b1

xa1

� �
� 1

� �
2 exp � b1

xa1

� �
� 1

� �� 

: (40)

Results of the fitted models are given in Tab. 3 below.

Table 2: Simulation results for the BBIW distribution

n a1 ¼ 2:0 a2 ¼ 3:0 b ¼ 1:5 a1 ¼ 2:5 a2 ¼ 2:0 b1 ¼ 1:5 b2 ¼ 0:5

50 2.014 3.111 1.541 2.363 2.082 1.488 0.500

(0.010) (0.048) (0.113) (0.214) (0.175) (0.142) (0.076)

100 1.927 3.029 1.487 2.501 2.094 1.368 0.361

(0.012) (0.019) (0.108) (0.185) (0.181) (0.144) (0.081)

200 2.089 3.107 1.602 2.365 1.887 1.398 0.399

(0.012) (0.019) (0.085) (0.174) (0.152) (0.127) (0.074)

500 1.852 3.080 1.524 2.630 1.991 1.485 0.418

(0.009) (0.018) (0.074) (0.142) (0.137) (0.129) (0.068)

n a1 ¼ 3:0 a2 ¼ 2:0 b ¼ 2:0 a1 ¼ 1:5 a2 ¼ 2:5 b1 ¼ 2:0 b2 ¼ 2:5

50 3.089 2.148 2.084 1.350 2.413 2.142 2.502

(0.465) (0.421) (0.406) (0.461) (0.421) (0.463) (0.462)

100 3.087 1.863 2.133 1.453 2.463 2.116 2.475

(0.421) (0.392) (0.406) (0.353) (0.444) (0.421) (0.373)

200 2.884 2.036 1.995 1.420 2.574 1.934 2.446

(0.318) (0.328) (0.325) (0.272) (0.291) (0.289) (0.306)

500 2.850 2.058 2.078 1.511 2.416 2.053 2.470

(0.261) (0.293) (0.255) (0.267) (0.257) (0.269) (0.293)
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Figure 3: Bivariate histogram of the GNI data
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From the table, we can see that the BBIW distribution is the best fit to the data as it has smallest AIC. The
fitted BBIW distribution is shown in Fig. 4 below.

The graph of the fitted BBIW distribution is reasonably close to the bivariate histogram of the data.

Table 3: Results of fitted distributions to GNI data

BW BIW BBIW

a1 – 0.975

a2 – 1.172

b 0.449 −0.494 0.00017

a1 0.423 1.028 0.971

a2 0.543 1.025 1.088

b1 0.835 0.373

b2 0.177 0.013

AIC 879.288 378.64 177.87

Figure 4: Fitted BBIW distribution for GNI data

6 Conclusions

In this paper a new bivariate beta inverse Weibull distribution is proposed by using the logit of bivariate
beta distribution. The distribution is very flexible and is useful in modeling of the complex data. The
properties of the distribution have been studied and it is found that the correlation coefficient is controlled
by combination of three parameters a1, a2 and b. The proposed bivariate beta inverse Weibull distribution
has been fitted to the world GNI data of two years and it is found that the proposed BBIW is better fit as
compared with the other models involved in the study
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