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Abstract: Automatic Identification System (AIS) data stream analysis is based on
the AIS data of different vessel’s behaviours, including the vessels’ routes. When
the AIS data consists of outliers, noises, or are incomplete, then the analysis of the
vessel’s behaviours is not possible or is limited. When the data consists of out-
liers, it is not possible to automatically assign the AIS data to a particular vessel.
In this paper, a clustering method is proposed to support the AIS data analysis, to
qualify noises and outliers with respect to their suitability, and finally to aid the
reconstruction of the vessel’s trajectory. In this paper, clustering results have been
obtained using selected algorithms, including k-means, k-medoids, and fuzzy
c-means. Based on the clustering results, it is possible to decide on the qualifica-
tion of data with outliers and on their usefulness in the reconstruction of the vessel
trajectory. The main aim of this paper is to answer how different distance mea-
sures during a clustering process can influence AIS data clustering quality. The
main core question is whether or not they have an impact on the process of recon-
struction of the vessel trajectories when the data are damaged. The research ques-
tion during the computational experiments asked whether or not distance measure
influence AIS data clustering quality. The computational experiments have been
carried out using original AIS data. In general, the experiment and the results con-
firm the usefulness of the cluster-based analysis when the data include outliers
that are derived from the natural environment. It is also possible to monitor
and to analyse AIS data using clustering when the data include outliers. The com-
putational experiment results confirm that the k-means with Euclidean distance
has the best performance.
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1 Introduction

Automatic Identification System (AIS) is a tracking system that aims to provide the exchange of data
among neighbouring ships, AIS base stations and satellites. The AIS has been proposed for the
transmission of a ship’s position, so that other ships are aware of it and can possibly avoid a collision.
AIS messages are not addressed to a particular unit, but are instead broadcast and received by anyone
with a receiver within range.
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The AIS was introduced in the late-1990s. According to the International Maritime Organization’s
International (IMO) Convention for the Safety of Life at Sea (SOLAS), ships with 300 or more gross
tonnage (GT) and all passenger ships regardless of size [1] are required to be fitted with AIS.

AIS improves the safety of navigation as a means of support in collision avoidance (ship to ship). AIS is
also a means for littoral states to obtain information about a ship and its cargo. The system can also assist in
the effective navigation of ships and the operation of a Vehicle Tracking System (VTS), which is software
that collects AIS data and assures their graphic presentation together with vessel tracking.

AIS is effective in a range of other applications, including [2]:

� Fishing fleet monitoring and control,

� Maritime security,

� Fleet and cargo tracking,

� Aids to navigation,

� Search and rescue,

� Area monitoring to support environmental protection.

Based on AIS, the IMO also controls the navigational lanes that can be used by vessels. The rules that
regulate general directions in the specific regions for the vessels to navigate are called Traffic Separation
Schemes (TSS) [3].

AIS devices broadcast the location of a vessel along with other information, including identity, course
and speed. In total, 400,000 ships worldwide are equipped with AIS transponders, which generate 80 million
messages per day [4]. Position reports are broadcast frequently (between 2–10 seconds, depending on the
vessel’s speed, or every 3 minutes if at anchor), while static and voyage related reports are sent every
6 minutes. Thus, the AIS data can be viewed as big data and as a data stream.

Originally, terrestrial AIS was a time-sharing broadcast system based on a very high frequency (VHF),
where vessels take turns to transmit in discrete time slots. In general, the information broadcast by each vessel
can be received by other vessels or land-based receivers within just tens of miles in a line-of-sight range. This
is due to the nature of VHF waves. However, VHF technology is susceptible to environmental conditions,
obstacles, as well as AIS network overload, thereby reducing the AIS signal successful reception rate and the
correctness of the messages [5].

The terrestrial AIS limitation follows also from the Earth’s curvature, which limits its potential
horizontal range to about 74 km from shore. This means that AIS traffic information is only available
around coastal zones or in direct view of the ships. Thus, AIS can be classified as a system for exchange
of information at a local scale.

The Satellite–Automatic Identification System (SAT-AIS) was introduced as an alternative system for
the exchange of information but at a global scale [6,7]. SAT-AIS uses receivers that are mostly located on
low-earth-orbit (LEO) satellites, which then send the AIS message to ground stations for further
processing and distribution.

The general coverage of the AIS system has been increased by the use of LEO satellites. While the SAT-
AIS poses a coverage advantage over terrestrial AIS, a satellite-based AIS is more expensive, and is not
entirely free of issues.

SAT-AIS has been introduced based on generic assumptions of AIS. Consequently, it generates a
number of problems for a satellite system. The main problem of SAT-AIS is called a data packet
collision. When two or more units try to use the same transmission time slot, the messages are garbled
and lost. The AIS receiver, which is installed on-board of a satellite, records signals transmitted by ships
located in different areas, but in the satellite field-of-view (FOV) (see for example Fig. 1). Transponders
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from different terrestrial AIS service areas, being in the satellite FOV, are not synchronized between
themselves or with the satellite, and they try to use the same transmission time slot. As a result, the
packages contain errors [8]. The probability of collisions grows with the increasing number of
transmitters in an area and when the service area of the satellite receiver is increased.

In summary, the limitations of AIS, as well as SAT-AIS, result in the fact that the AIS messages can be
incomplete, garbled or can include so-called outliers. When such AIS messages are further analysed,
observed vessels’ trajectories are likely to be incomplete, difficult to understand and introduce
informative noise by anomaly. These outliers can have a negative influence on a quality of navigation
analyses. It can also mean that the principle functionalities based on AIS cannot be realized.

This paper considers the problem of reconstruction of vessels’ routes when the AIS data stream consists
of outliers and the vessel’s trajectories do not conform to expected behaviours. In this paper, we assume that a
general information about vessels in given area are known. However, a part of AIS information (AIS data)
can contain outliers and errors. With respect to the information quality, these outliers are a source of an
information noise, this means that this AIS data cannot be automatically assigned to the set of AIS data
of particular vessel. The aim of the paper is to show that a clustering analysis can be helpful in AIS data
analysis in such way that when the data contain outliers, it is possible to determine the membership of
such data to an appropriate vessel’s trajectory.

In this paper, for clustering AIS data, a set of selected algorithms (i.e., k-means, k-medoids, fuzzy
c-means) has been used. In general, the clustering algorithm has been used as a tool for AIS data analysis
assuming occurrence of the outliers within the data. Thus, assuming that the number of vessels in a
particular area is known, then clustering of the available AIS data from such area on number of clusters,
equal to the number of vessels, should help in deciding on qualification of data with outliers. This
qualification can result in reconstruction of the vessel trajectory. While the aim of the research was to
evaluate the suitability of clustering algorithms to work with AIS data containing noise for which the
initial results has been presented previously in [10], the main aim of the current computational

Figure 1: AIS service areas in a satellite field-of-view [9]
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experiments was to answer how different distance measures during a cluster process can influence AIS data
clustering quality, and whether they have impact on the process of reconstruction of the vessel trajectories
when the data are damaged. So, in this paper the main research question is whether distance measure
influences AIS data clustering quality.

The rest of this paper is organized as follows: Section 2 contains a discussion of AIS data structure and
motivation on implementation of the clustering approach in the considered problem. The utilized AIS data,
clustering algorithms and distance measures are presented in Section 3. The experiment results are presented
and discussed in Section 4. Finally, our conclusions and suggestions for future research are included in the
last section.

2 AIS Data and Problem Formulation

2.1 AIS Messages

The AIS data are transmitted as data of two categories; that is, static and dynamic. The static data are
included into the read-only memory of the AIS device and include the IMO number, Maritime Mobile
Service Identity (MMSI) number, vessel call sign, vessel type, vessel dimensions (length and beam). The
dynamic data are updated automatically and are up to date. They include the ship’s location (longitude
and latitude), Course Over Ground (COG), Speed Over Ground (SOG), true heading, Rate of Turn
(ROT), time in UTC (Coordinated Universal Time), navigational status, etc. [11].

In the AIS system, the dynamic information regarding the trajectory of a ship is exchanged in three types
of messages, as follows: Type 1 (scheduled position reports), Type 2 (assigned position reports) and Type 3
(special position reports). All of them are 168-bits binary messages. To reconstruct the vessel’s trajectory, a
set of messages from those types that needs to be recorded and analysed. A sample of those data, in a form of
changes of longitude and latitude of 22 ships in a 35-min time period, is presented in Fig. 2.

2.2 Representing Trajectory Data

From the technical point of view, AIS is a system that produces streams of data. For example, for position
reports, each vessel transmits information about its current location at time intervals that are predefined by the
technical specifications [11]. Collecting such data allows a ship’s trajectories to be analysed.

Figure 2: Visualization of collected ship trajectories on a 2-D plot (each marked with a different colour)
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A vessel’s trajectory can be defined as a finite sequence Ti ¼ Tt1
i ; . . . ; T

tM
i

� �
, where i represents an

individual vessel, tM is a time for which the trajectory is observed, tm is the time-stamp (where m = 1,…,
M), Ttm

i corresponds to a multidimensional vector of a vessel at time tm and can be expressed by a set of
the following vectors:

Ttm
i ¼ x1; x2; x3; . . . ; xN½ �itm (1)

where x1, x2,…, xN are the features derived from AIS messages Types 1–3 and N is a number of features. Ttm
i

can be also called as a trajectory point (or data point).

However, the intervals between consecutive position reports may vary and this can be noted as follows:
Δtm = tm–tm−1. They depend on several factors, such as the type of a ship, its speed or current behaviour (e.g.,
whether the ship is changing course or not). Tab. 1 shows the nominal reporting intervals to exchange
dynamic conditions (e.g., position) by Class A transponders in the AIS system, the intervals vary from
2 s to 3 min.

2.3 Clustering Approach to AIS Data Analysis

A potential set of AIS data includes data points that belong to a given vessel. These data points can form
a movement trajectory of the vessel. This means that the data points are similar in some sense. According to
clustering theory, this means that they belong to the same cluster. A given data point that does not belong to
any movement trajectory in a specific area can be classified as an outlier.

In general, clustering is an example of an unsupervised machine learning technique that divides the
input dataset into a certain number of groups. It is done, for instance, by finding the most similar data
points and then assuming that they can be put into one group, with any selected metric being the measure
of their similarity.

Thus, the problem of outlier identification within a set of trajectory points can be formulated in the
following formal manner: given a data set T of moving trajectory points in a specific area, and C1,…,Ck

are the clusters of T with respect to assumed measure of similarity d, then the outliers are trajectory
points in T which do not belong to any cluster Ci:i=1,..,k or least match to the identified groups.

In this paper, the cluster-based approach to AIS data analysis has been proposed. Clustering the AIS data is
one possible approach to find abnormal, either damaged or incomplete, outliers. Clustering can also help in the
reconstruction of AIS messages. In this sense, the main purpose of AIS data clustering is to distinguish data
points that originate from each of the vessels, even if the message bits corresponding to the ship identifier

Table 1: AIS reporting intervals for Class A transponders (Source: [11])

Ship’s dynamic conditions Nominal reporting interval

Ship at anchor or moored and not moving faster than 3 knots 3 min

Ship at anchor or moored and moving faster than 3 knots 10 s

Ship 0–14 knots 10 s

Ship 0–14 knots and changing course 3 1/3 s

Ship 14–23 knots 6 s

Ship 14–23 knots and changing course 2 s

Ship >23 knots 2 s

Ship >23 knots and changing course 2 s
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were damaged. Therefore, ideally, such a cluster would contain messages from only one ship. Meanwhile, it is
desirable that the messages originating from one ship have not been split into multiple clusters.

The following parts of this paper describe the details of the proposed approach and computational
experiment, where the clustering approach has been applied, which focuses on the choice of the optimal
distance metric to make the AIS data clustering as accurate as possible.

3 AIS Data Clustering

3.1 Proposed Data Model

The AIS data have been used to create a dataset that served as the input of clustering algorithms. The
dataset consists of decoded information from 850 AIS messages, Types 1–3, that were collected from the
area of the Gulf of Gdańsk in a 35-min-long time period. During this time, the messages from
22 different vessels were recorded. Therefore, the initial number of clusters that the data have been
divided into was equal to 22 (to ideally achieve the results of grouping messages from only one ship in
one cluster).

The data represent a small part of a data stream, although they describe trajectories of 22 vessels in a
given period time including nearly one thousand different AIS packages. Because the time period is not
relatively long, it can be assumed that the problem can be considered with respect to the batch problem
(batch mode), which has been done in this paper and which is a simplification.

The numerical features that have been used are longitude, latitude, SOG, COG and true heading. The
categorical data (i.e., navigational status, special manoeuvre indicator, ship identifier and country
identifier) have been converted by one-hot-encoding method to binary vectors (with only one “true” value
in the entire vector, corresponding to its category).

In summary, the features in the proposed model are set as follows:

• x1–longitude,

• x2–latitude,

• x3–x18–navigational status,

• x19–speed over ground,

• x20–course over ground,

• x21–true heading,

• x22–x25–special maneuver indicator,

• x26–x85–ship identifier, and

• x86–x115–country identifier,

that gives the total number 115 features.

In the majority of conducted experiments the data have been standardized.

For the computational experiments, the selected data have been artificially damaged and mistakes have
been introduced on random selected trajectory points (i.e., outliers have been introduced within the data).

3.2 Clustering Algorithm

There are many different clustering algorithms. The following three are considered in this paper:

K-means [12], which is an iterative algorithm for unsupervised clustering. Given the number of potential
clusters, k, it selects k so-called centroids that are supposed to take the role of centres of newly formed groups.
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In the next step, the distances (using a defined metric) between data points and each of the centroids are
calculated, so that the data point can be assigned to the specific cluster with the centroid closest to that
data point. The means of all of the data points grouped into each cluster are then computed to form new
centroids. The process of assigning data points to clusters and moving centroids is repeated until either
there is no change in re-assigning the data points (i.e., they eventually belong to the correct cluster) or the
maximum number of iterations have been achieved.

K-medoids [13], which are very similar to k-means in the sense of consecutive steps of the algorithm.
The main difference is that the centroids (called medoids) of the clusters must overlap with one of the points
assigned to that cluster (i.e., the data point closest to the calculated mean is chosen to be the next medoid).

Fuzzy c-means [14]. In both of the previous clustering algorithms the data are divided into separated
clusters and each data point can only belong to exactly one cluster. In fuzzy clustering, the data points
can belong to multiple clusters and for each data point its membership grade is calculated. The
membership grade indicates the degree to which a data point belongs to a cluster. The fuzzy c-means
algorithm works similar to k-means. The difference is that it calculates the membership grade. A basic
difference is that fuzzy c-means automatically determines the number of clusters.

3.3 Distance Metric

In this paper, several distance metrics have been applied to evaluate which one is the best for clustering
of AIS data [8]. The experiment aimed at evaluating among the following metrics:

Euclidean distance, which is also called squared Euclidean, calculates the distance between two points
by summing the squared difference between each variable:

dE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
pi � qið Þ2

q
(2)

It is the default metric for most of the algorithms. It is sensitive for the discrepancy in one of the
variables, hence it is better for data to be standardized first.

Manhattan distance, which computes the distance between two points by summing the absolute
difference between each variable:

dM ¼
Xn

i¼1
pi � qij j (3)

If two points have similar values in most of the variables but significantly vary in one of them, then the
Manhattan metric focuses on the closeness of the similar ones, contrary to the Euclidean metric. Meanwhile,
both those metrics are sensitive to outliers.

Cosine distance, which calculates the cosine of an angle between vectors created by the data points:

dc ¼ 1�
Pn

i¼1 piqi
�� ��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 p

2
i

Pn
i¼1 q

2
i

p (4)

Chebychev distance, which chooses the maximum of the absolute differences between the variables in a
couple of data points (5):

dC ¼ maxi pi � qij j (5)

Hamming distance, which can be used if the dataset consists only of binary or categorical data.
Hamming metric compares the data points variable by variable and computes the number of mismatches
between them.
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Note: In these formulas, d represents the calculated distance, p and q are n-dimensional points which the
distance is measured between, while pi is ith feature of point p.

3.4 Quality of the Clustering Results

To evaluate the correctness of the clustering, the following metrics have been used in this paper.

Silhouette [15], which is used to roughly verify the quality of clustering, without the insight if the
clustering results fit the needs of further applications (i.e., anomaly detection). The silhouette is calculated
by checking whether each data point is truly closest to other data points in the same cluster, rather than to
data points from any other cluster. It takes values from −1 (worst clustering) to 1 (best).

Correctness coefficient (CC), which is an original, new indicator that we created during this experiment
strictly to assess the correctness of AIS data grouping for a further anomaly detection phase. It calculates not
only to which extent the data points gathered in one cluster consist of data originated from one particular
vessel but also if data originated from one particular vessel are not split into several clusters. It is
computed with the use of formula (6):

CC ¼ 2 � CHC � VHCt
CHC þ VHC

(6)

where CHC is called Clusters’ Homogeneity Coefficient (it is a weighted average of percentages of how
many points in each cluster originated from one particular vessel) and VHC is Vessel’s Homogeneity
Coefficient (another weighted average of percentages of how many points originated from one particular
vessel have been grouped into one cluster). CC is a harmonic mean of those two means and ranges from
0 (worst clustering) to 1 (best).

4 Experimental Results

4.1 Method

To measure the impact that different distance metrics and clustering algorithms have on the results of
clustering the AIS data, the following experiment has been conducted: using the dataset described in part
A of the previous section, the clustering process has been repeated several times. Each time the data have
been divided into 22 groups, which is the number of vessels that the data originated from. The aim of the
experiments has been to evaluate whether and to what extent the grouping algorithms identify the same
ships described on the AIS data. In the case of outliers, which are the effect of introduction of mistakes
on individual trajectory points, the question was to allocate the points with the outliers to the proper
clusters (i.e., identify the vessels and their trajectory points despite the outliers).

With each iteration, three major changes to the clustering process have been implemented. The first
change was made to the clustering algorithm. Here, one of the following has been chosen: k-means,
k-medoids or fuzzy c-means. The second change was the distance metric taken from the list from part C
of the previous section: Euclidean, Manhattan, cosine, Chebychev or Hamming. (Note: With Hamming
distance, the original binary messages have been put as the input of the clustering algorithm, not their
decoded forms described in part A of the previous section). Finally, using the k-means and fuzzy c-means
algorithms, in several cases the data have not been standardized before clustering to see the influence of
the standardization itself.

Finally, with each iteration, the results of clustering have been collected, not only the visual
representation of clustering (which will be presented and discussed further in Fig. 3) but also the
numerical values in a form of silhouette and CC described earlier.
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4.2 Numerical Results

By examining the silhouette values in Tab. 2 and Fig. 3a, it can be noticed that the Euclidean distance
metric that provides the best clustering in overall (either for k-means or k-medoids algorithm, as well as fuzzy
c-means), resulting in silhouette values above 0.9.

Figure 3: Impact of different distance metrics and algorithms on AIS data clustering–bar chart. a) Impact on
silhouette. b) Impact on CC

Table 2: Results of the experiment

Algorithm and distance metric Quality metric

Algorithm Standardization Distance metric Silhouette Correctness coefficient

k-means on Euclidean 0,92746 0,99876

Manhattan 0,62854 0,99626

Cosine 0,85921 0,99751

Hamming (binary data) 0,09737 0,96795

off Euclidean 0,79185 0,90476

Manhattan 0,76163 0,94426

Cosine 0,55109 0,89877

k-medoids on Euclidean 0,92746 0,99876

Manhattan 0,71575 0,99751

Cosine 0,68341 0,99626

Chebychev 0,82058 0,99501

Hamming
(binary data)

0,10222 0,97713

fuzzy
c-means

on – 0,75981 0,96463

off – 0,66005 0,92595
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Chebychev metric for k-medoids also gives a decent result (above 0.8). The metric that clearly stands out
in a negative way is the Hamming metric, which provides AIS binary data clustering with the lowest
silhouette value of around 0.1 (slightly better for k-medoids that k-means algorithm).

Analysis of Tab. 2 and Fig. 3b shows that when it comes to CC value, the k-means and k-medoids
algorithms give very similar results. In both cases, when data have been standardized, most of the
distance metrics (i.e., Euclidean, Manhattan, cosine and Chebychev) provide acceptable high value of CC
(above 0.99). Only the use of the Hamming metric gives worse results, even worse for k-means (0.968)
than k-medoids (0.977). This implies that working on pure binary AIS data should be avoided. In case of
fuzzy c-means, the results are acceptable and comparable to others.

The experiment also shows that AIS data should be standardized before clustering. The results from
k-means clustering with no standardization are significantly worse than their standardized counterparts,
either in the form of silhouette or CC values. The same is observed for fuzzy c-means.

4.3 Clustering Results

As shown in Figs. 4–6, the use of various distance metrics and algorithms provided slightly different
clustering results. In each iteration of the experiment, the algorithms divided the same data points into
different clusters. The difference comes from the fact that each metric formulates the “closeness” between
points in a diverse manner. Therefore, points that are considered close according to one metric may
appear distant when another metric has been used.

The majority of distance metrics correctly separated trajectories of each ship, so each cluster consists
mostly of data points related to one ship (only Hamming metric failed in this task). However, in several
cases (e.g., with the cosine metric or when the data have not been standardized prior to the clustering
process) some of the trajectories have been divided into several clusters. Further research might be
conducted to ascertain whether this behaviour influences the desired application of the whole AIS data
analysis system (i.e., the detection of abnormal messages received from AIS system).

Figure 4: Results of clustering the collected AIS data into 22 groups with fuzzy c-means: a) with
standardization, b) no standardization. Each cluster has been marked with a different colour
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(a) (b) 

(c) (d)

(e) (f)

Figure 5: Results of clustering the collected AIS data into 22 groups with k-means: a) Euclidean metric,
b) Manhattan metric, c) Cosine metric, d) Hamming metric (on binary data), e) Euclidean metric, no
standardization, f) Manhattan metric, no standardization. Each cluster marked with a different colour
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(a) (b) 

(c) (d)

(e)

Figure 6: Results of clustering the collected AIS data into 22 groups with k-medoids: a) Euclidean metric,
b) Manhattan metric, c) Cosine metric, d) Chebychev metric, e) Hamming metric (on binary data). Each
cluster marked with a different colour
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5 Conclusions

This paper focuses on the problem of evaluation of selected clustering algorithms used on the AIS data
stream, when the data contain noise, and on the problem of reconstruction of vessels trajectories, when these
data are damaged using the clustering. The main research aim was to determine the impact of distance
measures on the performance of AIS data clustering. Selected clustering algorithms and distance
measures have been evaluated. The computational experiment results show that the best results have been
provided by k-means with the Euclidean distance. However, the basic conclusion is that it is possible to
monitor and to analyse AIS data when the data include outliers.

The experiment has been carried out on a selected but original AIS data, which confirms the usefulness
of the cluster-based analysis when the data include outliers derived from the natural environment.

Our future research will focus on study of the influence of the data streams’ length on the quality of
grouping-based analysis and possibly on establishing the size of time window for the AIS data stream,
where batch mode clustering can be carried out. Our other research direction will be an investigation of
the performance of selected online clustering algorithms on the quality of AIS data analysis. Based on the
presented results, it is likely that the clustering algorithm used in further research will be online k-means,
as well as its variants.
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