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Abstract: Internet traffic encryption is a very common traffic protection method.
Most internet traffic is protected by the encryption protocol called transport layer
security (TLS). Although traffic encryption can ensure the security of communi-
cation, it also enables malware to hide its information and avoid being detected.
At present, most of the malicious traffic detection methods are aimed at the unen-
crypted ones. There are some problems in the detection of encrypted traffic, such
as high false positive rate, difficulty in feature extraction, and insufficient practic-
ability. The accuracy and effectiveness of existing methods need to be improved.
In this paper, we present TLSmell, a framework that conducts malicious
encrypted HTTPs traffic detection with simple connection-specific indicators by
using different classifiers based online training. We perform deep packet analysis
of encrypted traffic through data pre-processing to extract effective features, and
then the online training algorithm is used for training and prediction. Without
decrypting the original traffic, high-precision malicious traffic detection and ana-
lysis are realized, which can guarantee user privacy and communication security.
At the same time, since there is no need to decrypt the traffic in advance, the effi-
ciency of detecting malicious HTTPs traffic will be greatly improved. Combined
with the traditional detection and analysis methods, malicious HTTPs traffic is
screened, and suspicious traffic is further analyzed by the expert through the con-
text of suspicious behaviors, thereby improving the overall performance of mal-
icious encrypted traffic detection.
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1 Introduction

HyperText Transfer Protocol Secure (HTTPs) is a transmission protocol for secure communication
through a computer network. The HTTPs protocol itself still complies with the HTTP protocol standard,
but the content of its data packets is encrypted by SSL/TLS [1]. At present, there are more than
200 malware families that use encrypted communication, accounting for more than 40%, covering almost
all common types, such as Trojan horses, ransomware, infections, and worms, downloaders, among
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which Trojan horses and downloader malware families account for a relatively high proportion [2]. The
encrypted traffic generated by malware can be divided into the following six categories according to
the purpose: C&C direct link, detection of the host network environment, normal communication of the
mother body, hidden transfer of white stations, and worm propagation communication. Therefore,
intelligent analysis of HTTPs traffic generated by malware has attracted a lot of attention recently.

Currently, the detection method for identifying malicious encrypted traffic mainly involves installing an
intercepting agent. This solution deploys a special certificate at the gateway and configures the computers in
the LAN to trust the certificate, so that the HTTPs traffic of all computers in the LAN is decrypted at the
gateway. Then use traditional malicious traffic detection methods to audit the decrypted traffic. If the
audit is passed, the traffic will be re-encrypted and sent to the computers in the domain [3]. Although
traditional traffic auditing methods are relatively simple in technical implementation, there are still major
drawbacks. Deploying interception agents is costly and requires large hardware calculations, at the same
time, a series of rules need to be configured to achieve detection, so the overall flexibility is not enough.

Malicious encrypted traffic is the pain and difficulty of current traffic security detection. How to detect
malicious encrypted traffic without decryption, machine learning (ML) can provide quite an effective
solution. Traditional machine learning relies on training datasets and feature engineering, and various
types of malicious encrypted traffic collected are various and may contain “impurities”. If these data are
not distinguished and directly trained, it will affect the accuracy and false positive rate of model detection [4].

This paper proposes a technical approach to identify the malicious encrypted traffic with simple
connection-specific indicators based on machine learning algorithms. The encrypted traffic is analyzed in-
depth by data pre-processing to obtain three file logs, namely ssl log, connection log, and certificate log.
Further correlation analysis is performed on the three logs to obtain the connection-specific indicators (4-
tuple). The content of the 4-tuple includes the source IP, destination IP, destination port, and protocol.
Then, these 4-tuple are used as units to extract features. Finally, through training and prediction by
model, high-precision malicious traffic detection and analysis is achieved without decrypting the original
traffic. It can ensure the user’s privacy and communication security. The efficiency of HTTPs traffic
detection will be greatly improved. This method can be used as a preliminary to screen the HTTPs
malicious traffic. If suspicious traffic is found, it can be further decrypted and confirmed, and ultimately
improve the efficiency of the overall detection and analysis of malicious encrypted traffic. Our
contributions can be summarized as follows:

� Three kinds of log information are extracted to obtain the connected 4-tuple.By adopting three
different feature selection methods, the most representative features are analyzed, which helps to
achieve better classification results, and reduce the cost of model training, and improve the final
accuracy of the model.

� A framework of online malicious traffic detection is proposed for detecting TLS encrypted malware
using a public dataset. And we make a comparison between the performance of various classifiers,
such as SVM, LSTM, and CNN classifiers.

� Further use expert knowledge for feedback to enhance the classification effect, so as to reduce the
false alarm rate.

� We perform online deployment models and regular detection in the actual environment, and
the experimental results on a large number of dataset shows that this method has high
accuracy and practicability.

The rest of this paper is listed as follows. Section 2 introduces the related works about encrypted traffic
analysis using machine learning. Section 3 describes our proposed TLSmell framework, including data pre-
processing and model architecture. Section 4 presents the performance evaluation results from various
experimental analysis. Finally, we conclude the paper in Section 5.
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2 Related Work

At present, most of the traffic in the network is transmitted in an encrypted manner, which poses a severe
challenge for the detection of malicious traffic. A large number of scholars in academia conduct research on it in
different scenarios [5–9]. Wang et al. [10] proposed an N-gram model for malicious web traffic detection.
However, when N is large, the N-gram model is very sensitive to the training data, which will lead to the
insufficient fitting of the detection model to large training samples. Their system Anagram proposed the
idea of using legitimately requested hash values to maintain the generalization ability of the detection model
to a certain extent. However, the effectiveness of this method is low due to the high variability of web
requests. Lokoc et al. [11] proposed a kNN-based encryption malware detection method, which focuses on
metric indexing to approximate k-NN search on a few high-dimensional descriptor network traffic datasets.

Přemysl Čech et al. [12] use grid histograms and MapReduce approach in a scalable way to extract
feature and compare the representation using linear and k-NN classifiers. [13] are based on typical data
mining techniques, such as meta-learning, classification, and association rules. Try to train intrusion
detection models using audited web traffic data. Their results show that data mining techniques can
identify web attacks and show that more data mining models can be tried. Claffy et al. [14] introduced
the performance and importance of data sampling methods related to network traffic. Saber et al. [15]
combine oversampling and undersampling, followed by PCA, which can select the best feature subset
before using SVM for effective traffic classification. Su etc. [16] adopted a hierarchical sampling method
that found benign and malicious clusters from the original network traffic, and then analyzed the clusters
for filtering and further malware detection.

Prasse et al. [17] used LSTM neural network model and random forest classifier to detect malware in
encrypted network traffic. Anderson [18] proposed a machine learning method based on logistic
regression and SVM to identify malware in encrypted network traffic, including 20 functions in TLS,
DNS, and HTTP data. Anderson et al. [19] identified encrypted malicious traffic by analyzing network
metadata and applied supervised machine learning algorithms.

The above methods are all effective, but for encrypted traffic, ordinary sampling methods cannot
accurately obtain the corresponding results. It is still a challenge to accurately detect malicious traffic,
especially encrypting malicious traffic.

In this paper, we propose an malicious HTTPs traffic detection framework using different classifiers
based online training. Through the in-depth analysis of the encrypted traffic to extract the features, the 4-
tuple is constructed, and then the online training algorithm of the DL model is used for training and
prediction. There is no need to decrypt the traffic, which greatly improves the operating efficiency and
uses expert support to enhance the model to improve accuracy.

3 Methodology

In this section, we first introduce the overall architecture of our proposed malicious HTTPs traffic
detection model, TLSmell, using machine learning with online training algorithm. We then discuss
several important topics of three parts, including the feature engineering, pre-processing and the
classification model. System architecture of TLSmell is shown in Fig. 1

3.1 TLSmell Framework

First, we use the data collector to collect the traffic, and store it in Hive after in-depth packet analysis,
read the data from Hive regularly, load the model, and perform detection. In the process of specific
implementation, it is also necessary to clean and filter the training dataset. For example, the malicious
traffic dataset will be mixed with some benign traffic, which is filtered according to the domain name to
ensure the accuracy of the training dataset.
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In the actual experiments, we select a small number of labeled samples to train the HTTPs malicious
traffic analysis model to obtain the first generation version. In the modeling process, we pre-load the
trained first-generation model, extract features from the data read in Hive, and input the extracted feature
vector into the model. The model performs detection and analysis on the feature vector of the input
sample. We labeled the samples according to the setting of threshold standard (α = 0.5). If the ones
exceed the threshold, they will be labeled as negative samples, otherwise as positive samples. In order to
reduce the negative impact of the model’s own error on the subsequent detection, the labeled samples will
be processed by security experts manually to confirm. If there are no false positives, then directly end.
Otherwise, save the falsely reported data samples (including positive and negative samples), correct the
label, and feed back to the online learning module. The false positive samples are added to the set for
updating. After the batch processing of the samples is completed, the weight vector is updated so that the
model parameters are updated in real-time to prepare for the next round of traffic detection, and then
continue to repeat the above steps.

3.2 Pre-Processing

To conduct our experiments, we leveraged a public dataset (MCFP), consisting of several malicious,
benign, and hybrid networks traffic packet capture files, which comes from Stratosphere Malware Capture
Facility Project of the Czech Technical University [20]. A set of malicious TLS network traffic was
chosen for detection in our work. In addition, since the MCFP dataset mainly contains HTTPs traffic of
various malwares, and lacks benign TLS network traffic, we simulated and captured more benign traffic
through visiting a series of mainstream websites, and using Wireshark to capture and filter them.

MCFP contains nearly 400 malicious sub-dataset captured by botnets. Some of these datasets provide
log files that have been parsed by Zeek, including conn.log, ssl.log, x509.log, etc.. Zeek IDS is an open
source network traffic analyzer, which itself is used for security monitoring, and it also supports a wide
range of traffic analysis tasks. The traffic data collected by the above log dataset are all included in the

Figure 1: System architecture of TLSmell
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pcap file. If the log information is not included in the sub-dataset, we will use the powerful traffic analysis
function of Zeek IDS to perform deep packet analysis through the pcap file given in the dataset to generate
the corresponding network activity log file.

After Zeek IDS processing, three important log files are obtained. These three important files need to be
further aggregated to form a “4-tuple-connected”. The quadruple includes source IP, destination IP,
destination port and protocol. And then the three log files are classified and aggregated according to the
connection information. The details are shown in Fig. 2.

The steps to connect tuples are as follows:

Step 1. Read an TLS record from the ssl.log file, obtain its unique key, use the key to find the unique
connection record in the conn.log file, and obtain the content of the 4-tuple and the label of the
connection (benign or malicious). If the found connection record has no corresponding label or no
connection record is found, skip to the next TLS record.

Step 2. If the 4-tuple is successfully found, search the first certificate record matching the certificate path
recorded by TLS in the x509.log file.

After the above 2 steps, if three records are successfully found, then determine whether there is such TLS
aggregation information in the TLS aggregation pool, and if not, add it to the TLS aggregation pool.

Step 3. After TLS is aggregated, the feature information can be further extracted based on these HTTPs
records. The final model training set is shown in Tab. 1.

Since the original data is non-quantified data, it needs to be quantified by feature extraction and then
classified. In the next sections, we will introduce how to extract the effective features.

Figure 2: Get the 4-tuple through the logs connection
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3.3 Feature Engineering

After getting the dataset, the next step is to extract its features. From our analysis and feature creation
process we extracted 33 important indicators from each 4-tuple-connected. Most of them were created based
on professional knowledge in the field and thorough analysis of malware data. For these features, they are
divided into 3 groups: connection indicators, TSL indicators, and certificate indicators. Connection
characteristics are characteristics from connection records that describe common behaviors of
communication flows that are not related to certificates and encryption. The TSL feature is the feature
from the TSL record, which describes the information of the TSL handshake and encrypted
communication, and the certificate feature is the feature from the certificate record, which describes the
information of the certificate provided to the project by the web service personnel during the TSL
handshake. We pre-processed the 33 extracted features, such as normalization and missing value
replacement. For example, if the feature cannot be calculated due to lack of information, assign it -1.
Standardize all features, such as (x-x.mean)/x.std. In Tab. 2, the features are explained in detail.

Table 1: Model training set with 4-tuple

4-tuple Feature1 Feature2 … label

192.168.1.1, 102.35.45.6, 443, tcp f1 f2 … benign

192.168.3.1, 142.36.15.6, 443, tcp f1 f2 … malicious

Table 2: Features created

Feature description Category

num Number of SSL aggregation and connection records connection

mean_duration Mean of continuous time connection

std_duration Standard deviation of continuous time connection

range_count Standard deviation of the duration range connection

orig_bytes Number of payload bytes from originator connection

resp_bytes Number of payload bytes from responder connection

orig_pkts Number of packets from originator connection

resp_pkts Number of packets from responder connection

mean_orig_bytes Average number of originator bytes connection

mean_resp_bytes Average number of responder bytes connection

mean_orig_pkts Average number of originator packets connection

mean_resp_pkts Average number of responder packets connection

std_orig_bytes Number of Standard deviation originator bytes connection

std_resp_bytes Number of standard deviation responder bytes connection

std_orig_pkts Number of Standard deviation originator packet connection

std_resp_pkts Number of standard deviation responder packets connection

ssl_orig_pkts/
orig_pkts

Proportion of originator encrypted data packet statistics to the total
data packet

connection
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3.4 Classification Models

After data pre-processing, feature extraction and selection, finally a corresponding model needs to be
constructed for malicious detection. For the classification target, combining the actual data characteristics
to select the appropriate classifier is helpful to improve the discernment of the model. Considering the
multi-dimensional characteristics of the feature and the dependency relationship between the features of
each dimension, we propose a traditional machine learning (SVM) and two deep learning architectures
(CNN, LSTM) for the detection of malicious traffic.

SVM (Support Vector Machine) is a supervised learning model for classification and regression analysis
[21]. The traditional machine learning model proposed for malware TLS encrypted network traffic
classification is a nonlinear SVM using radial basis function (RBF) as Kernel function. It can effectively
use nuclear techniques for nonlinear classification and map the input to a high-dimensional feature space.
We use RBF as Kernel function in this paper.

CNN (Convolutional Neural Networks) is a type of Feedforward Neural Networks (FNN) that includes
convolution calculations and a deep structure. It is one of the representative algorithms of deep learning [22].
CNN has the ability of representation learning, and can perform shift-invariant classification of input
information according to its hierarchical structure. The parameters of each layer of the CNN architecture
is displayed in Tab. 5 and Fig. 3.

Table 2 (continued).

Feature description Category

ssl_resp_pkts/
resp_pkts

Proportion of responder encrypted data packet statistics to total data
packets

connection

orig_bytes_li Maximum number of originator bytes connection

resp_bytes_li Maximum number of responder bytes connection

orig_pkts_li Maximum number of originator packets connection

resp_pkts_li Maximum number of responder data packets connection

ssl_duration/
sum_duration

Ratio of ssl/tls connection duration to the duration of the data stream connection

avg_time_diff Average secondary time difference connection

fn/fs Ratio of Connection record and SSL aggregation TSL

cert/x509_data Ratio of Self-signed certificate TSL

tls_num/ssl_num Ratio of TLS to SSL TSL

sni_num SNI ratio TSL

sni_ip_num SNI is IP TSL

valid_count Percentage of valid certificates certificate

valid_cert Validity of certificate period during capture certificate

mean_cert Average age of the certificate certificate

mean_squre_cert Age standard deviation of the certificate certificate

num_san_dns Number of DNS in the certificate certificate
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LSTM (Long short-term memory) overcomes the vanishing gradient problem of RNN (Recurrent neural
network) by adding storage units [23]. These storage units include forget gates, input gates, and output gates,
adding filtering to the past state, and it help to choose which states have more influence on the current state
instead of simply selecting the most recent state. The parameters of each layer of the LSTM architecture is
displayed in Tab. 6 and Fig. 4.

In this paper, we use a nonlinear SVM using RBF as the traditional machine learning model and the one-
dimensional CNN architecture and LSTM as deep learning architectures, and then compare the performance
of different classifiers through experiments.

4 Experimental Results

4.1 Dataset Description

The important basic part of this paper is data collection. The authenticity and reliability of the collected
data directly determine the effectiveness of the model. We extracted malicious traffic from MCFP dataset.
Additionally we use Wireshark to capture benign traffic. After pre-processing and clustering, 25397 valid
data are finally obtained. Our dataset has a total of 11136 benign samples, 14261 malicious samples,
which are shown in Tab. 3.

In this paper, the dataset is divided into training set, test set and validation set according to 6:2:2, that is,
60% of the malicious and benign samples are used for training the model, 20% for testing, and 20% for
validation. For the sake of generality, this paper randomly selects 60% of all types of malicious samples,
and mixes them with the 60% randomly selected from benign samples as a labeled training set. The

Figure 3: CNN architecture
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advantage of it is to ensure that each type of features can be learned by the model. Additionally, a stratified
split of training, test and validation set across 5 folds is performed on the dataset to maintain class balance.

4.2 Feature Abstraction

In this paper, three different evaluation methods, including Fisher Score [24], Select K Best [25], and
Random Forest [26], are used for feature selection. We first use these evaluation methods to score the
features and sort them from largest to smallest. Then sort the features according to different numbers.
Finally use the machine learning model to predict the evaluation results. The results are shown in Figs. 5a–5c.

According to the Fig. 5, the accuracy of the random forest began to converge on 16 features, and the
other two methods began to converge on 20 features. Finally, the features intersection of the three
methods are selected and 16 features are determined. The final selected features are as shown in Tab. 4.

4.3 Experimental Design

Finally, the data model is a value matrix, in which each row is identified by ID in the connected 4-tuple,
and the column is the feature value. Each feature can range from 0 to 1, or the value is −1. In the data model,
60% is used as training data, 20% is used as test data, and the remaining 20% is used as verification data. The
accuracy of the model is calculated according to the following formula.

Accuracy ¼ TP þ TN

TP þ FP þ TN þ FN
(1)

where TP, True Positive, means that the detection result is accurate and all are malicious; FP, False Positive,
means that the detection result is wrong, and the model training is labeled as malicious but is actually benign
HTTPs traffic; TN, True Negative, means that the detection result is correct, and the actual and predicted
values are benign HTTPs traffic; FN, False Negative, means that the predicted value is benign, but it is
actually malicious.

Figure 4: LSTM architecture

Table 3: Experimental dataset

Label Training set Test set Validation set

Benign (y = 1) 6486 2325 2325

Malicious (y = 0) 10751 1755 1755
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Figure 5: Three different evaluation methods used for feature selection. (a) Fisher Score. (b) Select K Best.
(c) Random Forest

Table 4: The final selected features

Feature Score Feature Score

Average age of the certificate 0.4144 Maximum number of originator packet 0.0183

Number of DNS in the certificate 0.1522 Age standard deviation of the certificate 0.0159

Number of Standard deviation originator
bytes

0.0808 SNI is IP 0.0131

Mean of connection duration 0.0727 Standard deviation of the duration
range

0.0115

Number of SSL aggregation and connection
records

0.05 Maximum number of responder data
packets

0.0108

Maximum number of originator bytes 0.0317 Number of payload bytes from
responder

0.0097

Maximum number of responder bytes 0.0292 Average number of originator bytes 0.0089

Average number of responder bytes 0.0216 Standard deviation of connection
duration

0.0088
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Malicious HTTPs traffic recognition rate:

TPR ¼ TP

TP þ FN
(2)

Malicious HTTPs traffic false positive rate:

FPR ¼ FP

FP þ TN
(3)

4.4 Detection Performance

This experiment explores the performance comparison between traditional machine learning (SVM) and
second another two deep learning architectures (CNN, LSTM) under the data pre-processing method
(optimal parameters). The parameters of each layer of the one-dimensional CNN architecture and LSTM
are displayed in Tabs. 5 and 6 respectively. In order to evaluate the performance of the models, we used a
5-fold cross-validation strategy. The experimental results are shown in Tab. 7.

Finally, we compared the results of the two deep neural networks to those obtained using SVM
algorithm. The main difference between these algorithms is that the deep neural network has a long- and
short-term storage layer, so it can use the text information contained in the certificate subject and issuer in
a more effective way than traditional machine algorithms (such as SVM). In Tab. 7, the accuracy of the

Table 5: The parameters of each layer of the CNN architecture

Layer Units Output dimension Parameter numbers

Input 1 (16,1) 0

Conv1d 10 (16, 10) 310

Conv1d 8 (16, 8) 2408

Conv1d 6 (16, 6) 1926

Conv1d 5 (16, 5) 1505

Conv1d 5 (16, 5) 1255

Flatten 80 (80,) 0

Dense 1024 (1024,) 82944

Dense 2 (2,) 2050

Table 6: The parameters of each layer of the LSTM architecture

Layer Units Output dimension Parameter numbers

Input 1 (16,1) 0

LSTM 128 (16, 128) 66560

LSTM 256 (16, 256) 394240

LSTM 128 (16, 128) 197120

LSTM 64 (16, 64) 49408

LSTM 2 (2, ) 130
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deep neural network in the malicious traffic detection is 1.2% higher than that of the SVMmodel. In addition,
improvements in results have also been observed in recall, accuracy, and F1-Score statistics.

We not only present our results in terms of classification accuracy, but also as a confusion matrix
showing the true positives and false positives broken down per-models. This was done to illustrate that

Table 7: The performamce of different CLASSIFIER with TLSMell model

model TPR FPR Recall Precision F1 Accuracy

SVM 89.85 9.24 89.85 88.10 89.32 90.37

CNN 88.61 5.14 88.61 92.93 90.71 92.16

LSTM 91.21 4.58 91.21 93.82 92.50 93.60

Figure 6: Confusion matrix of different types of classifiers. (a) CNN confusion matrix. (b) SVM confusion
matrix. (c) LSTM confusion matrix
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we were not simply using a naive majority-class classifier, but were in fact making useful inferences. As
shown in Fig. 8, all three classifiers have high false positive rates. It can also be seen from another angle
that the features we extracted can distinguish benign and malicious traffic well.

Through the comparison of the different models above (Figs. 6–8; Tab. 7), researchers can adopt
different machine learning classification models according to the actual application needs. The results also
verify the generalization of the feature extraction method proposed in this paper.

5 Conclusion

The method proposed in this paper does not need to decrypt HTTPs traffic, and has better support for
real-time malicious traffic detection with high accuracy and efficiency. By using connection-specific
indicators (4-tuple) and three different feature selection methods, the most representative features are
analyzed for model training, testing and validation. And the online learning method can quickly update
the model in real-time based on the online feedback data, and improve the prediction accuracy.

Figure 7: The comparison of the different models. (a) ROC curve of test set with different classifiers. (b)
Comparison of test and validation accuracy

Figure 8: Performance of different malicious traffic classifiers
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Through the comparison of different malicious traffic classifiers, researchers can adopt different DL
classification models according to the actual application needs, and also verify the generalization of the
method proposed in this paper.

Later research can further reduce the size of the data set and ensure the effectiveness of model detection.
In the future, we will further optimize the connection-specific indicators and apply it to new network
malicious traffic detection such as IOT and industrial Internet.
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