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Abstract: Geologists interpret seismic data to understand subsurface properties
and subsequently to locate underground hydrocarbon resources. Channels are
among the most important geological features interpreters analyze to locate petro-
leum reservoirs. However, manual channel picking is both time consuming and
tedious. Moreover, similar to any other process dependent on human intervention,
manual channel picking is error prone and inconsistent. To address these issues,
automatic channel detection is both necessary and important for efficient and
accurate seismic interpretation. Modern systems make use of real-time image pro-
cessing techniques for different tasks. Automatic channel detection is a combina-
tion of different mathematical methods in digital image processing that can
identify streaks within the images called channels that are important to the oil
companies. In this paper, we propose an innovative automatic channel detection
algorithm based on machine learning techniques. The new algorithm can identify
channels in seismic data/images fully automatically and tremendously increases
the efficiency and accuracy of the interpretation process. The algorithm uses deep
neural network to train the classifier with both the channel and non-channel
patches. We provide a field data example to demonstrate the performance of
the new algorithm. The training phase gave a maximum accuracy of 84.6% for
the classifier and it performed even better in the testing phase, giving a maximum
accuracy of 90%.

Keywords: Deep neural networks; deep learning; channel detection; image
processing; two-dimensional seismic data

1 Introduction

Processing and interpreting seismic data are important for most present-day oil and gas exploration.
Seismic data contain various information about the subsurface, such as structure and lithology [1].
Underground geological features hold particularly important information that could affect drilling
decisions. Channels are a significant geological feature that can be considered as either potential paths for
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petroleum migration or drilling hazards; in either case, channels should be detected in seismic data before the
drilling process commences [2].

In geology, a channel is a landform consisting of thick lines that are covered with a narrow area of water
underground. They are formed through a complex process. Since channel locations are surrounded by beds of
sedimentary rocks, it is hard to detect some channels, and they may well even go unnoticed. In the petroleum
field, buried underground channels are very profitable for oil companies because they can contain tons of oil
and gas that can be extracted. Channel behavior can also change faster than other seismic data features, and
sometimes they vanish over time, making channel prediction using geophysical data harder and more
challenging [3].

Previously, channel detection via seismic imaging was performed manually. Manual channel picking is
both time consuming and tedious. Moreover, similar to any other process dependent on human intervention,
manual channel picking is error prone and inconsistent. Therefore, this paper proposes an automatic machine
learning algorithm to detect channels in 2D seismic data. This new algorithm focuses on automating channel
detection and employs a machine learning algorithm—the deep neural network (DNN)—to identify channels
in seismic images. Research done using the classical approach and machine learning approach for detecting
channels in seismic data are discussed.

The remainder of this paper is organized as follows. Section 2 contains a review of related literature.
Section 3 contains the proposed method. Section 4 demonstrates a field data example. Section 5 presents
the results and discussion. Finally, the conclusion is given in Section 6.

2 Literature Review

In this section, several studies are explored to understand the previous studies for channel detection on
seismic data. Two main categories have been considered in this paper, the statistical approaches and the
machine learning approaches.

2.1 Classical/Image-Processing Approaches

Shearlet transformation has applications in numerous areas including feature extraction, image fusion,
geophysical noise attenuation, and seismic feature detection. Shearlet transformation outperforms both Sobel
and Canny methods in detecting channels. Channels in seismic images can be regarded as edges [4]. In
Karbalaali et al. [5], the authors used an algorithm that works by breaking the input data into various
scales and directions via multiplication of Shearlet filters in the frequency domain. Then, they determined
the edge candidates by finding the local maxima coefficients of Shearlet at the finest scale. At each pixel
of each cone, they maximized the Shearlet coefficient associated with that cone by finding its maximum
value. Cones are formed by partitioning the Fourier domain into four parts, with each cone having a finite
range in which the shearing variable is allowed to vary in cone-adapted Shearlet transformation. After
that, a threshold scheme needs to be applied to get the binary image pixels classified into edge and non-
edge based on the Shearlet coefficient’s local maxima. Finally, the resulting image will fall into two
classes, with edge and none-edge labels. The resulting image may require enhancement by applying
morphological thinning, which removes selected foreground pixels from the binary image. Foreground
pixels are those that do not match with the underlying pixel values or background pixels in
morphological operations. Thinning is used in this algorithm to reduce the edges on the borders by
applying a threshold method and removing points that share multiple foregrounds.

In Mardan et al. [6], the authors implemented channel detection using a K-means algorithm and support
vector machine (SVM). The dataset used for the experimental implementation was provided by the National
Iranian Oil Company (NIOC). The researchers approached the channel detection task as a classification
problem. The K-means method they used classified channels into three clusters as the output of this
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algorithm. Then, SVMwas fed with the output of the K-means algorithm as input seeds for the SVMmodels.
With training samples, the authors achieved 94.7% accuracy.

In Cao et al. [7], the authors used a color-blending visualization approach depend on different color
models with seismic attribute combinations for the purpose of detecting subsurface channels. The three
types of color models used were the RGB (red, green, blue) model, the CMY (cyan, magenta, yellow)
model, and the HSV (hue, saturation, value) model. For forecasting subsurface channels, sensitive seismic
attribute volumes were measured from the basic seismic data where only three categories of attributes are
combined together in three-dimensional space. According to the authors, the RGB and CMY models gave
better resolution compared to the HSV model, and the color blending in the RGB model was more
contrasting than that of the CMY model in terms of the background of the seismic images.

In Mathewson et al. [8], the authors used steerable pyramid filters to splitting the seismic image based on
the scale and orientation to detect channels in the images. Features were selected and determined based on
dimensionality and directions resulted from the partitioned image. Then, the authors implemented steerable
pyramids in 2D and 3D to enhance the image features, and by doing so, the authors were able to enhance the
channels on synthetic seismic images.

2.2 Machine Learning Approaches

Machine learning (ML) methods can predict and estimate the pattern and relationship that exists among
the samples in the dataset. Recently, ML methods have become increasingly popular within the scientific
community. In ML, seismic data interpolation can be viewed as a regression problem for continuous output.

In Krasnov et al. [9], they proposed using ANN model to detect channels based on features extracted
from seismic cubes. The dataset holds RGB maps obtained from geological units in a Z axes seismic data
range where the boundaries of such selected range determined by using secant surfaces. To reflect the
coordinates of the selected range and to determine its frequencies, they applied continuous wavelet
transformation (CWT). Then, the created dataset used to train the ML model where they manually
performed the classification of the RGB maps within the dataset to highlight the channels. Due to the
huge number of maps, they used a subset of the dataset consists of about 50 maps for each type (with
channel and without channel). The authors used the Xception DNN along with ImageNet dataset.
Xception is designed to classify 1000 classes of objects from ImageNet. There are no geological objects
in the dataset; therefore, the authors used the knowledge transfer method. The main idea is to use only a
part of the trained DNN layers, develop one’s own layers, and retrain the DNN with data from the
channel domain, that is, the images from mini RGB maps. An image close-up method was then later used
to manually increase the dataset. The authors did not mention anything about their accuracy but gave
other performance metrics like precision, recall, and F1-score, with average values of 91%, 88%, and
89%, respectively.

Perters et al. [10] introduced Neural nets framework for geophysicists wherein they can perform
modeling and inversion. Further, they described comparisons of DNN and other geophysical inverse
problems. It also includes demonstration to explain their helpfulness in problem solving of lithology,
interpolation between wells, horizon tracing, and separation of seismic images.

Ma et al. [11] conducted an intense study of around 200 recent publications on applications of Deep
learning algorithms in remote sensing image analysis. Their study investigated the meta-analysis in the
beginning for analyzing the status of remote sensing of targets and later modeling, image spatial
resolution, area type and accuracy of classification was accomplished by the application of Deep learning
methods. In addition, the utilization of Deep learning in image combination, image registration, scene
sorting, object recognition, land use and land cover classification, segmentation, and object analysis
were reviewed.
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Zeng et al. [12], demonstrated the benefits of CNN for classification to define salt body with high
precision. For accurate prediction, they have combined Exponential Linear Units, activation function, the
Lovasz-Softmax loss function, and stratified K-fold cross-validation in their research. Based on the
literature review and due to the promising features of DNN, we chose DNN as a model for our proposed
method as shown in the next sections.

3 Design

In this paper, a method based on DNNs is proposed to detect channels in 2D seismic data. Channels can
be characterized as having unique spatial signatures and long axis direction extension resulting in local
linearity, which makes it a bit easier to be detected. The DNN consists of three convolution layers, every
one of which is followed by a rectified linear unit (ReLU) layer for nonlinear activation. A ReLU layer
accomplishes a threshold operation on each and every parameter of the input value and sets negative
values to zero [13]. The ReLU function is shown as Eq. (1):

f xð Þ ¼ 0 for x, 0
x for x � 0:

�
(1)

Two max pooling layers are sandwiched between the convolution layers to improve the computational
time required to train. A max pooling layer performs a down-sampling operation by dividing the input into
rectangular pooling regions and computing the maximum value in each region [14]. It also has a fully
connected layer through which the learning process takes place, as shown in Fig. 1. The fully connected
layer has a dropout layer to minimize the effect of overfitting while training the model after the
convolution process. Finally, in the output layer, a Softmax activation function classifies the patches into
channel or non-channel patches. It is the output unit activation function after the last fully connected
layer for multiclass classification problems [15]. A Softmax function in use by the Softmax layer can be
expressed as shown in Eq. (2):

f xið Þ ¼ exiPN
j¼1 e

xj
; (2)

where xi is the ith dimension output and N is the number of classes [16]. Layers used in the DNN are
described in Tab. 1.

The proposed DNN has 16 layers, including the input and output layers as shown in Fig. 1. The layers
are divided into three parts: input layer, middle layers or hidden layers, and output layer. The input layer takes
grayscale images with dimensions 23 × 23. The dimensions are set to this specific value because of the fixed

Figure 1: DNN architecture
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size of the patches. The middle layers have three convolution layers with a batch normalization layer and
ReLU activation layers. The first convolution layer applies sliding convolutional filters to the input with
eight filters of size 3 × 3 and stride 1. Since this was the smallest, we could go to detect a channel’s
features in a given area of the picture we went by 3 × 3 size filter and a stride of 1 to to not miss any
feature from the image’s patches. The eight filters will extract the channel features from the patched
images that is later fed to the network. A batch normalization layer is used after it to normalize each
input channel across a mini batch. After the normalization and activation layers, a max pooling layer is
added to decrease the computational power required to process the data through reducing dimensionality
and extracting dominant features. The layer has a size of 2 × 2 and stride 2. The second convolution
layer applies sliding convolutional filters to the input with 16 filters of size 3 × 3 and stride 1 as well to
extract the features from the channel patches and non-channel patches. A batch normalization layer,
ReLU activation layer, and max pooling layer are added after the convolution layer like for the first
convolution layer. The third convolution layer applies sliding convolutional filters to the input with
32 filters of size 3 × 3 and stride 1, followed by a batch normalization layer and ReLU layer for feature
extraction. After the convolution layers, a dropout layer is added before the fully connected layer. The
dropout layer randomly sets input elements to zero and is used to prevent overfitting during the training
process in the fully connected layer. The fully connected layer has an output size of 2 (i.e., channel or
non-channel). The last layer of the DNN is the output layer, which computes the cross-entropy loss with
mutually exclusive classes, which then classifies a patch as channel or non-channel.

Table 1: Deep neural network layer details

Layer Name Description

Image input layer An input layer that accepts images of size 23 × 23 pixels applying normalization on the
input data.

Convolution
layer 1

A 2D convolutional layer that applies sliding convolutional filters using eight filters of
size 3 × 3 and a stride of 1

Normalization
layer 1

Normalizes each input channel across a mini batch

ReLU layer 1 A rectified linear unit (ReLU) layer that activates after receiving inputs from the first
convolution layer

Max pooling
layer 1

A max pooling layer to reduce the dimensionality of the matrix with a pool size of 2 ×
2 and a stride of 2

Convolution
layer 2

A 2D convolutional layer that applies sliding convolutional filters with 16 filters of size
3 × 3 and a stride of 1

Normalization
layer 2

Normalizes each input channel across a mini batch

ReLU layer 2 A ReLU layer that activates after receiving inputs from the second convolution layer

Max pooling
layer 2

A max pooling layer to reduce the dimensionality of the matrix with a pool size of 2 ×
2 and a stride of 2

Convolution
layer 3

A 2D convolutional layer that applies sliding convolutional filters with 32 filters of size
3 × 3 and a stride of 1

Normalization
layer 3

A batch normalization layer that normalizes each input channel across a mini batch

(Continued)
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4 Field Data Example

The implementation of the proposed method comprises three stages: (1) A patching process, in which
the images are divided into patches; (2) A training process, in which the patches are used to train the
developed DNNs; and (3) An output process, in which the trained model is used to trace the channel on a
given 2D seismic image. All the experiments were carried out in MATLAB 2018a. The overall
methodology is depicted in Fig. 2.

4.1 Data Set

The sample dataset is a 3D seismic image cube that consists of 75 depth slices. Some of the slices contain
no channels or unclear channels and are labeled as low-quality slices, while the slices that have clear channels
in them are labeled as high-quality slices. A total of four high-quality slices are chosen to train the network, as
shown in Tab. 2, with the number of channel and non-channel patches in them after the patching process.

Table 1 (continued).

Layer Name Description

ReLU layer 3 A ReLU layer that activates after receiving inputs from the third convolution layer

Dropout layer A dropout layer that randomly sets inputs of the fully connected layer to zero to avoid
overfitting; the dropout rate is set to 50%

Fully connected
layer

A fully connected layer with two nodes as output for channel and non-channel

Softmax layer A Softmax layer that applies a Softmax function to classify the input received from the
fully connected layer

Class output
layer

A classification layer that computes the cross-entropy loss with mutually exclusive
classes; channel and non-channel classes in this network

Figure 2: Overall architecture of the implementation
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4.2 Patching Process

Each slice needs to be divided into 23 × 23-pixel patches, which are then fed to the DNN to be trained.
The total number of patches for all four images is 1,326,384. Before the patching begins, padding is added to
both the channel image and the ground truth image. Padding ensures that none of the pixels are lost, thus
saving all the features that are present in the image to be recognized by the network. Fig. 3 illustrates the
patching process. The patching process works by dividing the ground truth image and the real image into
patches and then checking each of the ground truth patch’s pixel values using a zero-centering technique.
If the pixel value is found to be less than the assigned threshold value, it is classified as a patch with
channels, and the channel image’s patch matching with that of the ground truth’s patch is added to the
“channel” folder; otherwise, it is added to the “non-channel” folder.

4.3 Training Process

At the completion of the patching process, the patches are used as input to the DNN’s input layer. The
input layer has dimensions of 23 × 23 × 1, as the patches are of these exact dimensions. Once the training
process begins, the weights are adjusted to differentiate the channel patches from the ones that do not have
channels to train the proposed model. The training process using all the patches takes approximately 3 days
on a good PC.

4.4 Output Process

The output process works by patching the new channel image into the specified 23 × 23-pixel patches.
Each patch is then passed through the trained network to classify it as a channel or non-channel patch. If the
network identifies the patch as a channel patch, it changes the pixel value of that patch’s location on the
output image to 0, resulting in a black spot, and if the patch is not a channel patch, the pixel value is set
to 1, resulting in a white spot on the output image. The process is repeated until the whole image is
traversed using the 23 × 23-pixel patch. Thus, an output image is obtained showing traces of channels.

Table 2: Patch count

Total Samples Patch Count Channel Patch Count Non-channel Patch Count

4 1,326,384 155,997 1,170,387

Figure 3: Patching process
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5 Results and Discussion

The network gave a maximum accuracy of 84.6% in the training phase and a maximum accuracy of 90%
in the testing phase. The accuracy obtained in training is after experimenting with different parameters and
training options. This includes experimenting the size of the filters, the number of the filters, batches sizes,
and learning rates parameters. The confusion matrix from the training phase is shown in Fig. 4 below. It
shows all the patches that were classified correctly and incorrectly including the true positives and
negatives during the training phase. The model classified 2.1% of the total dataset as channel patches and
82.5% of the dataset as non-channel patches. Due to the similar features in some patches, the model also
misclassified 14.7% of the non-channel patches as channel patches but only 0.7% of the channel patches
were misclassified as non-channel patches due to channel patches having distinct features.

The network model gives better accuracy in training using LearnRateSchedule as piecewise in the
training options but gives bad results during the testing phase. On the other hand, using
LearnRateSchedule as constant gives lesser accuracy compared to piecewise but is more accurate in the
testing phase. Fig. 5 illustrates in detail the training and testing results.

The trained network performs well and output satisfied results, as depicted in Figs. 6–8. The network
traced channel patches better than the provided ground truth images for each channel image. For
example, the output on the right in Fig. 6 shows the detected channels related to 181th Seismic Slice
presented on the left side of the same figure, and clearly it highlights the channel as expected with
minimum distortion and noise. The obtained output in Fig. 6 has been shown to an expert at ARAMCO
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Figure 4: Confusion Matrix for Training Phase
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Figure 5: Constant and piecewise training option results for training and testing phases
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resulting in high satisfaction. Similarly, Figs. 7 and 8 shows the channel images used for testing, and its
corresponding output that show the channels detected using the developed DNN with the channels
obtained and marked with arrows for comparison purposes.

It can be clearly seen from the above charts that the piecewise training option gave promising results in
the training results but failed to give a much better result during testing. In contrast, the constant training
option gave good accuracy during training and even better accuracy during the testing phase. The

Figure 6: 181th seismic slice (left) and channels detected (right) using the developed DNN

Figure 7: 189th seismic slice (left) and channels detected (right) using the developed DNN

Figure 8: Seismic slice from a different dataset (left) and channels detected on the slice (right) using the
developed DNN
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constant training option took considerably more time to train the network as compared to the piecewise
option but gave a much promising result at the end.

6 Conclusion

A deep learning–based channel detection algorithm was proposed, implemented, and tested on 2D field
seismic data. The network training process took almost 3 days and gave good results using the constant
training option compared to the piecewise training option. The model trained using constant training gave
exceptionally good results in the testing phase. The images tested using the trained model gave better
results than the ground truth image provided to train the network. The testing phase also showed an
increase of 9% in accuracy using the constant training option, thus giving the clear channels on the tested
images shown in the results.
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