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Abstract: Smart Urbanization has increased tremendously over the last few years,
and this has exacerbated problems in all areas of life, especially in the energy sec-
tor. The Internet of Things (IoT) is providing effective solutions in gas distribu-
tion, transmission and billing through very sophisticated sensory devices and
software. Billions of heterogeneous devices link to each other in smart urbaniza-
tion, and this has led to the Semantic interoperability (SI) problem between the
connected devices. In the energy field, such as electricity and gas, several devices
are interlinked. These devices are competent for their specific operational role but
unable to communicate across the operational units as required for accounting and
monitoring of gas losses due to heterogeneity in device communication standards.
To overcome this problem, we have proposed a model and ontology by applying
semantic web technologies and cloud storage to address the tracking of customers
to observe Unaccounted for gas (UFG) in the gas domain of energy. Semantiza-
tion is achieved by replicating heterogeneous devices Sensor Model Language
(SenML) data into Resource description framework (RDF) without human inter-
ventions. As semantic interoperability is used to efficiently and meaningfully
share the information from one location to another. Therefore, the proposed ontol-
ogy and model focus more efficiently on customer tracking, forecasting, and mon-
itoring to detect UFG in gas networks. This also helps to save Gas Companies
from financial gas losses.

Keywords: Internet of Things; semantic interoperability; unaccounted for gas;
ontology; resource description framework; sensor markup language

1 Introduction

In the energy domain management, theft of gas is a big issue. The difference between total gas volume
for distribution or transmission and the billed volume of gas is known as UFG [1]. In the IoT, SI, with the
help of RDF, can provide benefits to gas companies by using smart devices. In natural gas management, SI
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can help to monitor usage remotely to reduce the UFG in respect of tampering of measurement devices,
leakage, and pilferage of gas.

The IoT is a dominant technology field today [2]. It covers almost all communication fields of computers
[3]. IoT’s most influential work is its application to several different areas [4], such as smart cities [5,6], e-
health [7,8], smart environment [9,10], smart home [11], and industry 4.0 [12]. These days severe challenge
in IoT is the lack of interoperability due to heterogeneous devices and protocols [13,14]. The main objective
of this paper is the interoperability of data to empower systems by a knowledge base system. Several types of
researches are in progress that focuses on interoperability methods that can empower machines for a better
understanding of IoT data. In 1997, the C4ISR architecture working group developed a Levels of information
systems interoperability (LISI) technique to promote the interoperability of enterprises [15]. The LISI
program aims to get such a competence system for the US Department of defense (DoD), which can
recognize interoperability needs and select practical business interoperability solutions. The open internet
consortium (OIC) focuses on IoT interoperability to detect specifications, connect trillions of smart
objects, and scalability problems [16]. The grid-wise architecture council (GWAC) aims to allow
interoperability between objects interacting with the electric power system.

GWAC built a context-setting system to define interoperability problems [17]. Interoperability
technologies should help customers continue to work in mixed environments shortly. One of the most
prominent approach to add semantics to data is known as an extension of the World wide web (WWW)
[18], it uses the semantic web to overcome the segregation issues among heterogeneous information and
gives a better perceptive by adding up semantization. RDF is generally a semantic web framework that
can help to relate things significantly with the aid of triple statements (subject, predicate, and object) [19].
In IoT, a statement may define an IoT node and its sensed properties, such as temperature [20]. SenML is
an emerging standard for measuring sensors and describing interoperability parameters on the system
[21]. It helps the interoperability between IoT devices from different vendors in Javascript object notation
(JSON) and powerful extended markup language (XML) interchange (EXI) format. Small computers also
support lightweight formats.

This paper addresses the problem of striking a balance within semantic and SenML to ease
interoperability among sensors. Adding a new system to the IoT network will be difficult without
addressing semantic uncertainty [16]. The research has handled the challenge of bridging the problems
between SI by converting Sensors data (SenML data) into the standardized semantic model of RDF.
Incorporating SenML into RDF will ease smart IoT applications. For instance, physical as well as logical
sensor data could be processed and translated into actionable information. It would offer people a deeper
understanding of our physical world and would allow us to develop more value-added products and services.

Our key contributions are:

1. To achieve interoperability by applying semantic web technology to IoT and by translating primary
SenML data to RDF. With this method, existing SenML-enabled devices can take advantage without
the further extra complexity of the benefits offered by knowledge-based systems. The research
proposes to use SenML-enabled devices as such, without requiring any additional software
libraries or processors.

2. The utility of the method is demonstrated by an energy-based IoT system, including smart meter
sensors and a knowledge-based portion.

Over the past few years, urbanization has increased dramatically. About half of the world’s population
resides in urban areas. The research predicts that the residents of the city will reach about 70% of the total by
2050. There will be 27 jumbo cities, with over 10 million people due to this magnificent growth [22]. This
congestion of populations creates problems in terms of government, economic development, environmental
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sustainability, life excellence, transport, power usage, etc. Smart approaches are therefore needed to fix these
obstacles. SI is used to share data from one point to another in a secure and meaningful way [22].

Nowadays, companies use many technologies to defend energy domain systems for tracking and
assessing pilferage [22,23]. Various manufacturers employ IoT devices in the natural gas domain to help
gas companies and users remotely. The problem of UFG in natural gas marketing is prevailing since the
start of the 20th century. Though gas companies could not avoid entirely so, current efforts are getting
importance to control it for exact technical, environmental, social, operational, and economic aspects. In
this background, the study on UFG decline is initiated with due attention to the current global situation so
that improvement of knowledge and application of the same could be made concerning technology,
management strategy, cost efficiency, and trends to assist in alleviating the condition. Researchers have
worked on interoperability issues by linking them to IoT [24–26]. Gas smart meters are from different
vendors but mostly work with the help of mobile in excel file or send measurements wirelessly to an
intelligent gateway in SenML format or other formats. At this point, the gas companies require the
interoperability system for the automated knowledge-based system. In this paper, SenML measurements
transform into RDF statements with the help of ontology to achieve interoperability. Gas networks use
semantic web technologies for tracking and monitoring consumer activities, and to determine UFG to
save the gas companies from financial gas losses remotely.

An IoT based Natural gas management SI model (NGM-SIM) has been proposed in this paper which
helps to give semantically meaning with the help of triples to the data among heterogeneous IoT devices
in the energy domain. Natural gas is discussed for heterogeneous IoT devices to help gas companies
monitor tracking for UFG, and develop consumer’s profile for prediction of their gas usage. To dig out
meaningful communication and to find this lightweight model information between Gas Company and
users is semantically annotated and proposed with the help of RDF.

The remainder of the article on SI is organized as follows. Section 2 allows an evaluation of applicable,
related work in the core research topics underpinning the UFG in the realm of natural gas. Section 3
introduces the key design thoughts to develop the NGM-SIM model to monitor UFG in the natural gas
domain. Section 4 focuses on the implementation details to create the ontology to reduce the UFG, the
storage, the distribution of semantic data and findings. Finally, Section 5 concludes the research and
addresses briefly some open issues left as future work.

2 Related Work

Early studies concentrate on gas domain problems, IoT applications, SI needs in different fields, and the
introduction of RDF semantic technology. The application of IoT and semantic technologies in the energy
sector for forecasting and tracking activities is still in its early stages. As a consequence, the relevant
segment is divided into four subsections. The first section discusses some of the published work in the
gas domain concerning IoT, and interoperability using RDF and SenML. The second section describes
the use of RDF and SenML in interoperability in different fields of life. The third section is on ontology,
while the fourth section discusses cloud computing.

2.1 Natural Gas Management

Natural gas losses are observed in all states of the world and in this regard “Washington, US department
of energy” records state-wise natural gas annual supply & disposition. UFG losses among the states are from
0.6% to 5.8% [23]. The natural gas balancing item indicates the difference between the number of natural gas
supply components and the sum of natural gas disposition components. Each state calculates it as a result of a
correlation between total recorded supply and total recorded disposition [23].
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Xu [27] offers an idea of the smart—city concept in which every house is equipped with smart meters
that transmit its readings to the home gateway, which in turn information to the community center in a secure
and privacy-preserving manner via the community network. It was a floating concept, and hence smart
metering started. In a report published in June 2014 entitled “benchmarking smart metering
implementation in the EU-27,” the European Commission (EC) found that only 16 nations within the EU
block expected to deploy smart meters of electricity by 2020, while the remainder had not proved it. In
the meantime, twelve nations have agreed that these smart meters cannot be justified and that only five of
the twenty-seven nations (Ireland, Italy, Luxembourg, the Netherlands, and the UK) are moving them
forward by 2020. Both meters of electricity and gas have vital criteria for measuring success, and the EC
study also showed a broad range of values among member states [28].

Gas leakages, measurement errors, and suspected meters or theft are factors that contribute to UFG
losses [21]. UFG usually varies from 0.2% to 0.5% in Italian networks. UFG’s average annual price in
the US over the past ten years is 0.6 percent. The ruling body for defining the UFG benchmark is the oil
and gas regulatory authority (OGRA) in Pakistan. Unlike the 2% international benchmark, the UFG
benchmark for Fiscal year (FY) 2015–16 identified by OGRA was 4.5%. However, Sui northern gas
pipeline limited (SNGPL) actual UFG for FY 2015–16 was 10.97%, resulting in volumetric 4.28 BCF
and a financial loss of 2.49 trillion Pakistan Rupees. The values above show the importance of addressing
the issue of managing UFG losses in SNGPL due to a substantial divergence from local and international
standards. This analysis, therefore, focuses on assessing UFG in gas networks [29]. Litvinov et al. [30]
Introduces new data management and analytical technologies in the oil and gas enterprise business
processes, describes the technological characteristics of current Radio-frequency identification (RFID)
systems, RFID implementation guidelines, and some applications in oil and gas supply chains. Tab. 1
shows a summary of year-wise related work progress in gas-related management in the field of IoT and to
date, there is no research work on interoperability in natural gas management.

2.2 Interoperability

In different fields of life, several proposed ways assist in interoperability. One of the suggested solutions
is semantic web interoperability technology in various information systems running via sensors and sensing
systems. Such technologies operate alone or with semantic sensor web [31] to combine, manage, and request
information from sensors. World wide web consortium (W3C) has developed these technologies. Its methods
for linking different resources on the internet are RDF, RDF/XML, Rdf schema (RDFs), and Ontology web
language (OWL). The RDF [32] semantic web technology is a language that helps to provide explanations of
the web’s tools. It is the most commonly used data model to describe semantic sensor data using triples.

Table 1: Summary of year-wise related work progress in gas related management in the field of IoT

Year Application Role in IoT Interoperability

2011 [23] Natural gas losses state
wise

The step towards IoT. Just identification of UFG
in different states.

No

2011 [27] Smart metering idea Concept towards IoT in gas domain No

2014 [28] A network of smart meter Spreading smart meters in world No

2018 [29] Measurement of UFG UFG measured by changing the calculation
method

No

2019 [30] New technologies in oil
and gas

Use of RFID for the process of accounting for
material assets

No
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Triples are the format consisting of subject, property, object, and various syntaxes that help to write and
serialize data in RDF [33]. Smart home plus smart environments are its examples. Zhang et al. [34]
focused primarily on converting sensor data to RDF and Satterfield et al. [35] worked on smart home and
used RDF triples for sensor data throughout systems, as shown in Tab. 2.

SenML lets IoT devices link to the internet at the level of data exchange. Resource-limited device
develops SenML for its explanation uses a single base object composed mainly of an array of entries as
well as attributes. Furthermore, all submissions include the sensor parameter name and parameters such
as the measurement time and current value [36].

Tab. 3 shows the use of SenML with RDF for SI has been achieved successfully in the submarine system
[36] and the smart campus system [37]. Tab. 4 shows the features of RDF, SenML, and advantages of
transformation from SenML to RDF. The resource-limited device uses the SenML prototype by extending
the custom attributes, such as using a Resource type (RT) attribute. These features include semantic
information, whereas preserving descriptions of SenML easy. The key approach is to allow a mapping of
the RDF model, i.e., a marked, directed graph, between SenML components. First, SenML does not use
URIs to about the same degree as RDF; second, URIs are a simple component of the RDF key; the non-
literal object of information has its own URI. The conversion allows IoT sensors enabled by SenML to be
attached to information-based systems with reduced code, as shown in Tab. 5.

Table 2: Application of interoperability using RDF

Applications of interoperability using RDF

Smart home [35] Smart environments [34]

Table 3: RDF and SenML applications for interoperability

RDF and SenML application for interoperability

Sub marine system [36]
Smart campus [37]

Table 4: Features of RDF, SenML, and advantages of transforming SenML to RDF

RDF SenML Transforming SenML to RDF
advantages.

Data
sources

Web resources. Sensors. Sensors data to web resources.

Data
formats

Semantic
metadata.

Sensor measurements in small
packets on networks from
constrained devices.

Facilitates intelligent IoT functions
including sensor data rationing and
device-to-device SI.

Language XML. XML. Link sensors to knowledge-based
systems with the least IoT device
modifications.

Resources
refer to
web

Resources
identified by
URI on the web.

URI does not identify resources
on the web.

It leads to SenML data to connect with
the web.
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The change allows the connection of IoT sensors enabled by SenML to information-based systems with
comparatively low code conversions. Sensors might use SenML deprived of certain extra computing to ready
the data, and a quick analyzing element for conversion SenML into RDF is part of an information-based
system. The conversion enables IoT sensors allowed by SenML to access knowledge-based systems with
reduced modifications. Sensors can use SenML to prepare the data without any additional computation
and uses a simple parsing feature for translating SenML into RDF on a knowledge-based framework.
This part may be physically installed on an IoT systems gateway or server machine. To implement this,
an algorithm must have the following steps for transforming SenML to RDF [36–38].

Step 1. Transform SenML elements, usually URIs and literals, into their corresponding unique defined
elements. The names of elements should be concatenated when it specifies any prefix or base name in the
SenML text. It affirms that with comprehensive demonstrations, resources, properties, types, and
preset values.

Step 2. After transforming SenML into URIs, rearrange it into a set of RDF triples by using RDF
containers, RDF Tables, etc., if required.

Step 3. Serialise triples of RDF for presentations

It is common to transform SenML description into multiple RDF statements for assigning the URIs to
unambiguous identifiers of SenML. It ensures that full representations of resources as well as properties their
types, and given values. Resource type is an obligatory element of a SenML description. It is for the reason
that resource type has a significant role when SenML descriptions alter into RDF statements. It specifies the
type of device that produces the data, that is, the type of subject in the RDF statement. It can be mapped to
RDF: type, and it will be connected to a class name when applying ontology logic to sensor data in an
ontology. The namespace for IoT applications and Sensors explanation handles sensor data. RDF has a
much greater expressive potential than SenML, but interpreting action details when using the full power
of RDF is also difficult for several resource-constrained IoT tools [36–38].

Table 5: Conversion rules from SenML Code to RDF code [36–38]

SenML elements Types in RDF JSON shorthands

Base name URI (Subject) bn

Base time xsd:dateTime bt

Base units xsd:int bu

Version xsd:int ver

Measurement or parameters (RDF Triples) e

Name URI n

Units xsd:string u

Value xsd:float v

String svxsd:string sv

Boolean xsd:boolean bv

Value xsd:float s

Time xsd:dateTime t

Update time xsd:dateTime ut
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2.3 Ontology

Ontology is a set of objects and relationships which can define and represent a field of concern in IoT.
They reflect an abstraction infrastructure aimed at hiding the heterogeneity of IoT entities, serving as an
intermediary between IoT service providers and consumers, and facilitating their semantic matchmaking
[39]. Though, it’s challenging to define the abstraction level needed for an IoT ontology. There are
several initiatives nowadays that define the models that represent IoT devices and the environment around
them. Nonetheless, finding one that satisfies all the criteria is always difficult. Ontology attains Syntactic
and SI among platforms [39]. In the context of IoT, several ontologies such as the W3C Semantic sensor
network (SSN), IoT-Ontology, SAREF and open IoT have been proposed [39].

2.4 Cloud Services

Cloud services are still in their early days in SI. Here are some of the prominent achievements discussed.
Doukas et al. [25] demonstrated in 2010 that together mobile application and cloud computing would allow
better sharing, storage, upgrading, and retrieval of electronic healthcare data. This concept was introduced as
a mobile application in android format. The cloud service Amazon S3 has been used to test the framework
created. All work in [36,37] transforms SenML to RDF using Tab. 5. On the bases of these projects, an
ontology for a specific solution is a technical task. In the gas domain, a specific ontology tracks the
consumer using SenML and RDF.

To achieve intelligent interoperability [40] computational intelligence approaches like the Fuzzy system
[41], Neural Network [42], DELM [42,43] and SVM [44] are robust candidate solutions in the field of
semantic web technologies and smart city [43].

3 Methodology

Fig. 1 shows the proposed RDF based model, which is also a step forward towards smart solutions, in the
energy domain proposing an example use case with a prototype implementation. It is named as the natural
gas management SI model (NGM-SIM). Its primary purpose is to track and monitor consumers for
determining the difference between actual consumption patterns against predicted patterns based on
consumer’s profile to determine UFG in gas networks and save the gas companies from gas losses.
Semantics and ontological connections annotate the assimilated data to make them machine-
comprehensible and cross-system reusable.

SI is the conversation between different types of devices of information with meaningful and
precise meanings. Here for SI, the main focus is on tracking and monitoring of problems related to
energy domain gas leakages, measurement errors, and suspected meters or theft, concerning gas company
rules. There are three main parts of the NGM-SIM model (1) User interface (UI), (2) SI, and (3) Cloud
services (CS).

3.1 User Interface

In the gas domain user interface is consisted of gas companies and users of the company. The users of the
company are 1. Industry consumers, 2. Commercial consumers, 3. Special domestic consumers 4.
Transmission consumers, and 5. Internal users of the gas company. The gas company is itself a consumer
of natural gas reservoirs; therefore, the user interface shows it. In this study, only industry consumers are
significant because significant UFG occurs in the industry in the shape of gas theft or leakage of gas. In
UI, both gas companies and consumers communicate with IoT devices. In a gas company, gas main
server (GMS) keeps a record of all incoming gas data from reservoirs of gas and outgoing data to the
consumers. It cannot calculate UFG on its own due to different protocols and heterogeneous smart
devices. GMS such as sensors and UI sends data directly to SI.

CSSE, 2021, vol.36, no.1 47



3.2 Semantic Interoperability

In the SI phase, there are many data producers like sensors, observing systems, data aggregators, and
data archiver. Here sensors are the smart meters of consumers and GMS of the company and intermediate
sensor to control the gas flows like Town border station (TBS). In SI data producers data is collected
through a secure communications system via SMS within the form of SenML, i.e., every smart device
has some id and properties. SI phase first collects data and then convert it into RDF based on the
following ontology using Tab. 5.

Ontology for UFG depends on the scenario. The current scenario is that the company supplies gas to
industrial, commercial, domestic, special domestic, transmission consumers, and internal departments of
the gas company shown in Fig. 1 and the main issues of UFG occur in the industry department. Gas
wells provide gas to GMS, and it further provides gas to the industrial area as shown in Fig. 2. The GMS
has all input volumes that are sent to the industry but still, losses occur because there is no correlation of
billing system and if the input of gas from GMS is 100 units then billing should be of 100 units instead
of 80 or 50 units.

New ontology to reduce gas theft is as follows:

� There are smart meters on Town Border Station (TBS).

� There are also smart meters on consumer sites.

� GMS has already a smart system which has all record of input of gas from main lines to TBS and the
consumers. As the primary purpose of this ontology is to find that the consumer does not temper in
meters or where leakage occurs, so the second step is followed.

� Smart meters send data in the form of SenML using a Wi-Fi device from Town Border Station (TBS),
and from consumers, bill data is collected by using SIMs or USB or manually as shown in Fig. 5.

Figure 1: RDF based model natural gas management SI (NGM-SIM)
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� The new and novel step in this ontology is the conversion of smart meters data into the RDF form for
the SI. Firstly, SenML converts data to RDF according to Tab. 5, which is known as semantically
annotated data, as shown in Figs. 1 and 3.

� That data is stored in the cloud and checked from the UFG scenario, by data correlation of released
gas volume from GMS and used gas consumption of consumers. In current systems, there is no real-
time correlation between the supplied volume of gas and billed volume. To overcome this issue, all
data is gathered in a database. The UFG computation order is now reversed, that is from users billing
to the GMS instead of GMS to users.

If at a certain level of TBS, the value of input and output does not match then the billing and history of
consumers of that area are reconciled to check the discrepancy, in this whole procedure only devices work
with RDF, which is a machine-understandable format. It is recommended that there should be one TBS for a
small group of industries. For suspected industries, another smart meter may be installed, which should not
be in reach of the consumer.

Data readings of the sensor’s

{“e”:[{ “n”:“temperature”,“u”:“cel”,“v”:22}], {“e”:[{ “n”:“unit consumption”,“u”:“UC”,“v”:units}],

Consumer 1 unit consumption reading by smart meter consumer 1 unit consumption reading by
smart meter

“bn”:“http://iot.ga/o#temsensor012”/ “bn”:“http://iot.ga/o#industryabc”/

Figure 2: Input and output of gas from gas main server (GMS)

RDF Data

GMS  Industrial Area 
TBS

Smart Meters
of consumers

SenML Data

Figure 3: Gas flow checking with NGM-SIM
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“rt”:“gassensingnode”“rt”:

“pr”:“http://iot.ga/o#”

This smart sensor data is converted into RDF/XML using Tab. 5.

Fig. 4 shows the full industrial area graph showing how billing data is moving from industry to GMS
with the help of the protege graph. SPARQL, W3C’s proposed structured query language, is designed to
query RDF data. Because SPARQL queries appear as query graphs, a SPARQL question can be answered
by matching the graph format across RDF graphs.

All specific consumer information is semantically annotated with the RDF graph to supply matching
information that excludes the hardware specifics of the vendors. Records of specific users from the RDF

Figure 4: Reverse order of gas flow checking via NGM-SIM shown in the form of a graph in protégé

Figure 5: Algorithm to Calculate the Consumers Data on TBS

Step 1:

Step 2:

Step 3:

Begin

(a) Selection of Profile checking of user 1 to user n

(a) Initialization of Unit Consumption at TBS

(b) Total number of consumers

(a) User 1 unit consumption reading by smart meter

(b) User n unit consumption reading by smart meter

If consumption billing is less

Update the users checking profile

Step 4:

Evaluate the profiles

Update evaluation record

Step 5:

Match record with incoming units of GMS

Step 6:

Repeat Step 2 for N TBS

Step 7:

End

Step 8:

Step 9:

Step 10:

Figure 5: Algorithm to calculate the consumers data on TBS
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graph can extract using SPARQL request in a text format. The following query helps to extract a record from
RDF data

select? variable a? variable b? solution variable

where

{

?variable 1? solution Variable a ? variable b.

}

In semantization, after data collection, ontology converts SenML to RDF Semantic Engine. In SI data is
visualized using the GMS portal.

3.3 Cloud Services

All user’s data, ontology, and required operations data is a store with the help of cloud services. Cloud
technology enables information sharing with authorized company’s employees. Cloud storage offers easy
and efficient access to stored data on-demand. Thus gradation of the digital infrastructure occurs with
minimal interruption of operation. The ontology services can exist anywhere and anywhere using mobile
and cloud computing together. Cloud computing has almost infinite storage space.

3.4 GMS Units Calculation with NGMSIM

In the NGMSIM system, the following algorithm measures the user unit values, as shown in Fig. 5.

Let “£1” is TBS1, “£2” TBS2, and “£N” is TBS N having users “a” is as follows:

N ¼
XN

a¼1 i

So, at

GMS = £1 + £2 … + £N

if £ unit consumption does not match the GMS units, then the profile of users from the cloud will be checked
by GMS automatically. In case GMS billing <£1 + £2 + : : : + £N ontology is shown in Fig. 5.

That is the calculation of units is done at individual TBS. Let “uc” is user consumption then “£1” total
consumption is

1 ¼
XN

a¼1
uca;1 þ uca;2 . . .þ uca;n

� �þ c (2)

Here g is a constant value of UFG in the form of line losses of gas.

for £2 and £N; it is as follows:

2 ¼
XN

a¼1
uca;1 þ uca;2 . . .þ uca;n

� �þ c (3)

N ¼
XN

a¼1
uca;1 þ uca;2 . . .þ uca;n

� �þ c (4)

After simplification the above equations, total consumption is calculated and finds the discrepancy at the
root level.

£

£

£

£

£
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4 Implementation

For experimental setup and performance analysis of the proposed system, synthetic data are generated in
collaboration with the University of Engineering and Technology (UET) Lahore in “Lahore Industrial Area”
TBS. This TBS connects to the four industries. AL Khwarizmi department provided smart meters and solar
panels. This solar panel provided power to the Wi-Fi device and smart meter attached to the TBS. Smart
meters are also installed in four industries. The experimental setup of the proposed system consists of
four parts for proper understanding:

• Creation of synthetic data.

• Semantization.

• Performance analysis of the proposed system on the cloud.

4.1 Creation of Synthetic Data

ATBS under which four industries are working is shown in Fig. 6. This TBS is different from other TBS
as it has Wi-Fi, smart meter and solar panel for smart working.

The TBS gets smart meter data from industries and saves it on the cloud after semantization to calculate
UFG with the help of the billing department procedure. According to ontology, first units are calculated which
are received by the TBS from GMS. Tab. 7 shows the gas consumption week wise in four industries. After the
creation of the synthetic data semantization process starts.

Figure 6: TBS of gas supply to an industrial area with solar panel and smart devices

Table 6: Gas units record from gas main sever to TBS of the industrial area

Month Initial readings
of TBS

Final readings
of TBS

TBS vol. (Cu.Ft)

Jan-19 166537625 178559108 12021483

Feb-19 178559108 190852968 12293860

Mar-19 190852968 205869605 15016637

Apr-19 205869605 216258851 10389246

May-19 216258851 233079350 16820499

Jun-19 233079350 255605911 22526561

Jul-19 255605911 278557850 22951939
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4.2 Semantization

Data coming from Sensor’s

{“e”:[{ “n”:“temperature”,“u”:“cel”,“v”:22}], {“e”:[{ “n”:“unit consumption”,“u”:“UC”,“v”:10895}],

Consumer 1 unit consumption reading by smart meter Consumer 1 unit consumption reading by
smart meter

“bn”:“http://iot.ga/o#temSensor012”/ “bn”:“http://iot.ga/o#Industryabc”/

“rt”:“GasSensingNode”“rt”:

“pr”:“http://iot.ga/o#”

Example of a sensor’s SenML data

In the above example, a smart meter sensor gives SenML data, this displays device ID is industry abc
(with “bn”) and gas sensing node (with “rt”) is the resource type. A prefix component (“pr”: “http:/iot.ga/o#”)
establishes the namespace of this sensor to solve any possible conflict in global IoT systems.

Representation of SenML data by RDF/XML

<rdf:RDFxml:base=“http://iot.ga/o”xmlns=“http://iot.ga/o#”

xmlns:owl=http://www.w3.org/2002/07/owl#

xmlns:rdf=“http://www.w3.org/1999/02/22-rdf-syntax-ns#”

xmlns:xml=“http://www.w3.org/XML/1998/namespace”

xmlns:xsd=“http://www.w3.org/2001/XMLSchema#”

xmlns:rdfs=“http://www.w3.org/2000/01/rdf-schema#”>

<i:GasINdrdf:ID=“Industryabc 2”/>

<i:value>10895.0309</i:value>

<iotterms:unitsrdf:resource=http://iot.ga/units/cu.ft.>

</i:GasSensingNode>

</rdf:RDF>

Example: Representation of SenML data by RDF/XML

The above shows the RDF/XML representation of SenML into RDF.

Table 7: Consumers week wise smart meters consumption values to TBS

Day Industry1 Industry2 Industry3 Industry4

Monday 10895.0309 21790.06186 0 32685.093

Tuesday 8222.51051 16445.02102 0 24667.532

Wednesday 6132.34949 0 21790.0619 18397.048

Thursday 4537.5921 0 16445.021 13612.776

Friday 3214.78871 0 12264.699 9644.3661

Saturday 0 0 9075.18419 10152.292

Sunday 0 0 6429.57741 10475.483
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4.3 Performance Analysis

The user information is processed via shared cloud storage of Amazons Optimized capacity. The cluster
xlarge helps in the cloud implementation of the proposed device. Administration, audit departments and
government agencies may access this information. One of the essential tasks of the program is to recover
the pattern of users’ use.

The usage time of the gas in the industry can be helpful to find UFG utilizing the information received
from the smart meters RDF code. It helps in gaining consumption patterns that recognize which consumer
uses gas on weekdays, as shown in Fig. 7.

5 Conclusion

In this research paper, the functional interoperability model is introduced for NGM-SIM in the energy
domain. Gas Companies can track their input and output remotely anywhere, without any Vendors
specification limit on devices. RDF was being used to show the valuable information. In this research,
interoperability problem was removed by mapping the generated data set into the database of RDF
graphs. Semantically, the transmitted information was interpreted and annotated. Semantically annotated
information was then transmitted to the Cloud Server where Gas Company’s UFG requirement was
matched. RDF graph depicts the triple server of Gas Company that can be read semantically by using the
SPARQL query. In the future, our proposed model can be used to provide semantic interoperability in
other research areas.
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