
Fast Sentiment Analysis Algorithm Based on Double Model Fusion

Zhixing Lin1,2, Like Wang3,4, Xiaoli Cui5 and Yongxiang Gu3,4,*

1Sanming University, Network Center, Sanming, 365004, China
2College of Mathematics and Informatics, Fujian Normal University, Fuzhou, 350007, China

3Chengdu Institute of Computer Applications, Chinese Academy of Sciences, Chengdu, 610041, China
4University of Chinese Academy of Sciences, Beijing, 100049, China

5Sichuan Rainbow Consulting & Software Co., Ltd., Chengdu, 610041, China
�Corresponding Author: Yongxiang Gu. Email: guyongxiang19@mails.ucas.ac.cn

Received: 09 September 2020; Accepted: 02 October 2020

Abstract: Nowadays, as the number of textual data is exponentially increasing,
sentiment analysis has become one of the most significant tasks in natural lan-
guage processing (NLP) with increasing attention. Traditional Chinese sentiment
analysis algorithms cannot make full use of the order information in context and
are inefficient in sentiment inference. In this paper, we systematically reviewed
the classic and representative works in sentiment analysis and proposed a simple
but efficient optimization. First of all, FastText was trained to get the basic clas-
sification model, which can generate pre-trained word vectors as a by-product.
Secondly, Bidirectional Long Short-Term Memory Network (Bi-LSTM) utilizes
the generated word vectors for training and then merges with FastText to make
comprehensive sentiment analysis. By combining FastText and Bi-LSTM, we
have developed a new fast sentiment analysis, called FAST-BiLSTM, which con-
sistently achieves a balance between performance and speed. In particular, experi-
mental results based on the real datasets demonstrate that our algorithm can
effectively judge sentiments of users’ comments, and is superior to the traditional
algorithm in time efficiency, accuracy, recall and F1 criteria.

Keywords: Sentiment analysis; model fusion; Bi-LSTM; FastText

1 Introduction

In recent years, sentiment analysis has received much more attention from both academia and industry
than ever. Sentiment analysis is a common application of NLP, which uses sentiment vocabulary to determine
the sentiment category. A multitude of sentiment vocabulary analysis methods have been proposed in the past
decades. As an instance, according to the emotional attributes of words, Turny [1] used unsupervised
learning method to calculate the Pointwise Mutual Information (PMI) to measure sentiment polarity of
sentence. Kim et al. [2] classified a specific sentence as an emotional category by combining the
individual sentiment of topic words, and extracted news topics from the sentence structure to predict the
emotional category. In addition, Thelwall et al. [3] exploited combining grammatical and spelling rules
for sentiment analysis. Since sentiment vocabulary usually changes with context information, static

This work is licensed under a Creative Commons Attribution 4.0 International License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original
work is properly cited.

Computer Systems Science & Engineering
DOI:10.32604/csse.2021.014260

Article

echT PressScience

http://dx.doi.org/10.32604/csse.2021.014260
http://dx.doi.org/10.32604/csse.2021.014260


sentiment vocabulary is too weak for classification tasks in different context. To solve this problem, Wang
et al. [4] proposed a topic-specific sentiment analysis method based on the LSTM with attention mechanism,
which focused on the characteristics of different parts of the sentence through the attention mechanism, and
achieved good performance on the task of sentiment classification of specific topics.

However, the features of sentiment words are largely neglected. Furthermore, Yang et al. [5] employed
the attention model with sentiment symbols to strengthen the ability to capture global important information
in a specific context environment, which improved the performance greatly. In addition, since the expression
in Internet reviews is more flexible and new words as well as grammatical rules are created more quickly,
vocabulary-based sentiment analysis methods do not adopt well in this context. On the other hand,
Machine learning has been widely used in the field of short text sentiment analysis of Internet reviews,
which emerges a multitude of excellent algorithms for supervised and unsupervised learning models. As
an instance, Pang et al. [6] advocated the supervised learning model in sentiment classification for the
first time, which performed significantly better than traditional analysis algorithms based on sentiment
vocabulary. Moreover, this study also emphasized that sentiment classification is more arduous than
general classification tasks. In order to improve the performance of the sentiment analysis model,
researchers tried to add different features to the supervised model [7–10]. The diversity of different
features improves the performance of the model, but the supervised model requires a lot of labeled data,
which is commonly costly, resulting in a high labor cost in real world applications. On the contrary,
unlabeled data is easy to obtain, which is more flexible and applicable in real world applications.
Towards this end, researchers used semi-supervised learning methods or unsupervised methods in
sentiment classification to reduce dependence on labeled data, such as labeling propagation, co-training,
and active learning. As an instance, with the benefit of collaborative training, Wan [11] focused on cross-
language sentiment classification and trained a Chinese sentiment classification model using annotated
English data sets. Cheng et al. [12] incorporated explicit sentiment signals in textual terms and implicit
sentiment signals, compiling the sentiment signal from a single social network into a coherent model for
unsupervised sentiment analysis.

A multitude of researchers used supervised learning to exploit contextual knowledge regularization
for sentiment analysis. Wu et al. [13] considered the co-occurrence of words and used the PMI index to
calculate the similarity of words. Tai et al. [14] proposed extracting various contextual sentiment
knowledge from unlabeled samples and expressing it as the relationship between sentiment expressions.
They proposed three constraints: Grammatical constraints, co-occurrence constraints and vocabulary
constraints. In addition, Wu et al. [15] introduced a method using graph-based supervised learning to
calculate word similarity.

Inspired by recent advance of deep neural networks, Vaswani et al. [16] introduced Transformer, which
is a deep neural network based solely on attention mechanism, and has achieved impressive results on a
variety of NLP tasks. Furthermore, many variants of the Transformer model have emerged in recent
years. The representative works include Bidirectional Encoder Representations from Transformers
(BERT) [17], XLNet [18] and ERNIE [19]. Among them, BERT is a milestone model, which is an
attention-based Transformer model and auto-encoding model. BERT was trained on a large-scale
unlabeled data to obtain a general word vector representation, which results demonstrated that this
learning strategy can achieve state-of-the-art in tasks such as text classification and translation. Based on
this work, Manish et al. [20] implemented fine-grained sentiment classification based on BERT. However,
an ocean of parameters in BERT and BERT-like models place restrictions on practical applications.

Most of the current researches tend to exploit the sentiment relationship between vocabulary, and do not
make full use of the semantic relationship in context. Moreover, when convert the text into a word vector, a
time-consuming word vector algorithm is required, which has poor time efficiency. Towards this end, we

176 CSSE, 2021, vol.36, no.1



introduce a new fast sentiment classification method called FAST-BiLSTM. First of all, FastText [21] was
trained to get the basic classification model, which can generate pre-trained word vectors as a by-product.
Secondly, Bi-LSTM utilizes the generated word vectors for training and then merges with FastText to
make comprehensive sentiment analysis. The fusion model can further exploit the semantic information
in the context and achieve higher time efficiency than traditional models.

2 Related Work

2.1 FastText

FastText is a supervised word vector algorithm, its model structure is consistent with the Continuous
Bag-of-Words (CBOW) model. The CBOW model structure is shown in Fig. 1.

There are two main differences between FastText and CBOW model. First of all, the input data and
prediction target are different. CBOW inputs the sum or average of the vectors which have removed the
target word. While FastText turns bag-of-words into bag-of-features to use more order information. That
is, the input xi in Fig. 2 is no longer just a word, but can also add bigram or trigram information.
Secondly, the prediction target in CBOW is a word in the context. While in FastText, prediction target is
the category of the current input text. To get the text category, FastText provides a framework for text
representation and text classification. The essence is to predict an index given an index collection.

The FastText model structure is shown in Fig. 2. The entire model is divided into three layers: input
layer, hidden layer and output layer. The input layer inputs words represented by multiple vectors, the
output layer outputs a specific target, and the vector of the hidden layer is the superimposed average
value of multiple word vectors.

0··

0

·
·
1

0··

0

·
·
1

0·
·

0

·
·
1

Matrix

X

X

X

N

=
V

avg
····

Matrix

N-dimension vector
(Average of vectors of all

input words)

Input

X

V

0

·
·

0

·
·

1

Output
softmax

N =W W’

h1

h2

h3

hN

Hidden

Figure 1: CBOW model structure

CSSE, 2021, vol.36, no.1 177



The objective function of FastText is as shown below:

F ¼ � 1

N

XN
n¼1

yn log f BAxnð Þð Þ (1)

where N is the number of samples; yn is the corresponding category of the n-th sample; f represents the
softmax loss function; xn is the normalized feature of the n-th sample; A is the weight parameter of the
Embedding layer; B is the weight parameter of hidden layer.

The traditional word vector tools like word2vec treat each word as an atom, ignoring the morphological
features inside the word. Such as “apple” and “apples”, the pair words have a host of shared characters, that
is, they have similar internal morphology. In traditional word2vec models, the internal morphological
information of words is lost because they are converted into different ids. FastText solved this problem
by utilizing character-level n-grams to represent a word. For the word “apple”, assuming the value of n is
3, its trigrams have “<ap”, “app”, “ppl”, “ple”, “le>“, where < means suffix, > means prefix. Therefore,
these trigrams can be used to represent the word “apple”. Furthermore, the superimposed vector of these
5 trigrams can be used to represent the word vector of “apple”. This is better for word vectors generated
by low-frequency words. Because their n-grams can be shared with other words.

2.2 Bidirectional Long Short-Term Memory Network

In our FAST-BiLSTM model, Bi-LSTM network is used as one of the fusion models. The unidirectional
LSTM infers the later part from the previous information, but sometimes only focusing at the previous words
cannot make full use of the global information. The bidirectional LSTM network is designed for this case, it
is a kind of time series Recurrent Neural Network (RNN), which is specially designed to solve the long-term
dependence problem of general RNN. The key to solve the problem of gradient dissipation is that LSTM
introduces the cell state in the time series and the structure of the “gate” between cells. State refers to the
carrier of information circulation in the neural network, which allows the information in the data to be
conveyed to the next cell. LSTM has three types of gate structures: Forget gate, input gate and output
gate [22]. The LSTM network structure is shown in Fig. 3.

In order to demonstrate the operation mechanism of LSTM vividly and concisely, the definition of
symbols concerned with Eqs. (2)–(7) is given firstly. Wf, Wi, Wc are the weighted matrices and bf, bi, bc
are biases of LSTM to be learned during training. xt stands for the inputs of LSTM cell unit at time t and
ht-1 is the vector of hidden layer at time t-1. r and � are used to represent the sigmoid function and
element-wise multiplication, respectively.

hidden

xN–1x1

output

x2 xN

Figure 2: FastText model structure

178 CSSE, 2021, vol.36, no.1



Forget gate is in charge of making decisions on retaining or discarding information. This process needs
to take advantage of the property that the output of the sigmoid function is between 0 and 1. The specific
process is that the current cell passes the input of the current state and the hidden information of the
previous cell to the sigmoid function. The closer the output value of sigmoid function is to 0, the more
likely it should be discarded. The information transmission in forget gate can be expressed by Eq. (2).

ft ¼ r Wf � ht�1; xt½ � þ bf
� �

(2)

Input gate is in charge of updating the cell state. This process also requires the property of the sigmoid
function, but the input is the hidden information of the previous layer and the current input information. The
output value determines which information needs to be updated. Analogously, the closer the output value is
to 1, the more crucial it is and the more it needs to be updated. The information transmission in input gate can
be expressed by Eq. (3).

it ¼ r Wi � ht�1; xt½ � þ bið Þ (3)

Output gate is in charge of determining the next hidden state which refers to the previous input
information. What the sigmoid function receives at this moment is the previous hidden state information
and the current input information. The new cell state information will be passed to the tanh function at
this time. The current hidden state is obtained by multiplying the output of the tanh function and the
output of the sigmoid function. The information of the current hidden state will be passed to the next cell
in the same way. The calculation formulas for the LSTM unit can be expressed as follows:

ect ¼ tanh Wc � ht�1; xt½ � þ bcð Þ (4)

ct ¼ ft � ct�1 þ it � ~ct (5)

ot ¼ r Wo � ht�1; xt½ � þ boð Þ (6)

ht ¼ ot � tanh ctð Þ (7)

Although LSTM solved the long-term dependency problem, it cannot use the later information of the
text. Bi-LSTM considers the global information in context. Its implementation principle is: the word
vectors generated by the embedding layer are used as the input of two LSTM networks with opposite
timing. The forward LSTM can obtain the forward information of the input sequence, and the backward
LSTM can obtain the backward information. The following information of the sequence is then

+×

× ×

tanh

ct-1 ct

tanh

xt

σ σ σ

ht-1 ht

ht

Figure 3: LSTM network structure

CSSE, 2021, vol.36, no.1 179



calculated by vector splicing to obtain the final hidden layer representation. In this way, the hidden layer of
each word in the text sequence contains complete context information.

3 Double Model Fusion Algorithm

3.1 Model Building Process

The fast text sentiment analysis algorithm based on double-model fusion is shown in Fig. 4. Right part is
the FastText model that accepts clean text data, which consists of a hierarchical softmax and a linear network
with n-gram features. Specifically, the label is encoded with Huffman coding, which greatly reduces the
number of targets predicted by the model. Apart from generating a FastText classification model, this part
will also get pre-trained word vector embeddings. Left part is the Bi-LSTM classification model. This
part uses the pre-trained word vectors provided by the FastText model for word embedding, and then do
semantic mining. When the last LSTM unit outputs, the information is sent to the fully connected layer
and softmax layer for classification. After obtaining two classification models, these models are stacked
and merged to further improve the performance. Based on the above description, the overall algorithm
flows of fast text sentiment analysis are as follows:

1. Data cleaning, invalid or empty data will be removed in this step.

2. Word segmentation tool is used to segment the text. Here, we use the Harbin Institute of
Technology’s LTP word segmentation tool.

3. Input the data into the FastText model to train the binary classification model and generate word
vectors at the same time.

4. Load the word vector in Step 3 and use the Bi-LSTM model to train a binary classification model.

5. Combine the FastText model in Step 3 with the Bi-LSTM model in Step 4 for stacking model fusion.

LSTM LSTM LSTM LSTM

LSTM LSTM LSTM LSTM

Concat Concat Concat Concat

FC

Softmax

Hidden

x1 x2 xn……

FastText Cls 
Model

Embed

R_Bi
LSTM

R_Fast
Text

Output

Stacking

FC
and

Softmax

Bi-LSTM

Fast
Text

embeddings

FastText
pre-trained
embeddings

and
Cls Model

F
usion

Figure 4: Model diagram of fast text sentiment analysis algorithm based on double model fusion

180 CSSE, 2021, vol.36, no.1



3.2 Stacking Model Fusion

For machine learning and deep learning, the performance of a single model is often worse than the model
fusion. In proposed algorithm, the stacking model fusion is used to combine the Bi-LSTM and FastText. The
training and prediction processes are shown in Fig. 5.

The whole processes of model fusion are as follows:

1. Vector representations of text training data are divided into five parts.
2. Use the Bi-LSTM model and the FastText model to train four of all parts, then predict the training

set that are not used for training and test set. Next, change the selected training sets for training
and the setting used for verification, and repeat Step 2 until the prediction results of complete
training sets are obtained.

3. For the five combinations, perform Step 2 respectively to obtain five models and the corresponding
cross-validation prediction results, namely P1, P2, P3, P4 and P5.

4. Use five models to predict the corresponding testing set respectively, and the prediction results of the
testing set are obtained as T1, T2, T3, T4 and T5.

5. Take P1~5 and T1~5 as the training sets and testing sets of the next layer.

4 Experimental Design and Analysis

4.1 Dataset and Evaluation

The two datasets used in the experiment are all crawled from real Internet e-commerce data, one is from
the online hotel reservation reviews, and the other is from takeaway platform reviews. The description of the
datasets is shown in Tab. 1.

FastText Bi-LSTM

Prob1

n*1

Prob2

n*1

Stacking Training Phase

Prob1 Prob2

······

ProbN Label

n*N
n*1

Training Set of Second Layer
Train Val

LR

Stacking Testing Phase

Test

······
Porb1 Porb2 PorbN

m*1 m*1 m*1

Testing Set of 
Second Layer

Porb1 Porb2 PorbN

m*N

Predictions

Overall 
Predict

Figure 5: Two model fusion process

Table 1: Dataset description

Dataset Source Number of texts Positive comments Negative comments

1 Hotel Reviews 10000 7000 3000

2 Takeaway Reviews 11988 4000 7988

CSSE, 2021, vol.36, no.1 181



When evaluating the results of the classification, we use three common evaluation indicators, they are
accuracy, recall and F1 score. Firstly, the following definitions are given: True Positive (TP), which is a
positive sample predicted by the model as positive; False Positive (FP), which is a negative sample
predicted by the model to be positive; False Negative (FN), which is the positive sample that is predicted
to be negative by the model; True Negative (TN), which is the negative sample that is predicted to be
negative by the model. Then, accuracy, recall and F1 score can be calculated as follows:

Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
(8)

Recall ¼ TP

TP þ FN
(9)

F1 ¼ 2� TP

N þ TP � TN
(10)

In this experiment, five commonly used classification algorithms are selected for comparison with
FAST-BiLSTM. These five classification algorithms are described in detail as follows:

1. Bayes, an algorithm that uses knowledge of probability and statistics for classification, uses Bayes’
theorem to predict the probability of a sample belongs to each category, and selects the most likely
category as the final result.

2. Random Forest (RF), uses multiple related decision trees to randomly build a forest classifier. While a
new sample is inputted, it will be classified by every decision tree, to determine which category the
sample belongs to, and then classifies it to the category which selected the most.

3. K-Nearest Neighbors (KNN), according to the unlabeled data, compares each feature of the new data
with the corresponding feature of the data in the sample set, and then the algorithm extracts the
closest data classification label in the sample set. Select the first K most similar data in the sample
dataset, and choose the category that appears most among the K most similar data as the category
of the new data [23].

4. LSTM, a type of temporal neural network, the model will not only pay attention to the current time
information all the time, but also pay attention to what information can be used for the current time in
the previous processing, and does classification according to the text semantic information.

5. CNN-LSTM, uses the LSTM network to extract the key semantic information of the sentence,
distinguishes the text according to the extracted semantics; then uses CNN to extract the features
of the text and does classification. This experiment combines them, first extracts the key
semantics of the text, and then extracts the key features of the semantics to classify the text.

4.2 Hyperparameter Analysis

To verify the effectiveness of our algorithm, experiments were carried out on theWindows platform with
following environment: Intel(R)-Core (TM) i7-8750U 2.20 GHz CPU, GTX 1660 GPU and 24 GB memory.
Then, keras framework was used to build the FastText and Bi-LSTM model. The main hyperparameters of
the model are shown in Tab. 2.

In the tuning process of FAST-BiLSTM algorithm, the parameters of the model were adjusted. Among
them, there are four main parameters that are vital to the model: minCount, dimension of word vector,
number of iterations in FastText and number of neurons in Bi-LSTM. After carefully adjusting, the
influences of these hyperparameters are shown in Figs. 6–9.

182 CSSE, 2021, vol.36, no.1



Table 2: Important hyperparameter setting in experiment

Parameter Setting

MinCount in FastText 5

Dimension of word vector in FastText 64

Number of iterations in FastText 70

Number of Neurons in Bi-LSTM 100

Learning rate 0.05

Optimizer Adam

Window size 5

Figure 6: The influence of mincount value in FastText

Figure 7: The influence of dimension of word vector in FastText

CSSE, 2021, vol.36, no.1 183



The influence of minCount in FastText is shown in Fig. 6. The minCount represents the threshold of
minimum word frequency, which menas that word with frequency less than the threshold will be removed
directly. When the corpus is relatively large, the threshold should be small, because the low frequency
will be arduous to fit. We set the value of minCount to (2,3,4,5,6,7,8) for testing. Finally, the model has
the highest accuracy, recall and F1 score at the value of 5. This is because when the minCount value is 5,
the most reasonable selection of word frequency is ensured. When the value is too small, the low-
frequency words cannot be filtered out, which reduces the fitting ability of the model. While the value is
too big, useful words in the text will be deleted, which will make the performance worse.

The influence of dimension of word vector in FastText word vector is shown in Fig. 7. We set the value
of word vector dimension to (16, 32, 64, 128) for experiments. When the value is 64, the model has the
highest accuracy, recall and F1 score. From our own perspective, this may because when the word vector
dimension is set to 64, it perfectly matches the size of the text data volume. If the value is too small, the
information in the corpus will not be expressed, and the model effect will be worse due to insufficient

Figure 8: The influence of number of iterations in FastText

Figure 9: The influence of number of neurons in Bi-LSTM

184 CSSE, 2021, vol.36, no.1



model fitting. While the value is too big, the word vector will become a sparse matrix, which increases the
arduousness of training, the performance will also get worse.

The influence of number of iterations in FastText model is shown in Fig. 8. All data pass through the
neural network once and return once. This process is called an epoch. The choice of epoch should be
considered in conjunction with the learning rate. In this paper, the learning rate is set to 0.05, and the
Adam optimizer is chosen as optimizer. The times of iterations are respectively selected as (20, 30, 40,
50, 60, 70, 80, 90) for experiments. When the number of iterations is set to 70, the model has the highest
accuracy, recall and F1 score, which demonstrates the model reaches the optimal state when the number
is 70. This is because that too few iterations will result in underfitting, while too many iterations will
result in overfitting, either of these two cases will make performance worse.

Fig. 9 demonstrates the influence of number of neurons in the Bi-LSTM model. When the number of
neurons is set to 100, the model is optimal. From the change in the evaluation value in Fig. 9, it can be
inferred that while the number of neurons in the LSTM network is too small, the model has a weak
ability to extract features. While the number of neurons is large, model’s fitting ability is strong, but too
many neurons will result in a surge of the model parameters. As a consequence, not only the risk of
overfitting will increase but also the training time will prolong. Finally, we set the number of Bi-LSTM
neurons to 100, which is the most appropriate.

4.3 Result Analysis

In order to make a better comparison between FAST-BiLSTM and other algorithms, 5-fold cross-
validation method is used to test and evaluate. For data partition, the data are randomly shuffled and
selected for experiment. Tab. 3 demonstrates the comparison results of FAST-BiLSTM and other five
algorithms in accuracy, recall and F1 score using dataset 1. For fair comparison, word2vec method is
adopted for comparison algorithm to get default word vectors. According to the results given in Tab. 3, it
can be seen that the accuracy of the proposed algorithm is 7.1%, 6.1%, 8.7%, 3.8%, 2.5% higher than
that of Naive Bayes, Random Forest, K-nearest, LSTM and CNN-LSTM, respectively. The recall rate
increased by 4.1%, 3.7%, 5.5%, 2.0%, 1.8%; in terms of F1 evaluation criteria, our algorithm still has
great advantages, and the F1 increased by 3.4%, 3.2%, 4.9%, 2.7%, 2.2%, respectively. On dataset 2,
FAST-BiLSTM also manifests similar advantages. Tab. 4 demonstrates the experimental comparison
results of FAST-BiLSTM and other five different algorithms using dataset 2. The accuracy increased by
5.5%, 4.5%, 6.2%, 3.1%, 2.3%; the recall increased by 7.2%, 4.8%, 8.2%, 3.7%, 2.5%; and the
F1 increased by 4.7%, 4.3 %, 6.1%, 3.7%, 2.9%. From the analysis, it can be seen that the performance
of FAST-BiLSTM is better on dataset 2 too. The same performance of the double sets of data proves the
effectiveness of FAST-BiLSTM. Moreover, our algorithm has more obvious advantages in terms of time
efficiency. Fig. 10 demonstrates the comparison of the time consumption of FAST-BiLSTM with other
algorithms on the datasets. It is not arduous to see through observation that FAST-BiLSTM has a
significant improvement in time efficiency compared with other algorithms. Concretely, compared with
the other five algorithms (Naive Bayes, Random Forest, K Neighbor, LSTM, CNN-LSTM), the
improvements of time efficiency on dataset 1 are 38%, 46%, 31%, 55%, 61%, respectively; on the dataset
2 are 49%, 56%, 43%, 57%, 64%, respectively. The huge improvement on time efficiency is invaluable
for application because shortening the model training time can reduce the consumption of machine
resources, save the cost of scientific personnel for training models, speed up the iteration of the model,
and thus multiply the development efficiency.

CSSE, 2021, vol.36, no.1 185



5 Conclusion and Outlook

In this paper, we proposed a fast sentiment analysis algorithm, called FAST-BiLSTM, to solve the
problems on sentiment analysis. Our algorithm is carried out by fusing the FastText and Bi-LSTM
models. First of all, FastText has a fast speed for linear fitting and can generate pre-trained word vectors
as a by-product. Secondly, Bi-LSTM uses the generated word vectors for training and then merges with
FastText to make comprehensive sentiment analysis. Compared with the traditional word2vec methods, it
has an obvious advantage in time efficiency. In order to demonstrate the performance of FAST-BiLSTM,
we compare our algorithm with five commonly used algorithms on two datasets in different fields. The
results manifest that the time efficiency of the algorithm is improved more than 30%, and FAST-BiLSTM
can sufficiently extract contextual semantic information from texts, it is superior to other algorithms in
accuracy, recall and F1 score. Moreover, our experimental results indicate that FAST-BiLSTM has

Table 4: Experiments conducted on dataset 2

Model Naive Bayes Random Forest KNN LSTM CNN-LSTM FAST-BiLSTM

Accuracy 0.927 0.936 0.921 0.949 0.956 0.978

Recall 0.884 0.905 0.876 0.914 0.925 0.948

F1-Score 0.876 0.879 0.864 0.884 0.891 0.917

Figure 10: Comparison of total time spent by different algorithms

Table 3: Experiments conducted on dataset 1

Model Naive Bayes Random Forest KNN LSTM CNN-LSTM FAST-BiLSTM

Accuracy 0.876 0.883 0.862 0.902 0.914 0.937

Recall 0.915 0.918 0.902 0.934 0.935 0.952

F1-Score 0.845 0.847 0.833 0.851 0.855 0.874

186 CSSE, 2021, vol.36, no.1



achieved considerable performance in text sentiment analysis tasks at a low computational cost, and it is
invaluable for practical application.

Despite the overall performance of FAST-BiLSTM is good and the time efficiency is improved
especially, the classification performance can further be improved greatly. The subsequent research will
focus on how to improve the classification performance. On the other hand, it will also focus on applying
the algorithm to a wider range of fields, such as students’ sentiment analysis, online public opinion
analysis, etc.

Funding Statement: This work is supported by the National Science Foundation of China (No. 61771140),
the 2017 Natural Science Foundation of Fujian Provincial Science & Technology Department (No.
2018J01560) and the 2016 Fujian Education and Scientific Research Project for Young and Middle-aged
Teachers (JAT170522).

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding the
present study.

References
[1] P. D. Turney, “Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of

reviews,” in Proc. 40th Annual Meeting on Association for Computational Linguistics, Stroudsburg, PA, USA,
pp. 417–424, 2002.

[2] S. M. Kim and E. Hovy, “Determining the sentiment of opinions,” in Proc. 20th Int. Conf. on Computational
Linguistics, Geneva, CH, pp. 1367–1373, 2004.

[3] T. Mike, B. Kevan, P. Georgios, C. Di and K. Arvid, “Sentiment in short strength detection informal text,” Journal
of the American Society for Information Science & Technology, vol. 61, no. 12, pp. 2544–2558, 2010.

[4] Y. Wang, M. Huang, X. Zhu and L. Zhao, “Attention-based LSTM for aspect-level sentiment classification,” in
Proc. Conf. on Empirical Methods in Natural Language Processing, Austin, Texas, USA, pp. 606–615, 2016.

[5] Z. Y. Sen, Z. Jia, H. G. Juan and J. Y. Ru, “Microblog sentiment analysis method based on a double attention
model,” Journal of Tsinghua University, vol. 58, no. 2, pp. 122–130, 2018.

[6] B. Pang, L. Lee and S. Vaithyanathan, “Thumbs up? Sentiment classification using machine learning techniques,”
in Proc. Conf. on Empirical Methods in Natural Language Processing, Brussels, Belgium, pp. 79–86, 2018.

[7] F. Koto and M. Adriani, “HBE: Hashtag-based emotion lexicons for twitter sentiment analysis,” in Proc. 7th
Forum for Information Retrieval Evaluation, New York, NY, USA, pp. 31–34, 2015.

[8] A. Giachanou and F. Crestani, “Like it or not: A survey of twitter sentiment analysis methods,” ACM Computing
Surveys, vol. 49, no. 2, pp. 1–41, 2016.

[9] X. C. Huang, Y. H. Rao, H. R. Xie, T. L. Wong and F. L. Wang, “Cross-domain sentiment classification via topic-
related TrAdaBoost,” in Proc. Association for the Advancement of Artificial Intelligence Conf., San Francisco,
USA, pp. 4939–4940, 2017.

[10] A. B. Goldberg and X. Zhu, “Seeing stars when there aren’t many stars: Graph-based semi-supervised learning for
sentiment categorization,” in Proc. TextGraphs: The 1st Workshop on Graph Based Methods for Natural
Language Processing, New York, NY, USA, pp. 45–52, 2006.

[11] X. Wan, “Co-training for cross-lingual sentiment classification,” in Proc. 47th Annual Meeting of the ACL and the
4th IJCNLP of the AFNLP, Suntec, Singapore, pp. 235–243, 2009,

[12] K. Cheng, J. Li, J. Tang and H. Liu, “Unsupervised sentiment analysis with signed social networks,” in Proc. 31st
AAAI Conf. on Artificial Intelligence, San Francisco, California, USA, pp. 3429–3435, 2017.

[13] F. Wu, Y. Song and Y. Huang, “Microblog sentiment classification with contextual knowledge regularization,” in
Proc. Twenty-Ninth AAAI Conf. on Artificial Intelligence, Palo Alto, California, USA, pp. 2332–2338, 2015.

[14] Y. J. Tai and H. Y. Kao, “Automatic domain-specific sentiment lexicon generation with label propagation,” in
Proc. Int. Conf. on Information Integration and Web-Based Applications & Services, New York, NY, USA, pp.
53–62, 2013.

CSSE, 2021, vol.36, no.1 187



[15] F. Z. Wu, S. X. Wu, Y. F. Huang, S. F. Huang and Y. Qin, “Sentiment domain adaptation with multi-level
contextual sentiment knowledge,” in Proc. 25th ACM Int. on Conf. on Information and Knowledge
Management, New York, NY, USA, pp. 949–958, 2016.

[16] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones et al., “Attention is all you need,” in Proc. Advances in
Neural Information Processing Systems, Long Beach, California, USA, pp. 6000–6010, 2017.

[17] J. Devlin, M. W. Chang, K. Lee and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for
language understanding,” in Proc. Conf. of the North American Chapter of the Association for Computational
Linguistics, Minneapolis, Minnesota, USA, pp. 4171–4186, 2019.

[18] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov et al., “XLNet: Generalized autoregressive pretraining
for language understanding,” in Proc. Advances in Neural Information Processing Systems, New York, NY, USA,
pp. 5754–5764, 2019.

[19] Z. Zhang, X. Han, Z. Liu, X. Jiang, M. Sun et al., “ERNIE: Enhanced language representation with informative
entities,” in Proc. Annual Meeting of the Association for Computational Linguistics, Florence, Italy, pp. 1441–
1451, 2019.

[20] M. Munikar, S. Shakya and A. Shrestha, “Fine-grained sentiment classification using BERT,” in Proc. Artificial
Intelligence for Transforming Business and Society (AITB), Kathmandu, Nepal, pp. 1–5, 2019.

[21] A. Joulin, E. Grave, P. Bojanowski and T. Mikolov, “Bag of tricks for efficient text classification,” in Proc. 15th
Conf. of the European Chapter of the Association for Computational Linguistics, Valencia, Spain, pp. 427–431,
2017.

[22] S. X. Jian, C. Z. Rong, W. Hao, Y. D. Yan, W. W. Kin et al., “Convolutional LSTM network: A machine
learning approach for precipitation nowcasting,” in Proc. Advances in Neural Information Processing Systems,
Montreal, Canada, pp. 802–810, 2015.

[23] J. M. Ding, G. Q. Liu and H. Li, “The application of improved random forest in the telecom customer churn
prediction,” Pattern Recognition and Artificial Intelligence, vol. 28, no. 11, pp. 1041–1049, 2015.

188 CSSE, 2021, vol.36, no.1


	Fast Sentiment Analysis Algorithm Based on Double Model Fusion
	Introduction
	Related Work
	Double Model Fusion Algorithm
	Experimental Design and Analysis
	Conclusion and Outlook
	References


